Skip to main content
Skip to main menu


Dr. Ethan X. Fang

Dr. Ethan X. Fang
Dr. Ethan X. Fang
Penn State University

Statistical Modeling and Optimization for Optimal Adaptive Trial Design in Personalized Medicine

We provide a new modeling framework and adopt modern optimization tools to attack an  important open problem in statistics. In particular, we consider the optimal adaptive trial design problem in personalized medicine. Adaptive enrichment designs involve preplanned rules for modifying enrollment criteria based on accruing data in a randomized trial. We focus on designs where the overall population is partitioned into two predefined subpopulations, e.g., based on a biomarker or risk score measured at baseline for personalized medicine. The goal is to learn which populations benefit from an experimental treatment. Two critical components of adaptive enrichment designs are the decision rule for modifying enrollment, and the multiple testing procedure. We provide a general framework for simultaneously optimizing these components for two-stage, adaptive enrichment designs through Bayesian optimization. We minimize the expected sample size under constraints on power and the familywise Type I error rate. It is computationally infeasible to directly solve this optimization problem due to its nonconvexity and infinite dimensionality. The key to our approach is a novel, discrete representation of this optimization problem as a sparse linear program, which is large-scale but computationally feasible to solve using modern optimization techniques. Applications of our approach produce new, approximately optimal designs. We shall further discuss several extensions to solve other related statistical problems.

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.