Skip to main content
Skip to main menu

Slideshow

Nat Kulvanich

Kulvanich
PhD Candidate, Statistics
201, BS Miller Hall, Health Sciences Campus

The times of repeated behavioral events can be viewed as a realization of a temporal point process. Rathbun, Shiffman, and Gwaltney (2007) used a Poisson process (Cox 1972) for modelling repeated behavioral events impacted by time-varying covariates. Taking an inspiration from the techniques of Generalized Linear Mixed Models, and the EM algorithm (Dempster et al. 1977) for finite mixture model estimation, we will further extend their models to handel data arising from a heterogeneous population. In Chapter 2 of this dissertation, we present the implementation of the finite mixture model for the Point process model to describe variation among subjects with respect to the effects of time-covariates from which clusters of subjects showing similar patterns. In Chapter 3, a Mixture mixed-effect model, that also allows for inter-subject variability is proposed. In Chapter 4, we discuss some issues we encountered in the research and point out the potential topics for future research. All the approaches in this dissertation are illustrated using data from an Ecological Momentary Assessment of smoking.

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar givenĀ has a direct impact upon ourĀ students and faculty.