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Abstract

We consider nonregular fractions of factorial experiments for a class of linear mod-
els. These models have a common general mean and main effects; however, they
may have different 2-factor interactions. Here we assume for simplicity that 3-fac-
tor and higher-order interactions are negligible. In the absence of a priori knowl-
edge about which interactions are important, it is reasonable to prefer a design that
results in equal variance for the estimates of all interaction effects to aid in model
discrimination. Such designs are called common variance designs and can be quite
challenging to identify without performing an exhaustive search of possible designs.
In this work, we introduce an extension of common variance designs called approxi-
mate common variance or A-ComVar designs. We develop a numerical approach to
finding A-ComVar designs that is much more efficient than an exhaustive search.
We present the types of A-ComVar designs that can be found for different number
of factors, runs, and interactions. We further demonstrate the competitive perfor-
mance of both common variance and A-ComVar designs using several comparisons
to other popular designs in the literature.
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1 Introduction

Fractional factorial designs are widely used in many scientific investigations because
they provide a systematic and statistically valid strategy for studying how multiple
factors impact a response variable through main effects and interactions. When sev-
eral factors are to be tested, often the experimenter does not know which factors
have important interactions. Instead, the experimenter will need to perform model
selection after conducting the experiment to identify important interactions. Gener-
ally this process will involve fitting different models under consideration and exam-
ining statistical significance of the interaction terms. Some techniques have been
developed concerning finding efficient fractional factorial plans for this purpose.
There is a rich literature on identification and discrimination to find the model best
describing the data [18-20].

Consider a design with m factors of interest. Following Ghosh and Chowdhury
[7], consider the following class of s candidate models for describing the relation-
ship between p (< m) of the m factors and the n X 1 vector of observations y,

E@) = fyj, + X, B + X By i=1,....5

1
Var(y) = 6°1, W

where 7 is the number of runs, f, is the general mean, j, is a vector of ones, B, is
the vector of p main effects that are common in all s models. The other parameters,
B,;, are specific for the ith model and hence B,; # By, fori #i',i=1,...,s. We call
these parameters “uncommon parameters.” The design matrices X, and X(Z’) corre-
spond to the main effects and ith set of 2-factor interactions, respectively. Following
Ghosh and Flores [8] and Ghosh and Chowdhury [7] we consider the situation of
p = m for generating A-ComVar designs using our proposed approach, described in
Sect. 4. However, we consider models with p < m cases in our examples compar-
ing the performance of our proposed designs with some popular designs from the
literature.

Under the above setup, model selection consists of identifying the correct i from
the s candidate models. This process is complicated by the fact that the variance
estimates for the uncommon parameters are generally not the same, which can pre-
bias the experiment toward identifying certain interactions as significant over others,
i.e., making some i more likely to be selected than others regardless of the true
underlying model. To address this issue, Ghosh and Flores [8] introduced the notion
of common variance designs for a single uncommon parameter. These designs esti-
mate the uncommon parameter in all models with equal variance, which is desirable
in the absence of any a priori information about the true model. Ghosh and Chowd-
hury [7] generalized this concept of common variance to k (k > 1) uncommon
parameters in each model in the class. Under the situation of k£ > 1, Ghosh and
Chowdhury [7] defined a common variance design to be the one satisfying | X' X?|
to be a constant, for all i, X = <jn,X1,Xg) >

The concept of variance balancedness is not totally new. Different types of
“variance-balanced designs” estimating all or some of the treatment contrasts with
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identical variance were developed by Calvin [3], Cheng [5], Gupta and Jones [10],
Hedayat and Stufken [11], Khatri [13], Mukerjee and Kageyama [17], among others.

While common variance designs have been identified for two- and three-level fac-
torial experiments with a single 2-factor interaction [7, 8], it remains to develop a
method which can find them for general number of factors and interactions. To date,
these designs have been found using exhaustive searches (Table 1), which becomes
prohibitively expensive as the number of factors and runs increases. This leads us
to introduce approximate common variance (A-ComVar) designs, which relax the
requirement that the variance of the uncommon parameters is exactly equal. We
introduce an objective function that allows us to rank designs under consideration,
and we develop a genetic algorithm for searching for these designs. Moreover, we
investigate the performance of both common variance and A-ComVar designs for
model selection using the adaptive lasso regression technique in simulation [12]. We
find comparable performance of common variance and A-ComVar designs to sev-
eral other designs for model discrimination (Table 2), which further demonstrates
the usefulness of designs that prioritize having a similar variance for the uncommon
parameters in the model.

The rest of the article is organized as follows. In Sect. 2 we present the current
state of knowledge for both two-level and three-level common variance designs. For
three-level designs we also present the exhaustive search result for m = 3. In Sect. 3
we introduce our numerical approach for finding A-ComVar designs. In Sect. 4 we
conduct extensive studies to both (1) examine our numerical approach’s ability to
find A-ComVar designs as we increase the number of factors and number of interac-
tions in the model and (2) compare these A-ComVar designs to potential competitor
designs from the literature. Finally, Sect. 5 contains some discussion of the results

Table 1 Complete search results for finding common variance designs for 33 factorial experiments

n Possible designs Satisfying No. of non- No. of CV No. of CV CV value
_ 27 rank condition CV designs  designs designs with
n (XO"XD| > 0) this value
11 13,037,895 6,926,898 6,924,772 2096 32 0.2151
2064 0.2222
10 8,436,285 2,792,387 2,775,747 16,640 48 0.2564
48 0.2667
16 0.2837
16,512 0.2963
16 0.4000
9 4,686,825 636,348 588,348 48,000 8256 0.3333
32 0.3810
13,056 0.4167
26,640 0.4444
16 0.5000
8 2,220,075 49,628 23,340 26,288 9600 0.6667
16,688 0.8889
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Table 2 Description of the designs used for Example 3

Description Design 1 Design 2

23 Experiment with 12 runs Common variance (Table 3) Plackett—-Burman (Table 3)
A-ComVar (Table 4, DY) Plackett—-Burman (Table 3)
A-ComVar (Table 4, DY) Ghosh and Tian (Table 5, D°)
A-ComVar (Table 4, DY) Bayes optimal (Table 5, D*)
A-ComVar (Table 4, D) Li and Nachtsheim (Table 5, D?)

3* Experiment with 20 runs A-ComVar (Table 4, D?) CCD (Table 6, D7)

37 Experiment with 18 runs A-ComVar (Table 4, D?) OME (Table 6, D%

The tables listed in parenthesis are where the corresponding design is presented

and some future directions for our work. “Appendix 1” contains an illustration of our
genetic algorithm, and “Appendix 2” contains Tables corresponding to all results.

2 Common Variance Designs
2.1 Two-Level Designs

The term “common variance” for the class of variance-balanced designs was first
introduced in Ghosh and Flores [8]. As more stringent criteria, the authors also
introduced the concept of optimum common variance (OPTCV), which is satisfied
by designs having the smallest value of common variance in a class of common var-
iance designs with p < m factors and » runs. Several characterizations of common
variance and optimal common variance designs were presented that provide efficient
ways for checking the common variance or OPTCV property of a given design.
These characterizations were obtained in terms of the projection matrix, eigenvalues
of the model matrix, balancedness, and orthogonal properties of the designs. In Cor-
ollary 1 of Ghosh and Flores [8], they stated one sufficient condition of common
variance designs in terms of equality of the vectors of eigenvalues of XX,
X9 = (jn,X 1 ,X(zi)>, for all i. We present one design in Table 3 from Ghosh and Flo-

res [8] for m =5 and n = 12 that has identical vectors of eigenvalues for all i. In
Sect. 4.3 we compare the performance of this particular design with that of a Plack-
ett—Burman design for model selection to demonstrate further usefulness of such
designs.

In their work, Ghosh and Flores [8] presented several general series of designs
with the common variance property. For example, they identified two fold-over
designs with the common variance property with all m factors of the design and
n = 2mand n = 2m + 2 runs, respectively:
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d(2m)= [ 2’Im_Jm ]

=21,+17,
Ju
oy
Qm+2) _ I
dm h 2Im - Jm
—2[m + Jm

As reported in Ghosh and Flores [8], both of these designs are balanced arrays of
full strength and orthogonal arrays of strength 1, for all m. Moreover, the design
d?™ is OPTCV for m = 4 and d>"*? is OPTCV for m = 3.

2.2 Three-Level Designs

Ghosh and Chowdhury [7] presented common variance designs for 3" fractional fac-
torial experiments. Consider the following model for a 3™ factorial experiment, with
one 2-factor interaction effect in the model, i.e., k = 1:

E®) = foj, + X, B1 + X3 By, Var(y) = o°L

. . . . o Var(fy:
A design for such an experiment would have the common variance property iff %

is constant foralli =1, ...,4 , for the situation p = m.

m
2

Ghosh and Chowdhury [7] presented two general series of 3" fractional factorial
common variance designs d; and d, with n runs. The design d, has a common vari-
Var(ﬁ;i)> — 2—m+m?

o , for m > 2 and n = 2m + 2 runs, while design

Var(/?g)) m
T2 T 9m2y
Also, the design d, is efficient common variance (ECV, as termed in Ghosh and
Chowdhury [7]) design for m = 2, and design d, is ECV for m = 3.

Ghosh and Chowdhury [7] also presented several sufficient conditions for general
fractional factorial designs to have the common variance property, including the
special case for 3" designs in terms of the projection matrix of the design and the
columns of 2-factor interaction. For example, a design is common variance if (1)
PX(Z") = PX(;Z), for i;,i, € {1,...,s}, where P is the projection matrix defined as

ance value given by

for m > 3 and n = 3m.

d, has a common variance value given by

-1 . .
I, - X, (X'IX 1) X', and X, contains the columns corresponding to the general
mean and main effects from the model matrix X% = <jn,X 1,X;”), and X(z’) corre-
sponds to the i 2-factor interaction. Another set of sufficient conditions for having
common variance is, for, i;,i, € {1,...,s}, (1) <X(2") + ng)) belongs to the column
space of X, and (2) X(zlz) = FX(;‘) holds, where the permutation matrix F obtained
from the identity matrix satisfies F'PF = P.

For 33 fractional factorial experiment, Chowdhury [6] conducted a complete

search of common variance designs for n = 8 to n = 27, since n = 8 is the mini-
mum number of runs needed to estimate all the parameters considering all 3 factors
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are present in the model (one general mean, 6 main effects, one 2-factor interac-
tion effect). The results of this search are presented in Table 1. The complete search
revealed that common variance designs only exist for n = 8,9, 10, 11 for 33 factorial
experiments. For each of the runs multiple groups of common variance designs were
obtained, having different common variance values, among which 32 designs for
n = 11; 48 designs for n = 10; 8256 designs for n = 9; and 9600 designs for n = 8§,
are the efficient common variance designs giving the minimum value of common
variance in the respective classes.

3 Identifying Common Variance Designs
3.1 Challenges in Numerically Identifying Common Variance Designs

Ghosh and Flores [8] and Ghosh and Chowdhury [7] presented some general series
of designs satisfying the common variance property for two- and three-level facto-
rial experiments obtained via exhaustive searches of the design space. Such searches
become extremely computationally challenging as the number of factors increases.
For example, for a 33 factorial experiment with one 2-factor interaction (k = 1) the

g | = 2,220,075, with 9 runs is

possible set of candidate designs with 8 runs is ( 27
27 . . 27 4
= 4,686,825, with 10 runs is 10 )= 8,436,285, and so on. For a 3* facto-

9

rial experiment, the cardinality of this set increases to = 1.878392 x 10'2,

10
even for the designs with the smallest possible number of runs. This rapid growth in
the size of the search space makes exhaustive searches for common variance designs
impossible for anything but small design problems.

In light of the difficulty in finding common variance designs, we introduce a class
of approximate common variance (A-ComVar) designs. Instead of having exactly
equal variance for the uncommon parameters for the s models under consideration,
A-ComVar designs try to maximize the ratio of the minimum variance to the maxi-
mum variance. In doing so, they contain common variance designs as a sub-case
where the minimum variance is exactly equal to the maximum variance. In relax-
ing the requirement that the variances are exactly equal, we are able to develop an
objective function and algorithm for identifying these A-ComVar designs without
performing an exhaustive search.

3.2 Proposed Algorithm: Genetic Algorithm for Finding A-ComVar Designs

In this section we propose to use a genetic algorithm to identify A-ComVar designs.

We start by defining an objective function that seeks to quantify our goal. Denote
; and let o-l% = lziaé :
2i 2 2i

N

the variance of the interaction effect for the ith model as o
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The objective function for designs that discriminate between models with a single
interaction term (k = 1) is:
1/,
fld;p) = = )
s _ 2
1+¢x Zi:l(o-pz,. c 2)

where 62 is replaced by the determinant of the lower-right k X k sub-matrix of the

B
inverse of the Fisher information matrix for k > 1, which bears some similarity to

the idea behind D-optimal design of experiments. The value of the objective func-
tion increases as the variance of the estimates decreases through the numerator,
encouraging designs with small variances for the interaction terms. However, this
value is also strongly penalized toward zero as the individual model variances move
away from the average model variance. The strength of this penalty is controlled by
the tuning parameter ¢, which we recommend setting to a very large value. In our
experiments we found ¢ = 10 x 10'3 to be adequate. The ¢ parameter is just to force
differences in variance across models under consideration to “cost” more than the
potential variance improvement from a design under some subset of those models,
and thus setting it to any suitable large value should suffice. Taken together the
numerator allows us to differentiate between designs with common variance to
select the better one, and the denominator encourages common variance designs by
penalizing differing variance under alternative models under consideration.

This maximization approach will prefer A-ComVar designs with exactly com-
mon variance. Of course, in many experimental situations a common variance
design may not exist. For example in the exhaustive search, Chowdhury [6] found
that common variance designs did not exist for 3* experiments for 13 runs. This
leads us to the principal advantage of our approach: when a common variance
design does not exist we can still find designs with variance that is as close as
possible to being equal. To assess the quality of an A-ComVar design, we define
the A-ComVar ratio

min, { var(f;
Tacv = M 3)

max; {Var(ﬁ2 )}

Clearly when a design has common variance, r,-y = 1. When a design does not
have common variance, r,cy gives us an idea of how far we are from common vari-
ance. For example, if 5oy = 0.5 then we know that among the models under con-
sideration, the largest variance of interaction terms is twice that of the smallest. This
knowledge can hopefully help inform model selection.

Any off-the-shelf optimization algorithm could be used to try to maximize
this objective function. We have chosen to use a genetic algorithm, as is com-
mon in the design literature [15, 16]. Genetic algorithms are optimization tech-
niques mimicking Darwin’s idea of natural selection and survival of the fittest.
This search expects that a good candidate solution will provide good offspring
and imitates the way that chromosomes crossover and mutate when reproduc-
ing. Here, each chromosome is a design, and the fitness of a chromosome is
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determined by the corresponding objective function value. At each iteration the
worst chromosomes are replaced with offspring generated by combining the set-
tings from two better chromosomes, along with some small probability of a muta-
tion. In the context of our problem, a mutation corresponds to randomly changing
the settings for one of the factors in one of the runs. The algorithm terminates
when either the maximum number of iterations has been reached, or a design
with common variance has been found. The steps in our genetic algorithm are
outlined in Algorithm 1, and “Appendix 1” provides a detailed example of how
our algorithm is used.

The genetic algorithm requires the user to specify the mutation probability, the
number of chromosomes to replace at each iteration, and the maximum number
of iterations. Our experience with the algorithm suggests using a small mutation
probability to encourage only one or two mutations each time a new chromosome
is created. Similarly, we have found replacing two chromosomes at each itera-
tion to work for our purposes, and so throughout the remainder of this paper we
fix this tuning parameter at two. Finally, we generally use a maximum of 10,000
iterations, although the algorithm is quite fast and this number can easily be
increased if needed. Our algorithm is implemented in Julia version 1.0.2 and is
available for download from the author’s website.

Algorithm 1 Pseudo-code for the genetic algorithm to find A-ComVar designs.

1: function A-CoMVARDESIGN(design problem, mutation prob., num replace, max iter., ¢)
2 for Each chromosome do

3 initialize chromosome to random design

4 Calculate fitness

5: end for

6 while termination criteria not met do

7 Identify worst num replace chromosomes

8: Use a crossover to generate num replace new chromosomes

9: Mutate the num replace new chromosomes

10: Replace the worst chromosomes with the num replace new chromosomes
11: Calculate fitness for new chromosomes
12: end while

13: end function

4 Numerical Examples
4.1 Example 1: Designs with One 2-Factor Interaction

We conducted a series of experiments to investigate the ability of our approach
to find A-ComVar designs and to gain a better understanding of when common
variance designs can be found. We started by examining designs with a single
2-factor interaction. We consider 2™ and 3" experiments, with m; =4,...,9
and m, =3,...,6 and consider the situation where all factors are present in
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the model as main effects. For the 2™ experiments, we considered run sizes of
Ny, =my+2,...,m + 11, and for the 3" experiments, we considered run sizes of
n, =2m;+2,...,2m + 11. For each combination of settings, we ran our genetic
algorithm 100 times and stored the ¢y results. The tuning parameters used were
a mutation probability of 0.05 and a maximum of 10,000 iterations.

Figure 1 displays the results for the 2" cases, and Fig. 2 displays the results
for the 3" cases. We first note that our results are consistent with the findings of
Ghosh and Chowdhury [7], who used exhaustive searches to identify common
variance designs. For example, Ghosh and Chowdhury [7] found that common
variance designs exist for 3® designs with 8 runs, which agrees with the box-
plots in the first panel of Fig. 2. This supports our use of the genetic algorithm
approach with the objective function described above. Furthermore, in cases
where the common variance designs either do not exist or could not be found,
our approach was able to find designs that attempt to get as close as possible
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Fig. 1 Ratios r,cy for the 2™ case across 100 replicates for each experimental setting
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Fig. 2 Ratios r,cy for the 3™ case across 100 replicates for each experimental setting

to common variance. For example, it is known from exhaustive searches that
no common variance design exists for a 3> experiment with 12 runs. However,
the proposed approach was able to find designs where the smallest variance was
greater than 0.8 times the largest variance, indicating that the design is quite close
to having the common variance property.

4.2 Example 2: Designs with Two 2-Factor Interactions

For designs with multiple 2-factor interactions (i.e., k > 1), we generalize the
objective function in (2) by replacing Var(ﬁzi) with the determinant of the block
of the inverse of the Fisher information matrix corresponding to the interaction
terms.

To demonstrate the approach, we conducted another experiment with two
2-factor interactions (i.e., k = 2). We consider 2”3 experiments, withm; =4, ...,7,
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Fig. 3 Ratios r,cy for the 2" case across 100 replicates for each experimental setting with k = 2

and assume p = mj;. We considered run sizes of n, =m;+6,...,mz+ 12. For
each combination of settings, we ran our genetic algorithm 100 times and stored
the r,cy results. The tuning parameters used were a mutation probability of 0.05
and a maximum of 10,000 iterations.

Figure 3 shows the results. As before, we can see that in many cases the
genetic algorithm is able to find common variance designs. In cases where com-
mon variance designs cannot be found, the approach is often able to identify a
design resulting in relatively close to common variance.
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4.3 Example 3: Common Variance Design and A-ComVar Designs for Model
Selection

We next perform a series of studies to demonstrate the advantages of pursuing
A-ComVar designs. We do this by considering data generated from a variety of true
models and testing whether a model selection procedure is able to identify the true
model using observations collected using the designs under consideration. We used
the adaptive lasso [12] to fit the model. We chose the adaptive lasso method of Kane
and Mandal [12] because they showed that this technique is suitable for identifying
the correct model for designs with complex aliasing and that it outperforms other
popular variable selection methods including the Dantzig selector [4], LARS [21],
and the nonnegative Garotte estimator [2, 22].

Our procedure is as follows. For a model with p active main effects, let Fy, ..., F,
denote the active factors, which are selected at random from the set of all factors
of the designs at each replication. The corresponding effects, g, ..., f,, as well as
any interaction effects, are set to be either “big” or “small,” where “big” effects
are drawn from a U(1.5, 2.5) distribution and “small” effects from a U(0.1, 0.3).
Finally, the error standard deviation, o, is chosen, completing the specification of the
true underlying model. The total number of different models, effect sizes, and error
standard deviations considered can be found in any of Tables 8, 9, 10, 11, 12, 13,
and 14. The first column in each table corresponds to the true model under consid-
eration, and the second column gives information about the strengths of the active
effects (b—"“big” and s—*“small”’). For example, row 25 of Table 10 corresponds to
a model with three active main effects (F, F,, and F3) as well as one active interac-
tion (F;F3). Here, the second column tells us that F; and F, have “big” effects and
F; and F; F5 have “small” effects.

Next, for each design under consideration, a data set is generated from the true
underlying model using the randomly selected factors of the design. A model is fit to
this data set using the adaptive lasso, and we measure whether or not the true under-
lying model was identified. This process is then repeated 100 times for the same
set of true active coefficients, and we store the percentage of the times the correct
model was identified.

For each model, design, and error standard deviation under consideration, this
process of randomly selecting active factors in the model, generating observations
from the design, and measuring how often the correct model is identified is repeated
50 times, resulting in 50 replicates per combination of settings. Here each replicate
is a measurement of the percentage of times the data obtained using the design was
able to correctly identify the true underlying model. Table 2 displays a list of the
model comparisons we made. In Tables 8, 9, 10, 11, 12, 13, and 14 we report the
average percentage of times (over 50 replications) the correct model was identified
by the respective designs (Tables 3, 4, 5, 6).

The results with model X variance X design breakdown can be found in
Tables 8, 9, 10, 11, 12, 13, and 14 in “Appendix 2.” Figures 4, 5, and 6 present
boxplots of the results for each standard deviation level, stratified by the num-
ber of interactions in the model (0, 1, or 2). From the figures we can see that
while the common variance design outperforms Plackett—-Burman design for all
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Table 3 Design dém with common variance for 5 factors and 12 runs (left) and Plackett-Burman design

with 11 factors and 12 runs (right)

Plackett—-Burman

(12)
5

d

5and n =12, (2) D? (middle):

4 and n = 20 and (3) D3 (right): three-level A-ComVar

7,n = 18, used in Example 3

Table4 (1) D'(left): two-level A-ComVar design for k = 1 with m
three-level A-ComVar design for k = 1 with m

design fork =1, m

D3

D2

Dl

pringer

As
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Table 5 (1) D(left): two-level Bayes optimal design with m = 5 and n = 12 from Bingham and Chipman
[11, (2) D’ (middle): two-level design with m = 5 and n = 12 from Li and Nachesheim [14] and (3) D®
(right): two-level design with m = 5, n = 12 from Ghosh and Tian [9], used in Example 3

D* D3 Db

1 1 -1 1 1 1 1 1
-1 1 1 -1 1 -1 1 1 1 -1 1
1 -1 1 1 -1 =1 I -1 I -1 1
-1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 1 1
-1 -1 1 -1 I -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1
1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 -1 -1
1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 =1 I -1
1 1 1 -1 -1 1 -1 1 -1 -1 -1 1 1 -1 -1
-1 1 1 1 -1 1 -1 1 -1 -1 1 -1 1 -1
1 1 1 1 -1 -1 1 1 -1
1

-1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1

Table 6 (1) D’(left): central

D’ D8

composite design (CCD) with

m=3andn =20, (2) D (right): A B c A B C D E F G

three-level orthogonal main

effect plan (OME) withm =7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

and n = 18 used in Example 3 1 1 1 0 0 0 0 0 0 —1
-1 1 -1 1 1 1 -1
1 1 -1 -1 -1 0 1 0 1 -1
-1 -1 1 0 0 1 -1 1 -1 -1
1 -1 1 1 1 -1 0 -1 0 -1
-1 1 1 -1 0 -1 1 1 0 o0
1 1 1 0 0 -1 -1 1 0
—-1.682 0 0 -1 1 0 0 -1 0
1.682 0 0 -1 1 1 -1 0o 0 ©0
0 -1.682 0 0 -1 -1 0 1 1 0
0 1.682 0 1 0 0 I -1 -1 0
0 0 -1.682 -1 0 1 0 -1 1 1
0 0 1.682 0 1 -1 1 0 -1 1
0 0 0 1 -1 0 -1 1 0 1
0 0 0 -1 1 0o o0 1 -1 1
0 0 0 0 -1 1 1 -1 0 1
0 0 0 1 0 -1 -1 0 1 1
0 0 0
0 0 0
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Common Variance vs Plackett-Burman
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Fig.4 Boxplots of the results for each standard deviation level, stratified by the number of interactions in
the model (0, 1, or 2 from left to right) for model selection performance of two-level common variance
design d'? design with 5 factors and 12 runs presented in Table 2 with PB design presented in Table 3.
Hereg- represents the common variance design dém and represents Plackett-Burman design

three types of models, a few general patterns are observed for A-ComVar designs.
First, when the model contains only main effects and no interactions, the A-Com-
Var designs generally perform about as well as the competitor designs. This is
important, as it suggests that there is not a strong disadvantage to seeking such
designs in practice. Next, examining the boxplots for the models with one and
two interactions, we can see that the A-ComVar designs generally outperform
the other designs, especially for the models with two interactions. The excep-
tion to this pattern is the Ghosh and Tian design, which seems to outperform the
A-ComVar design in several cases. This is likely because the Ghosh and Tian [9]
design is optimal w.r.t all six standard optimality criteria, and thus it is hard to
beat its performance. However, designs of this quality cannot always be obtained
for arbitrary numbers of factors or runs; thus, one advantage of our numerical
approach is that it can be used for cases where such designs cannot be obtained
via exhaustive search or by using theoretical results.

5 Discussion

In this work we introduced A-ComVar designs, an extension of common variance
designs. Our proposed approach addresses the difficulties associated with find-
ing common variance designs via exhaustive search. Through several examples,
we demonstrated that the proposed algorithmic approach allows us to quickly
find common variance designs that overlap with those known in the literature.
Furthermore, in cases where common variance designs do not exist or cannot be
found, our approach allows identification of designs with close to common vari-
ance. Comparisons to a Plackett—Burman design and several other standard opti-
mal designs from the literature demonstrated that such designs perform quite well
in practice, and that in many cases these A-ComVar designs perform as well as
common variance designs.
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A-ComVar vs Placket-Burman
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Fig.5 Boxplots of the results for each standard deviation level, stratified by the number of interactions in
the model (0, 1, or 2 from left to right) for model selection performance of two-level A-ComVar design

with 5 factors and 12 runs with other designs. Here
represents Plackett—-Burman design,

els,
from Ghosh and Tian [9],
from Bingham and Chipman [1],
and Nachtsheim [14]

@ Springer

represents our A-ComVar design with 2 lev-

represents a two-level design with 5 factors and 12 runs
represents a two-level Bayes optimal design with 5 factors and 12 runs

represents a two-level design with 5 factors and 12 runs from Li



Journal of Statistical Theory and Practice (2020) 14:16 Page170f49 16

3 level A-ComVar vs CCD
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Fig. 6 Boxplots of the results for each standard deviation level, stratified by the number of interactions
in the model (0, 1, or 2 from left to right) for model selection performance of three-level A-ComVar
designs with central composite and orthogonal main effect designs. Here| represents our three-level
A-ComVar design with 4 factors and 20 runs, represents a central composite design with 3 factors
and 20 runs, represents our three-level A-ComVar design with 7 factors and 18 runs, represents
a orthogonal main effect plan with 7 factors and 18 runs

There are several avenues here for future work. First, we considered only
the cases with two-level and three-level factors. Future work could consider
finding A-ComVar designs with mixed—level factors. Second, we utilized a
genetic algorithm to find these designs. There are numerous other optimization
approaches that could be used to maximize the objective function in (2). In some
cases, these other approaches may succeed in finding designs with a better ratio
of minimum to maximum variance of the uncommon parameters. Third, there
is another approach to finding common variance designs through hierarchical
designs [6]. These designs are found by identifying a common variance design
for a smaller number of runs and then adding runs while trying to preserve the
common variance property. It is possible that a similar idea could be developed
for A-ComVar designs. Finally, future work could study the types of A-Com-
Var designs that can be found when the number of interactions in the model
increases beyond two.
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Appendix 1: Genetic Algorithm

In this work we used a genetic algorithm to find designs that maximize the A-Com-
Var objective function. This appendix provides specific details on the algorithm.
Keeping with the standard genetic algorithm terminology, we use the word chromo-
some to describe a single candidate design. Each chromosome is comprised of the
factor settings for each factor at each design point. Each of these individual factor
settings is known as a gene. The population is the set of all chromosomes, i.e., all
designs that we are currently considering.

We illustrate a simple version of the genetic algorithm below. In this example we
search for a 6-run A-ComVar design for an experiment with three two-level factors
and one interaction. We label the factors as A, B, and C. For simplicity, we assume
that the population size is 3, although in real applications it will generally be larger.

Since this experiment has three two-level factors, there are 8 possible design
points to pick the 6 points for our design from. The 8 points are shown in Table 7.
There are (;) = 3 possible models with all main effects and one interaction. For nota-
tional simplicity we label these models by the corresponding interaction: (AB), (AC),
and (BC). Our goal is to obtain a design under which the variance of the interaction
term is identical, or close to identical, under all three of these models.

0. Initialization

First, each of the three chromosomes is initialized to a random start. To obtain
the random start for a specific chromosome, we simply sample six of the rows in
Table 7 without replacement. Our initialization procedure results in the following
three chromosomes:

Table 7 Set of possible design
points for Appendix example

-1 -1 -1
-1 -1 1
-1 1 -1
-1 1 1

-1 1
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Population
Chromosome 1 Chromosome 2 Chromosome 3
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 1 -1 1 -1 -1 -1 1
1 -1 -1 1 -1 -1 -1 1 1
1 -1 1 1 -1 1 1 -1 1
1 1 -1 1 1 -1 1 1 -1
1 1 1 1 1 1 1 1 1

After initializing, we need to calculate the fitness for each of these chromo-
somes using the objective function in expression (2). In order to evaluate the

objective function, we need to calculate o-%l. for i =1,2,3, which correspond to
models (AB), (AC), and (BC), respectively. Then, we take the average of these
three values to be o-% and can evaluate the objective function. These steps are

illustrated below for the first chromosome.

[XMTXM)]-1 X®Tx@)|-1 |X®T X)L

Tllustration of fitness calculation. 1 1 1
-1 1 1
1 -1 -1
TS| 1
1 1 -1
1 1 1
Model (AB) Model (AC) Model (BC')
x® l X2 ! x®)
1 -1 -1 -1 I I 1
1 -1 1 1 -1 ' 1 -1 1 1 -1 ' 1 -1 1 1 1
1 1 -1 -1 -1 o1 1 -1 -1 -1 1 1 -1 -1 1
tr 1 -1 1 -1 1 1 -1 1 1 1 1 -1 1 -
1 1 1 -1 11 1 1 -1 -1 1 1 1 -1 -1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.19 -0.06 0.00 0.00 0.00 ; 0.19 -0.06 0.00 0.00 0.00 ; 0.25 -0.13 0.00 0.00 -0.13
-0.06 0.19 0.00 0.00 0.00 :-0.06 0.19 0.00 0.00 0.00 :-0.13 0.25 0.00 0.00 0.13
0.00 0.00 025 -0.13 -0.13 ' 0.00 0.00 0.25 -0.13 0.13 ' 0.00 0.00 0.19 -0.06 0.00
0.00 0.00 -0.13 0.25 0.13 | 0.00 0.00 -0.13 0.25 -0.13 | 0.00 0.00 -0.06 0.19 0.00
0.00 0.00 -0.13 0.13 0.25 « 0.00 0.00 0.13 -0.13 0.25 +-0.13 0.13 0.0 0.0 0.25
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The above procedure is repeated for each of the three chromosomes. In this
case, all three designs end up having the same fitness value. We now summarize
each chromosome below:

Population
Chromosome 1 Chromosome 2 Chromosome 3
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 1 -1 1 -1 -1 -1 1
1 -1 -1 1 -1 -1 -1 1 1
1 -1 1 1 -1 1 1 -1 1
1 1 -1 1 1 -1 1 1 -1
1 1 1 1 1 1 1 1 1

Now that we have completed the initialization process, we can begin the main
loop over the algorithm.

1. Identify worst chromosome(s)

The first step is to identify the worst chromosomes. These are the chromo-
somes that will be replaced by new offspring. Since we only have three chromo-
somes in the population, we will only identify and replace the single worst chro-
mosome. In the case of a tie (as we have here), the chromosome to be replaced is
randomly chosen. In this case we have chosen chromosome 3 to be replaced.

2. Generate replacement using crossover

We next generate a replacement for the worst chromosome (3) using crossover
from 2 randomly selecting remaining chromosomes. Since our example only has
three chromosomes, we simply use the remaining chromosomes (1 and 2). In the
crossover, a random cut point is selected, and the two chromosomes are combined
using the values from the first chromosome for the factors to the left of the cut
point and the values from the second chromosome for the factors to the right of
the cut point. This process is illustrated below:

Crossover
Chromosome 1 Chromosome 2 Offspring
SRS ST T T |
1101 11l S |
1 -1 5 =l 1 SIS 1 -1 -1
! i —)
1 = 0o 1 oo d 1 -1 1
1 1) -1 1 1 -1 1 1 -1
1 1.1 1 101 1 1 1
cut point cut point

Note that it is possible to consider other ways of producing offspring via cross-
over. For example, the cut point could be different for each support point, or they
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could be “horizontal” instead of “vertical,” choosing certain rows from the first
chromosome and the remaining rows from the second.

3. Mutation

In addition to crossover, more novelty can be introduced to the solution by ran-
domly changing, or mutating, some of factor settings. For our purpose, the probabil-
ity of each factor setting (gene) mutating is identical.

4. Replacement and Fitness Evaluation

Following Steps 3 and 4, we are now ready to replace the old chromosome with
the offspring. In this step, the worst chromosome(s) is replaced by the offspring cre-
ated in Steps 2—3. The fitness of this new chromosome is evaluated and stored.

Appendix 2: Tables for Example 3

Tables 8, 9, 10, 11, 12, 13, and 14 present detailed results for each of the compari-
sons in Example 3.

@ Springer



Journal of Statistical Theory and Practice (2020) 14:16

16 Page22o0f49

80°8¢C 81°9¢ 89°1¢ 0€°€9 98°L8 0886 7598 00001 qQ+q+9q+q A+ ST+ + T
91°0 920 w0 01 v9'L 0LTl 19 YT 18 S+S+s Sa+ Y+ €
9L0 A ¥9°C 08°¢ 98°CI 81°€T 0T'9¢ vLOY S+q+s A+ + g w
750 8T'1 0TT (4% 0€TI 80T Y6'1€ v8 1Y s+s+q S+ + g 1T
80°F ¥$'S 0L'8 yI°Ct 01°0¢ 99°LE 81'8C 17593 q+s+q A+ + 0T
(434 0T'L 56 81°G1 YL 96'9¢ T6°0€ 91¥ s+q+q S+ + g 61
YOy 0¥°0S 91°09 86°69 Y16 9986 0£'96 00001 q+q+q '+ 81
$1°0 90°0 8¢°0 90 ¥$'9 76’8 8€°69 0€'LL S+s+s A+ + g LT
89°0 0L°0 89'1 20T Y8LI 2061 ¥h9¢ wLE s+s+q S+ + 91
(484 Wy 8T8 140! 9L¥E 96'9¢ 9¢'LE 90°'8¢ s+q+q A+ + ST
99°9¢ 96T 8I'+S 06’19 8096 L6 00001 00001 q+q+q S+ + !
790 98°0 8I'T 8€'C Tt YO'LT 8€°SL 8918 S+S+s Y+ Y+ ¢l
88°0 0Tl 9T 9¢'t 99°CT 70°8T 06 890§ s+s+q Y+ A+ 4!
80°S 0L'9 Y601 484! 0r'LE 0S°0¥ 9¢°8¢ (4593 qQ+s+q Y+ A+ 11
y1°6 WL 86'6 8EEl 870 96'St 88°9¢ T8LE s+q+q Y+ A+ 0]
YLIS 6’81 ¥£'89 vL'L9 0T'L6 0586 00001 00001 qa+q+q Y+ A+ 6
0¢ 0¥ vL'S 0g'L 9°ST 86°6C 89°6L ¥S'H8 S+s '+ 8
019 9 9I'11 ¥6°01 9¢°LE T5°8¢ 86796 0L9S s+q Y+ L
599 8L99 799L OL'LL 80°L6 7186 00001 00001 qQ+q Y+ 9
790 9%°0 or'1 8¢l €Tl 99°¥1 PhEL TCLL S+ Y+ S
8TH 9Tt 8L 0T'8 80°€€ 0T+E ¥$'SS 06'9S s+q Y+ a v
vE8S 9 HS 8769 81°89 9966 $0°96 00001 00°00T q+q Y+ a €
919 T6'S 9L'6 7ol TLee (43743 ¥8'8L vI8L s ' z
0L0L 80°89 88°GL 98°pL Y166 8666 00001 00001 q g I
dad AD ad AD dd AD dd AD
SLo=29 So=9 ST0=9 ro=2o az1g [9POIN

uS1S9p UBWLING—119%0R[J Y} PUB (7 USISIP SOUBLIBA UOWILIOD Y} J0OJ S[OPOW PIYNUIPI A[1091100 Jo 93eIuaoiad oFeiony g sjqel

pringer

As



16

Page 23 of 49

Journal of Statistical Theory and Practice (2020) 14:16

89°6C $0'8C Y0'TE TrTe 06'6€ 89T q+q+q Y+ A+ 6
¥S'1 9C'1 0¢'1 Ll 00C 00T S+ L'+ 8
vI'g or'e e vLE v 9Lt s+q '+ L
00'T¥ 99°¢t 0z’ 6¥ a1y 88'LS 01'LS q+q '+ 9
91°0 v1°0 v1°0 9z0 9z°0 870 S+ Y+ S
88'1 8¢'T vrT €T 0r'¢ ore s+q Y+ v
06°C¢ 96'C¢ 81°0% 86°6€ vE6y oL'LY q+q Y+ €
06T 00°€ 80°¢ 86°¢ 00 wy s ' z
¥$'SS 0¥ 9%°19 T€°6S 8199 89°€9 q 4 I
dad AD ad AD dad AD
Sr=o0 sT1=0 =9 ozI§ [OPOIN
000 700 000 80°0 8€°0 (43 09C 8L€T S+S+S+S+s+s YA+ A+ T+ S+ + S¢
91’1 ¥9'C 00T 88t 99T ¥8'9 9¢'0 8y q+q+qQ+s+s+q T+ AT+ €
200 Tro 700 010 00 0£0 ¥$°0 99°0 S+s+s+s+q+q YA+ AT+ S+ €€
989 9¢°6Y vLTI 8E°6L 90°61 01°$6 Tr6l 9L'L6 a+9+9+q+q+q REAT R o S SR R 43
200 90°0 Tro 91°0 vS1 9s'Y ¥S¥T 96'LS S+S+s+s+s A+ A T+ T+ £
¥0'1 9¢'¢ 61 98¢ wy 0801 ¥'9 8CTI q+q+s+s+q A+ A T+ S+ Y+ 0¢
81°0 50 950 991 9LT 96'9 86T YLTT S+s+s+q+q REAT R A S P R 6C
Y0TI 6 0S'I¢ 99°0L (4843 8€°66 87t 91°66 a+9+9+q+q A+ A T+ T+ S+ 8T
90°0 800 81°0 8¢°0 or'e 968 9T'8¥ 978 S+S+Ss+5s REAT R S Y LT
080 99°1 Wl 06°€ 8¢'El 8S°L1 e 9°LT Q+s+s+q BT A R P o 9
L0 Wl 981 s T8¢l (4874 80°ST 88°€T s+s+q+q S+ S+ Y+ 44
ad AD qd AD dad AD qd AD
SLo=o0 So=9 STo=9 ro=29 ozIg [OPOIN

(ponunuoo) g a|qey

pringer

& s



Journal of Statistical Theory and Practice (2020) 14:16

16 Page 24 0f49

Wl (443! 81 88'81 or'e vLTE  4+q+9+q+q+q YT+ A+ T+ S+ T+ 43
000 200 000 200 000 000 S+S+S+S+S REAT R B B T Y | I€
01’0 vL0 0S°0 Tl 870 0L'T q+q+s+s+q A+ A T+ T+ + 0¢
010 Y10 Y10 Y10 910 €0 S+s+s+q+q S+ ST+ A+ 6T
(497 0gel 0T'8 TT6l (e 9I'LT q+9+q+q+q A+ A T+ T+ 8¢
000 000 Y00 200 200 $0°0 S+S+S+S S+ ST+ LT
€0 090 870 ¥8°0 o 00T q+s+s+q REAT R oV Y 9T
¥T0 8¢°0 870 950 9¢0 96°0 s+s+q+q A+ ST+ + ST
80°01 0¢€l 8L 11 WSl TL61 TE€T q+q+q+q REAT R S Y T
200 90°0 v1°0 900 90°0 90°0 S+S+5 A+ T+ €
820 91°0 970 9z°0 9¢0 95°0 s+q+s '+ + g (44
0T0 950 vE0 wo 89°0 0L°0 S+s+q '+ + g 1
o' ov'e 89°C 8T'¢ 90°¢ 9y Q+s+q A+ + g 0T
T or'e 06T vL'E 07 Ty s+q+q '+ + 61
9181 0£'ST 79°CC 9I'1¢ YO'1E 9I'TlY Q+q+q '+ + g 81
$0°0 90°0 000 200 200 010 S+S+s S+ + L1
81°0 020 70 70 9¢'0 9%°0 s+s+q I+ + g 91
86'1 81°C ¥ST v6'C or'e 90°¢ s+q+q S+ + g S1
Te91 99'81 70T ¥S'€T 09'ST Y9'1¢€ q+9+q S+ + v1
0 91°0 70 0€0 0€°0 0€°0 S+S+5 Y+ €1
0 90 790 960 870 790 S+s+q Y+ A+ !
Y0'€ 06'¢ ¥9°¢ 44 80't 98t qQ+s+q Y+ A+ 11
85T ¥S'€ 9C'¢ 8S 90t 209 s+q+q Y+ A+ 01
dad AD qd AD dad AD
Sr=29 STI=9 =9 ozIg [OPOIN

(ponunuoo) g a|qey

pringer

f's



16

Page 25 of 49

Journal of Statistical Theory and Practice (2020) 14:16

000 000 000 000 000 200 S+S+S+Ss+s+S [ AV R B P B S¢
970 9L°0 90 ov'T 950 88T q+9+q+s+s+q Y+ A+ S+ €
200 200 200 01°0 ¥0°0 90°0 S+s+s+s+q+q LAV ST B A e S €€
ad AD dd AD ad AD
Sr=29 sT1=20 [=o9 az1g [9PON

(ponunuoo) g a|qey

pringer

As



Journal of Statistical Theory and Practice (2020) 14:16

16 Page 26 of 49

Ry LTE et ¥6'SS  Y6'8L TLS6  THYS 0666 q+q+9q+q A+ T+ ¥T
020 01°0 0 780 0€9 8¢'L 9¢'8¢ 0T'L9 S+S+s S+ + g €
9L°0 ¥8°0 W LT el 0$91  TeTe 79°T¢ S+q+s A+ + g (44
9.0 ¥6°0 96°1 0€T ¥T91 el 9glE 96'6€ s+s+q S+ + g 1T
9T¥ 0L'9 08'8 86'€T  89°¢E 8¢St 8I'EE 86'CH q+s+q A+ Y+ 0c
8v't 9L'¢ 9L'8 %56 78'8T re0E 0T Oob 89'LY s+q+q '+ + g 61
SLvY 00T 0909 T0LS  96T6 09v6  8T'L6 00001 q+q+q '+ 81
90°0 Tro €0 ¥9°0 8¢9 769 09°0L 0059 S+s+s S+ + L1
ad 88°0 061 Y0T  09°0C 8181  TSTE 89°CC s+s+q S+ + 91
8y 09°'S ¥T'6 9ICl  09°€E wSreE 9LTH PI'LYy s+q+q A+ + ST
Tlee T60€  96°1S 8S'cr  8L'96 0L'16 007001 00001 q+q+q S+ + !
¥9'0 850 91 or'1 611 96'TT  80°SL ¥2'99 S+S+s Y+ A+ ¢l
8L°0 01 08T 8LT 76'0T 09°LL  TLO9Y wer s+s+q Y+ A+ 4
99°¢ L w6 OI'El  8E¥E Yo'LE  90°Eh LSy qQ+s+q Yd++ 11
09 00Y  9I'TI 906  ¥8IP 9F'SE  8L0S or'6v s+q+q Y+t 01
9¢S 8S'Sy 9769 ¥T09 8086 7866 00001 00001 qa+q+q Y+ A+ 6
¥$'T 90T 0z'9 88t 0T 0T 0T8L $SIL S+s '+ 8
08'S Wy vLo1 86°L 99°8¢ 961 +TE9 YO'LS s+q Y+ L
0789 P19 06°LL WIL  OF'L6 796 007001 007001 Q+q Y+ 9
0$°0 0L0 YL 90T Pl Y9ST  OvIL 80°€9 S+ W+ a S
YOt 08's 76’8 901 96°SE TEE 8T6b Ches s+q W+ a v
6s Y6rS 9669 1S9 8866 P16 007001 00001 q+q Y+ a €
09°S 889 vL'6 0001  TSHE YTEE  9L6L 8G°GL s ' 4
YO 1L 89 8I'LL 8rvL  91°S6 8v'v6 00001 00001 q g I
dd  JeAWOD-Y dd  IBAWOD-Y dd  IBAWOD-Y dd  JBAWOD-Y
SLo=9 go=29 STo=9 ro=2o az1g [oPOIN

USISOp UBWLING—119Y0R]d Y} PUR ,(7 USISIP JBAWOD)-Y 0] S[OPOW PIYNUIPT A[1991100 Jo dFeIudorad a3eiony 6 3|qeL

pringer

As



16

Page 27 of 49

Journal of Statistical Theory and Practice (2020) 14:16

89°9C w9 08°0¢ 9I'1€ YLTY 0L8€ q+q+q Y+ A+ 6
9¢'T 01’1 0€'T A 8C'T 0L'T S+ L'+ 8
8Y'C 8¢'T (4 00T 06°€ 06T s+q '+ L
0Ty 97'8¢ YL 6Y 4047 759 $1°CS q+q '+ 9
Tro 9z°0 91°0 70 870 80 S+ Y+ S
89'1 9LT 9¢'T vre 98°C XY s+q Y+ v
8LTE 8L€E 8v°0F 9Ty 8v'8t 96'8% q+q Y+ €
0°€ 9¢'¢ vIE 0T'¢ 9I't oLy s ' T
9€¢'LS 85°€S 9519 889 9%°69 8619 q ' I
dd  TeAWOD-Y dd  IBAWOD-Y dd  TeAWoD-Y
Sr=9 ST1=9 =9 ozI§ [OPOIN
000 200 200 ¥0°0 0€°0 091 00°¢ T5°0¢€ S+s+s+s+s4+s Y+ T+ T+ T+ S
Pl 8¢'¢ 09'T 99°¢ 8¢'T 05’6 0¢ 86'6 q+q+q+s+s+q YT+ T+TT+H T+ €
200 0€0 Tro 920 750 9L'1 wo 8L'L S+S+S8+54+q+q YA+ T+TT+H T+ T+ €€
T6'S ree 08Tl Y09 7991 0608  TI'SI 9606 A+9+9+9+9+q YA+ T+TI+ TG+ 43
700 90°0 90°0 900 00T 85°¢ 09'CC 96'8C S+S+s+s+s A+ A T+ T+ I€
871 841 981 oL'1 ¥1°9 06y 88°¢C orL qQ+q+s+s+q A+ T+ S+ + 0¢
70 $1°0 89°0 TT0 88'1 80'1 9T $6'1 S+s+s+q+q REAT R A S P S | 6C
YO'LI 91T 80°€E Y81y 8667 909  TL6T 0008 Q+q9+9+q+q A+ A T+ T+ S+ 8T
¥0°0 ¥0°0 91°'0 0z0 ¥8'€ 87 ¥$'SS ¥L°99 S+S+S+S REAT R S LT
88°0 81T 081 9L'¢ 91°01 891 ¥8€I 88+l Q+s+s+q A+ T+ 9T
0L°0 860 8¢T ve'e 78'8 YLST  $0°SIT Y0'€T s+s+q+q T+ S+ Y+ ST
dd  IBAWOD-Y dd  IBAWOD-Y dd  TBAWOD-Y dd  IBAWOD-Y
SLo=9 S0=9 STo=9 ro=o ozIg [PPOIN

(ponunuoo) 6 3|qey

pringer

& s



Journal of Statistical Theory and Practice (2020) 14:16

16 Page 28 0f49

9L'1 0g'L y1°C Y011 8¢'T 0L61 Q+9+9+q+q+q YT+ A+ T+ S+ T+ 43
000 000 000 000 000 000 S+S+S+S+S REAT R B B T Y | 1€
920 0L°0 920 0L0 790 790 q+q+s+s+q A+ A T+ T+ + 0¢
80°0 010 90°0 01°0 010 Tro S+s+s+q+q S+ ST+ A+ 6T
06'S ¥$'9 0TS YL ve'8 YTST q+9+q+q+q A+ A T+ T+ 8¢
000 000 000 00 000 000 S+Ss+s+s S+ ST+ LT
0T0 o (0140) 99°0 €0 PET q+s+s+q REAT R oV Y 9T
9¢'0 8¢°0 9%°0 8€°0 ¥$0 ¥9°0 s+s+q+q A+ ST+ + ST
0L'8 00761 88°¢l 01°'1¢C 0861 TEST q+q+q+q REAT R S Y T
80°0 80°0 Y00 90°0 00 90°0 S+S+5 '+ + g €
0£°0 920 8€°0 8Y°0 750 860 s+q+s '+ + g (44
91'0 0T0 70 950 (040] 870 S+s+q '+ + g |54
(e 8T°€ 91'¢ 06°¢ vS'e 89t Q+s+q A+ + g 0T
86T 91 $0'¢ veT 8G°¢ ore s+q+q '+ + 61
¥T0C [ANY 9¢'ST 70°0€ 8¥°TE¢ 8L9¢ Q+q+q '+ + g 81
700 v1I°0 000 v0°0 200 010 S+S+s S+ + L1
¥T0 90 Tro 99°0 9¢'0 ¥9°0 S+s+q I+ + g 91
88'1 0LT 92T vTe 9°¢ 09°€ s+q+q S+ + g S1
T0LT 0L'€T YT1e T0°LT 01°92 T0°LT q+9+q S+ + ¥1
v1I0 010 ¥T0 TT0 0r'0 80 S+S+5 Y+ A+ €1
0 wo 0€°0 (040] ¥9°0 90 S+s+q Y+ A+ 4!
85°¢ 9% 0LT 8t 9I'Y vL'S q+s+q Y+ A+ 1
87T Y91 e 97T 9¢°¢ 98°C s+q+q Y+ A+ 01
dd  IeAWOD-Y gd  TAWOD-Y dd  TeAWOD-Y
gr=o0 sTI=0 =9 ozIg [OPOIN

(ponunuoo) 6 3|qey

pringer

f's



16

Page 29 of 49

Journal of Statistical Theory and Practice (2020) 14:16

000 000 000 80°0 000 200 S+S+S+Ss+s+S [ AV R B P B ¢
91°0 98°0 9z°0 Yo'l 0t'0 90T Q+q+q+s+s+q Y+ A+ S+ €
000 900 $0°0 910 200 900 S+s+s+s+q+q LAV ST B A e S €¢
dd  IPAWOD-V dd  IPAWOD-Y dd  ITPAWOD-V
Sr=9 ST1=9 =9 az1g [9PON

(ponunuoo) 6 3|qey

pringer

As



Journal of Statistical Theory and Practice (2020) 14:16

16 Page 300f49

LT oriE 0Ly PIvS  0S°€8 8666 €06 7666 qa+q+9q+q A+ T
90°0 81°0 920 790 ¥8°S v1'9 ¥T19 8€°89 S+Ss+s T+ + €
89°0 06°0 (444 06T 9b'ST TL9T  0LEE ¥8'9¢ S+q+s A+ A+ w
790 001 ! 76T 9T 11 LT TI9T 8¢°€E s+s+q T+ + 1T
8¢'Y 8L'L 09°L LTI TS€E PEPP  99°8¢ 969t q+s+q A+ A+ 0T
ey 9Lt 4K 06'L 9097 9 1€ 9T'9¢ 0ty s+q+q A+ + 61
YSLE 89ty 8T'6S v0'8S  TE68 9TtH6  SY'L6 00001 qa+q+q '+ S+ 81
01°0 70 8¢'0 0L°0 90°S ¥0'9 €19 86’19 S+s+s YA+ A+ LT
790 Tl 45! 96T 9T¥I 901  0Y'0S 9LvE s+s+q S+ +'d 91
s 0L'9 6 I 9S°LE 8S'LE  8ETY 8¢9t s+q+q Y+ A+ ST
0t'9¢ TOE TS 8Ty 95796 ¥TT6 00001 00001 q+q+q A+ +'d I
090 090 8’1 9T'C Tt 0STT  OF'SL ¥T'89 S+s+s YA+ T+ ¢l
9L°0 0L0 89T ¥$T 09°0T 691 TSSY 90' 1t s+s+q YA+ A+ Tl
8¢ YL 7801 0cvl  8STH 0L9%  96'8€ TT6E q+s+q Ya++ g I
ws Y0y 06701 99°'6 (X34 W9LE  86'1Y $0'9¢ s+q+q Y+ + 01
90°€S 9Ly 8TOL 9¢'€9  8S°L6 ¥I'S6 00001 00001 q+q+q Y+ + 6
99T e €S ey YEYT 96'0C  ¥S'18 98'GL S+s Y+ 8
oL's o't 86 T8 TTEe 9097 8979 T6'SS s+q Y+ L
8199 €19 S09L YOIL  T896 719 007001 00001 qQ+q '+ 9
050 8Y°0 w7l 81 Y0TI 9€l 06°1L 96°€9 S+ Y+ S
v6'y T6'S 018 001 8LIE 8L°6T  98°8S YTEs s+q Y+ v
Y265 89°¢S 9869 8Y'€9  T8S6 T6'€6 007001 007001 qQ+q Y+ €
45y vL9 89°11 8TTI  8TYE wrse TI08 9T'SL s T4 4
8Y°69 8699  TS'LL 809L  86'S6 89°66 007001 00001 q g I
sofeg  IBAWOD-Y  Seheg  IBAWOD-Y safeg  IBAWOD-Y sofeq  IBAWOD-Y
SLo=9 So=9 STo=9 10=9 az1g [PPOIN

[1] vewdry) pue weysurg woiy 7 usisap [ewndo sakeq pue (7 USISIP JEAWOD-Y I0] S[OPOW PayNUIPI AJOALI00 Jo 95ejuaoiad a5eieay (L 3|qeL

pringer

As



16

Page 31 of 49

Journal of Statistical Theory and Practice (2020) 14:16

0L'ST LT 8¥1¢ 8I'1€ 9L°0F 96°LE q+q+q Yd++ 6
Pl ¥6°0 ¥S1 91’1 8T'T 8T'T S+s Y+ 8
86'C YL 0Te 87T 09°¢ ¥9°C s+q Yla+ g L
09y 0€'8¢ 76'8Y 9L’EY YL'LS 90°¢S q+q Y+ 9
Tro ¥€0 010 0€0 8T°0 €0 S+ Y+ S
89'1 8I°¢ Y61 (4% 8¢ 9¢t s+q Y+ v
80°1€ 2843 vI6g oy (AN (4514 q+q Y+ €
90°¢ YTe 9°¢ 98°¢ wy 8¢ s o z
79SS 9THS 798 9T'LS 9$°+9 0L19 q ' I
safeg  IBAWOD-Y sakeg IeAWOD-Y sakeg IBAWOD)-Y
gr=29 sTI=0 [=9 ozIg [PPON
000 90°0 200 $1°0 9¢'0 061 ([ 8€°GE S+s+s+s+854+s Yy +Sy+T I+ I+ Y+ S
89°0 80°¢ 8T'1 0€'L 96'C 8C'TIT T PI'TI q+q+q+s+s+q YU+ U+ I+ T+ U+ €
200 01°0 200 9¢°0 010 871 vL0 (%7 S+S+S+S+q+q YA+ U+ A+ T+ U+ €€
859 8I'GE 861 8TT9  tT9T 06€8  TL'ET Tres Q+9+9+9+9+9q  YI+U+TI+ T+ U+ 43
000 00 010 020 8I'1 9'e ¥1°0€ YTre S+S+s+s+s S+ A+ T+ T+ I€
9Tl (4 ¥T'C ¥Te 09°'8 ¥0'9 (4°}7 919 q+q+s+s+q S+ T+ T+ Y+ 0¢
0z0 ¥20 820 020 01 871 e wT S+s+s+q+q REAT R A B IV S 6C
YEPI 9291  +0'€T YOLE  0TTE 0EY9  THSE 90°9L a+q+9+q+q S+ T+ T+ + 8T
¥0°0 01°0 81°0 81°0 96T 08¢ 0£°98 86°L9 S+S+s+5s YA+ S+ + LT
89°0 01c 9Tl 86'¢ 98°'L 87¥T  OLSI ST Q+s+s+q REAT R P 9T
98°0 9¢'[ ¥0'T e 6L 891 8L'8I 8THT s+s+q+q AT+ + Y+ ST
sokeg  IBAWOD-Y sokeg  IBAWOD-Y sokeg IEAWOD)-Y soked  IBAWOD-Y
SLo=o0 so=29 STo=9 [o=2o azIg [PPOIN

(ponunuoo) oL s|qey

pringer

& s



Journal of Statistical Theory and Practice (2020) 14:16

16 Page 320f49

Pl 0L'9 veT 9911 or't 016l Q+q+q+q+q+ QG g+ A+ d+ U+ + g 43
200 000 000 200 000 200 s+s+s+s+s YU+ i+ i+ U+ g 1€
820 090 0£0 8L°0 ¥9°0 080 q+q+s+s+q YU+ T+T+Y+ Y 0¢
90°0 $0°0 Y10 01°0 Y00 0z0 S+S+s+q+q YU+ T+ T+ U+ 6T
90t Y YL 206 9701 991 Q+q+q+q+q YU+ T+ T+ U+ 8T
000 700 000 000 000 00 S+S+S+5s AT+ + Y+ LT
9¢'0 99°0 ¥€°0 99°0 920 01’1 q+s+s+q BT R P P | 9T
0£0 70 80 70 e 750 s+s+q+q REAE R P R %4
88 2091 0r°¢l ¥S61 9T'LI YT€T q+q+q+q '+ + A+ T
200 000 80°0 010 200 90°0 S+s+s ST+ + €T
870 870 0€0 0L0 ¥9°0 9%°0 S+q+s '+ + g (44
81°0 0£°0 920 wo €0 090 S+s+q A+ T+ 1
01c 89°¢ v9°C 9t Tle 209 qQ+s+q '+ + g 0T
0€T 91 81°C 8L'T 08¢ (443 s+q+q A+ + 61
8781 T8°€T 8T'€T YT e 8L'8T 01°9¢ qa+q+q A+ + 81
000 80°0 Y00 700 80°0 010 S+s+s Ed+ S+ L1
Tro 0 0T0 wo €0 ¥9°0 s+s+q S+ + 91
8L'1 LT v (4543 9LC v6'€ s+q+q S+ + S1
06°S1 Tree 00°0T 98T 0897 9%°8CT q+q+q A+ + vl
010 ¥T0 910 0 970 8Y°0 S+Ss+s Y+ + €l
wo €0 81°0 0t'0 ¥$°0 89°0 s+s+q Y+ + Tl
09°¢ 9t 8L'¢ 09t 96°¢ vT'S qQ+s+q Y+ + 11
09 991 90°¢ 0€T v9°€ 8TT s+q+q Yd++ 01
sokeg  IBAWOD-Y sokegq TBAWOD-Y sokeg IEAWOD-Y
SI=9 STI=9 [=9 ozIg [PPOIN

(ponunuoo) oL s|qey

pringer

f's



16

Page 33 of 49

Journal of Statistical Theory and Practice (2020) 14:16

000 000 000 000 000 000 S+S+S+S5+5+5Y Y+ U+ T+ T+ Y+ ¢
920 PI'T €0 Y91 870 00T Q+q+q+S+s+QY U+ A+ T+ T+ + €
200 ¥0°0 000 80°0 000 01°0 SHS+S+S+Q+QY T+ T+ d+ U+ U+ €€
sokeg  IBAWOD-Y sokegq TBAWOD-Y sokeg IEAWOD-Y

gr=o9 sTI=0 [=9 az1g [OPOIN

(ponunuoo) oL s|qey

pringer

As



Journal of Statistical Theory and Practice (2020) 14:16

16 Page340f49

9T'8¢ TeTE ¥6'S9 ¥8°CS 96°¢6 596 9686 00001 q+q+9+q RCAY AT B B B4
Y10 80°0 0L°0 0L0 v8L 0€'L 8€°L9 Y649 S+S+S A+ +'d €
8L°0 ¥8°0 89°C 08°C ¥SSl 901 ¥69¢ €68 S+q+s A+ + T T
06°0 or't 9L e 97°0T TILl 4893 01°ze S+s+q A+ +'d 1T
9IS 849 0101 Y9'€l 91'¥¢ 0t 6¢€ 0T’ 1Y 0g'sy q+s+q A+ + T 0T
(4NY 1487 Y001 8T'6 9L°ST 9667 8667 89°LE s+q+q A+ + T 61
s IN3Y 9789 8T'LS ¥6'96 YLY6 0£°86 00001 Q+q+q RE AT AP S )
000 870 (0140) 01 8L9 w9 89°6S 079 S+s+s A+ T L
¥9°0 0T'1 9T'1 00T 8I't1 9 ¢l YI°sT 68T s+s+q S+ +'d 91
06'¢ 78S ¥8'S 0801 99°0C TLTE 95°'ST 8L'8¢ s+q+q A+ + T ST
08t 0€'LT 009 09°9% 7988 86°€6 YEL6 00001 q+q+q S+ +'d b1
9¢'0 850 09'1 06T 8L'TI ¥SIT 0T'IL WL S+S+S YA+ €l
8L°0 98°0 ST 9LC 8591 8T'S1 9¢'8¢ TL8¢ s+s+q Ya+la+'d T
9I°¢ 8L PEIT YOvI T8°LE 001t 06Ty 09°9% q+s+q YA+ 1
0$°S (424 068 vE6 %14 T5°0€ 90°0% ¥8'8% s+q+q YA+ A+ 01
0T'Cs 0L'9% €9 8¢19 9¢°L6 TH6 007001 00001 Q+q+q Ya++'d 6
06'C €T €9 1489 86°CC L6l 96'6L 9TYL S+ Ya+'d 8
0¢'s 88°¢ 7901 €8 90°9¢ 90°C¢ 98°69 759 s+q Ya+la L
TTS9 7019 9F'EL YLOL 8896 7656 007001 00001 q+q Ya+'ld 9
09°0 8L°0 91 vTT 0gTI (N8 069 0979 S+s YU+'d s
9°¢ 9%t 979 788 ¥9°T€ (4453 89°1¢ 9I'8Y s+q YW+'a v
99°09 Tres 8S°0L Y619 97°S6 YE'T6 $0°66 00°00T qQ+q YU+'d ¢
0€9 0€9 98°11 (Al ¥L'9€¢ T€9¢ YE6L 0F'SL s 4T
TT69 8L°L9 0€9L YTSL 0L'Y6 0916 007001 00001 q AN
WIdYSIYORN JRAWOD-Y WIdYSIYOBN JRAWOD-Y WIdYSIYORN JBAWOD-Y WIdYSIYORN JBAWO)-Y
SLo=9 So=9 sTo=29 ro=9 EAN [PPOIN

[1] WISYSIYORN pue I WOLJ (7 USISIP PUB (7 USISIP JBAWOD-Y 10J S[9POL PAYHUIPT AO31I00 JO 95eIud01ad 93eroay || 3jqel

pringer

As



16

Page 35 of 49

Journal of Statistical Theory and Practice (2020) 14:16

YTLT 88°LT (AR 96 1€ 9Ty 96'9¢ a+q+q Yd++ 6
4N 06°0 81 9¢'1 v 06T S+ Y+ 8
o' 80°C 06T W 08°¢ LT s+q Y+ L
86°01 YL'6€ ¥'8Y (4847 90'+S T0°€S q+q Y+ 9
81°0 870 0Z0 v€0 ¥ 0 0$°0 s+s Y+ S
0T v$'T 8v'C Tre W e’ s+q Y+ v
0F' e $9°9¢ 95" 0% YOSy 2d\S 06°0S q+q Y+ €
89°¢ or'e 80°¢ (453 90t 98t s ' z
Tss 86°€S 8509 8L'LS 91°69 9,79 q Ld I
wysIyoeN  IBAWOD-Y  WIAYSIYORN JeAWOD-Y wIdyYsIYyoeN JeAWOD-Y
Sr=9 STI=9 [=9 ozIg [PPOIN
700 %00 000 010 200 98'1 vl 8TYE  SHSHs+s+s+s Y+ S+ I+ g+ +"d S¢
8%°0 8¢ 050 v1'9 850 96 91°0 we 9+q+q+s+s+q YA+ THTI T T+ T e
000 Tro 200 0€0 80°0 or'l 900 8¢ S+S+S+54+q+q YA+ U+ I+ T+U+"d €€
90T 9T €€ 99°C 0129 0oy 91°L8 8L PLS8 A+9+q+q+9+Qq YT+ T+HTI+ T+ U+ T
000 ¥0°0 Tro 80°0 08C 9T 0T'LT 9L'CE s+s+s+s+s YUy + S+ I+ U+ 1¢
¥8°0 8¢'1 91T 0r'C YLY 86t 88°C 8¢'¢ Q+q+s+s+q YU+ U+I+U+ T og
81°0 81°0 €0 €0 vL'T 80°C 08'C 00'T s+s+s+q+q YU+ H'U+H A+ U+ T 6T
TLTT 87T 91°S¢ 79°T¢ 8879 Y€€9 0$°8S 88°18 q+q+q+9+9q  HU+SI+T+T+T ST
700 200 81°0 870 YT 98¢ 0L'€S 99°€9 S+S+s+s A+ A+ T+ T LT
080 91 80°C vSy 86'8 0591 T8l 967 Q+s+s+q RC AT R P I T4
8L0 Tl P61 99T 98°L 9L°GI 0911 01°0¢ s+s+q+q A+ + Y+ d ST
WRYSIYORN  IBAWO)-Y WIRYSIYORN JIRAWO)-Y WIAYSIYORN JRAWO)-Y WIdYSIYORN JeAWO)-Y
SLo=9 So=9 sTo=20 1o=9 ozIg [PPOIN

(ponunuod) || ajqeL

pringer

& s



Journal of Statistical Theory and Practice (2020) 14:16

16 Page 36 0f49

060 vS'L 790 89°11 0T 681 Q+q+q+q+q+q YA+ T+ +H T+ T+ 43
000 000 ¥0°0 000 ¥0°0 200 S+s+s+s+s YU+ U+ T+ Y+ g 1€
9¢'0 89°0 wo 950 8L°0 8L°0 Q+q+s+s+q YU+ A+ I+ T+ g 0¢
80°0 Y00 010 $0°0 90°0 91°0 S+s+s+q+q Y+ I+ T+H Y+ 6T
0L9 06°S 06'6 86°6 vIel 9601 Q+q+q+q+q U+ A AT+ T 8T
700 700 000 ¥0°0 ¥0°0 ¥0°0 S+S+s+s '+ S+ Y+ LT
970 050 90 8L°0 99°0 8T Q+s+s+q '+ T+ 9T
740 870 9z0 9¢'0 ¥$0 080 S+s+q+q A+ ST+ + ST
el 9TSI 0S'1¢C 87°0C 81°8C 09T q+q+q+q A+ + A+ vT
90°0 80°0 010 14%0] (4%0] 900 S+s+s A+ + €T
0£°0 ve0 €0 wo 09°0 90 S+q+s '+ + g (44
9¢'0 €0 8€°0 0$°0 90 ¥9°0 s+s+q A+ + 1T
v6'C 0g'e (45" 81t 8¢ 9I°¢ Q+s+q S+ + g 0T
0LT (4! 86'C 06'T 89°¢ vI'e s+q+q A+ + 61
8€°€T 0£'€T $S€E 88'8C 809¢ 9T'6¢ qQ+q+q A+ + g 81
700 90°0 200 90°0 v0°0 80°0 S+S+s C+ S+ L1
¥0°0 wo 0 09°0 870 950 S+s+q A+ Y+ 91
Yo'l 9C¢ e vI'e 88°C YLV s+q+q A+ + g S1
080T 61T 0°1€ 91°6T YrLE Y28 a+q+q A+ + vl
Tro 920 0T0 870 8¢€°0 90 S+Ss+S Y+ + €1
91'0 8€0 50 o 850 790 S+s+q Y+ A+ 4!
00 09t e €S 9TH %S qQ+s+q Yd+ N+ 1
e vSl 8T veT 6°€ ve'e s+q+q Yd++ 01
WIRYSIYoRN  IBAWOD-Y  WISYSIYORN IeAWOD-Y WI_YSIYOBN IeAWOD)-Y
SI=29 STI=9 =9 ozIg [PPOIN

(ponunuod) || ajqeL

pringer

f's



16

Page 37 of 49

Journal of Statistical Theory and Practice (2020) 14:16

000 700 000 200 000 900 S+s+s+s+s+s Yly+g+Tg+ g +9+ S¢
920 v6°0 0T0 9I'l 850 80C q+9+q+s+s+q Yy+g+Ta+ g +Y9+"Y €
200 91'0 000 4K0) 000 01°0 S+s+s+s+q+9 Y+ g+ + g+ Y+ Y €€
WIRYSIYoRN  IBAWOD-Y  WISYSIYORN IeAWOD-Y WI_YSIYOBN IeAWOD)-Y
gr=o9 sT1I=0 [=9 oz1g [PPOIN

(ponunuod) || ajqeL

pringer

As



Journal of Statistical Theory and Practice (2020) 14:16

16 Page380f49

vSee v0'€E 0809 YrYS  ¥T66 ¥1'96 007001 7666 q+q+9q+q A+ T+ ¥T
81°0 ¥1°0 o1l 0L0 9I'T1 789 ¥8C8 TLS9 S+S+s S+ + g €
Tl ¥6°0 0t 9T 91T YLYL  OT¥E 86'8C S+q+s A+ + g (44
oL'1 o1l 8T'€ 0LT 0SvT SLLL 0t Wy s+s+q S+ + g 1T
90'9 0¢'L 9T H1 9€T Ov'6E 88°0F V6P vy q+s+q A+ Y+ 0c
¥9'9 81t 0g€l 056 00 96°0¢  8I'vh vE8Yy s+q+q '+ + g 61
(AN 90ty 9589 P8LS  0£86 $9°66 007001 00001 q+q+q '+ 81
Tro 0€°0 ¥$°0 90 88°L 059 YYLL PIH9 S+s+s S+ + L1
vL0 01 88'C 86'C 8¥°LI 9yl 9T Ob 76'8¢C s+s+q S+ + 91
vLY 9T’ 8€'6 ¥$'6 81°LE wrLE  9ELY 0¢'LYy s+q+q A+ + ST
YL Oy 80FE  0T'19 9I'Ty  9€°L6 ¥8T6 007001 00°001 q+q+q S+ + !
0L0 ¥9°0 86°1 w$l L8l Orel  067¢8 96°'89 S+S+s Y+ A+ ¢l
06°0 ¥L°0 0gY 07T 0T1¢ 8L°0T  T9'8% 0F'6€ s+s+q Y+ A+ 4
80°L 758 24! 9Lvl  OY'LE 0968 98°SH 88°CS qQ+s+q Yd++ 11
8¢9 9Tt 99°€¢l 97’8 8¢t 906 819 8E v s+q+q Y+t 01
8L°0S SSh 8899 90'6S 8886 9966 007001 00001 qa+q+q Y+ A+ 6
ve'e ¥T'T 789 YL ¥9'6T 06'6T  90°¢8 00°€L S+s '+ 8
8L'S 90t 2011 91'8 80°TH 8L°0¢  TTT9 Y098 s+q Y+ L
8799 0109  989L SIL 0S°L6 ¥I'S6 007001 007001 Q+q Y+ 9
8¢°0 8L°0 8L 81 Tl 8SHT  9CHL 09°€9 S+ W+ a S
86°¢ 8I°S 88'8 8001 60 9T9¢  FE6h 09Ty s+q W+ a v
809 0SvS 9789 9819 9796 00€6 007001 00°00T q+q W+ a €
Trs s L6 8T0I  8S°0€ 9¢'6T  TE08 89°LL s ' 4
78°L9 86°L9  8SSL TTSL 8L'S6 7196 00001 00001 q g I
uery, TeAWOD-Y uery, TeAWOD-Y uery, TeAWOD-Y uery, TeAWOD-Y
SLo=9 go=29 STo=9 ro=2o az1g [oPOIN

[6] ueLL puE YsSOYD WO} o7 USISOP PUR (7 USISIP TEAWOD)-Y 0 S[OPOW PaYHUIPI A[}031109 Jo dFejuddiad o5eiony | ajqel

pringer

As



16

Page 39 of 49

Journal of Statistical Theory and Practice (2020) 14:16

0t"'6C L 9p¢ 00TE 0S°6€ 789¢ qQ+q+q Y+ A+ 6
€l 98°0 961 89'1 80°¢ 9L'T S+ '+ 8
20°¢ 86'1 86°¢ 80°C eay 09°¢C s+q Y+ L
8%'St ¥T'8€ Tros 98'St ¥6'9S 780 q+q '+ 9
¥1°0 970 70 9¢0 0 0r'0 S+ Y+ S
061 70°€ 8Y'C e 9I'¢ 81y s+q Y+ v
8LTE 99°6¢ 870 98Tt 81'8t 99°6% q+q W+ €
8I°¢ vS'e e 80t 9I't 0€'s s v z
01°¢s P0°€S v1°8S LS TL€9 81°€9 q £ I
uery, IeAWOD-Y uery, TeAWOD)-Y uery, IeAWOD-Y
SI=29 STI=9 [=9 ozIg [OPOIN
000 200 200 90°0 Pl 961 97T 81 S+s+s+s+s4+s Y+ T+ T+ T+ S
09'C ye'e (429 9t'S vL'8 01T ovL 96'C1 q+q+q+s+s+q YT+ T+TT+H T+ €
90°0 01°0 70 0£°0 9¢°0 Wl 950 Wy S+S+S8+54+q+q YA+ T+TT+H T+ T+ €€
v$8Y 8LTE  OVLL 8I'19 1696 vees  81°L6 TIL8 A+9+9+9+9+q YA+ T+TI+ TG+ 43
700 80°0 820 91’0 s or'1 00'8S e S+S+s+s+s A+ A T+ T+ I€
v0'€ 991 06'S 0LT 96'8 9y L 90°S qQ+q+s+s+q A+ T+ S+ + 0¢
850 70 00T 820 9¢'L ¥S1 00T (4%3 S+s+s+q+q REAT R A S P S | 6C
YL'6¢ 8L°0T  9¢'89 8¢He  81°S6 879 0616 0£08 Q+q9+9+q+q A+ A T+ T+ S+ 8T
80°0 90°0 0 820 9’8 v6'€ 70°C8 7979 S+S+S+S REAT R S LT
0S'1 081 88°¢ 96°¢ 7581 L9l $661 0T°0T Q+s+s+q A+ A+ T+ 9T
8G°1 91’1 wy o'z T0°€T 0 e LT s+s+q+q T+ S+ Y+ ST
uery, IeAWO)-Y uery, IeAWOD)-Y uery, IRAWO)-Y uery, TeAWO)D-Y
SLo=9 S0=9 STo=9 ro=o ozIg [PPOIN

(ponunuod) z| ajqeL

pringer

& s



Journal of Statistical Theory and Practice (2020) 14:16

16 Page 40 of 49

9T €l 9L'L Te6l 8I°T1 96'0¢ 7681 4+q+9+q+q+q YA+ A+ T+ T+ T+ 43
000 000 2070 200 200 000 S+S+S+S+S REAT R B B T S 1€
88°0 0t'0 Tl 8L°0 w61 01 q+q+s+s+q A+ A T+ T+ + 0¢
020 Tro vT0 v1I°0 €0 Tro S+s+s+q+q RE AT P A B R R 6T
8TYI v0'S 981 80°6 9%°ST €Tl Q+9+9q+q+q A+ A T+ T+ 8T
700 000 000 000 200 700 S+Ss+s+s T+ T+ T+ LT
o 01 90 790 98°0 06°0 q+s+s+q A+ A+ 9T
Y€0 0£0 950 ¥$0 98°0 080 s+s+q+q A+ ST+ + ST
(48741 8%°ST 9991 98'0C 99'CC (4874 qQ+9+q+q REAT R SV Y ¥T
90°0 90°0 200 90°0 Tro 0T0 S+S+5 A+ T+ €
9¢°0 wo 960 9¢'0 080 950 s+q+s '+ + g (44
70 0t'0 ¥T0 01’0 0L°0 ¥$°0 S+s+q '+ + g |54
99T 0¢ 8¢ o1y 8¢t ve'S Q+s+q A+ + g 0T
9T 0T (X3 y1°C 08¢ ¥8'C s+q+q '+ + 61
0¥'ST TTET 79°6C ¥6'8C 89'8¢ $09¢ Q+q+q '+ + g 81
200 000 000 010 90°0 90°0 S+S+s S+ 4+ L1
81°0 €0 90 870 870 9L°0 S+s+q I+ + g 91
90T 0LT 08C 09°€ 0Te 0ct s+q+q S+ + g S1
90°0C 0T¥C ¥'9C S'Le 99°C¢ 0S'6C q+9+q S+ + g v1
8T°0 8€°0 9z°0 0 870 750 S+S+5 Y+ €1
750 ¥T0 0 01’0 090 790 s+s+q Y+ A+ Tl
85t 8¢t 96'¢ v 87t ve'S qQ+s+q Y+ A+ 11
86'C 81 8¢ veT 8I°S 8I°¢ s+q+q Y+ A+ 01
uery, IeAWOD)-Y uely, IRAWOD-Y uery, IeAWOD)-Y
SI=29 STI=9 [=9 ozIg [OPOIN

(ponunuod) z| ajqeL

pringer

f's



16

Page 41 of 49

Journal of Statistical Theory and Practice (2020) 14:16

000 Y00 000 000 000 200 S+S+S+Ss+s+S Y+ Y+ ¢
0L0 48! 0¢'1 0g'l 881 Y0T q+qQ+q+s+s+q Y+ A+ S+ ¥E
¥0°0 900 ¥1°0 1K) 90°0 Y00  s+s+s+s+q+q LAV S B P e S €¢
uery, IeAWOD)-Y uely, IRAWO)-Y uery, IeAWOD)-Y

Sr=o9 sT1=09 [=9 az1g [OPON

(ponunuod) z| ajqeL

pringer

As



Journal of Statistical Theory and Practice (2020) 14:16

16 Page 42 o0f49

8C°EL 8¢TL  86'LL Y8LL 7996 86'S6 007001 00001 Q+q9+9q+q RCAT R Y Y T
Yl YOl (V17 86°¢ YTST 8L'ET  ¥6'S9 799 S+S+s '+ + €
8¢ 8¢ ¥6'L 88°L 96'9C e ovLS 8179 S+q+s ST A S Y w
06T vI'e 0L 90°L TL8T YP8T P89 YI0L s+s+q AT+ + 1T
P8€l 90°€¢T Ye'TT W Wy 090  +8°0L ¥€'69 q+s+q A+ A+ 0T
9611 PEIT 86V1 9091  0t'8C T$0€ 00 T09% s+q+q AT+ + 61
97'L9 98°L9  99'1L 88TL 9016 06€6 007001 00001 q+q+q '+ + 81
0S'1 91 0TS 20°S 06'8C v0'8T  OYOL 79'89 S+s+s A+ +'d L1
86°¢ TORY 0501 oL ¥Iov 8T8E  OL'LL oL s+s+q S+ + g 91
(454! 8LV 8FYC 90€T  TE6E 98¢ 08°€L 98°89 s+q+q S+ + <1
9¢°69 YPOL  $9°SL 0S9L  TT96 9696 007001 00001 Q+q+q S+ + !
Tl 01 8¢ 86°¢ 20°8¢C 8T6C 0099 8€°69 S+S+S Y'd+ T+ ¢l
80°€ 90°¢ 999 80°L 9¢'97 TTLT 9€'89 ¥9°69 s+s+q Y+ + 4!
9L¥1 06€l  06%C vYeve  08°¢r 8TOY  80'8L TESL qQ+s+q YA+ Y+ 11
81°01 8Tl 9I'vl 98°GI  9¢'6C 881 T9€E 0STy s+q+q Y+ + 01
0189 Y89  T8EL TETL 9T 86°¢6 00001 00001 q+q+q Ya+ T+ 6
90°'L 789 81°CT 0g€l 81'¢€ ¥8'9¢ TH'89 0L'69 S+ Y+ 8
96'8 86'6 79°¢l 9¢SI 88LT 8EYE  pI'ES 0L'8S s+q Y+ L
YITL 9¢' 1L Ot'SL TTSL 08°€6 v6T6 007001 00001 q+q '+ 9
20°¢ 96T 9L9 or'L e 905 ¥L99 v0°L9 S+s Y+ S
Y811 Il 896l 8LG1I  8CI¥ €6 0679 9L°€9 s+q Y+ v
0069 7969  TIYL OL'SL  TT96 v€S6 007001 007001 q+q Y+ €
0LTl 8TEl 00T 0€1T  T96h 9TTS  tOEL 98°TL s ' z
SYvL 0£SL  O1'6L YT8L  91°96 06S6 007001 00001 q g I
ajpd  IBAWOD-Y apd  IBAWOD-Y apd  IBAWOD-Y ajx)  IAWOD-Y
SLo=9 co=9 sTo=29 1[0=9 azig [PPOIN

,d dDD Puk (7 USISIP JBAWO)-Y [9AI[-€ I0J S[PPOW PIYNUIPE (1091100 Jo 95viuaoiad oFerony €1 ajqel

pringer

As



16

Page 43 of 49

Journal of Statistical Theory and Practice (2020) 14:16

wo 0€°0 50 9%°0 850 790 S+S+s Y+ + €l
(43! 8¢'T 0S'1 871 $1°C 0T'e S+s+q Y+ A+ 4!
vL'8 9¢'8 ¥8'6 91°01 7601 9¢°01 Q+s+q Y+ A+ 11
96’8 9¢'8 06'8 s 89'6 90'6 s+q+q Y+ A+ 01
¥6'SS 8S'¥S 8209 TT68 YL'€9 8L€9 q+9+q Y+ A+ 6
(48 08°€ 09t (4 14NY 0€'s S+ Y+ 8
08'S s 809 ;'L 0L Y9'L s+q '+ L
LS 8709 PL¥9 759 8699 01°69 q+q Y+ 9
or'1 980 980 ¥6°0 Wl 8T’ S+s Y+ S
€9 879 ¥6'9 9 0€'8 8S°L s+q Y+ v
9'LS 01°09 #3819 9L°79 YT¥9 01'$9 q+q Y+ ¢
969 00°L 0€'8 8L'L 9¢°01 8Y'6 s 4 z
8699 0€'69 8669 0T0L 08°0L TISL q g I
agd  TeAWwoD-Y dad’d  TeAwoD-v dadpd  TeAwoD-y
gr=o9 STI=9 =0 az1g [SPOIN
88°0 950 20°¢ 89'C 08'LT 9T 91°¢8 8008 s+s+s+s+s YUY+ T+ + |53
YTl 88°6 TSL 0T91  0T'6S YEYS  19°€9 8T'19 q+q+s+s+q YU+ T+ I+ U+ 0¢
0SC €T 789 208 ¥rCe 81°6¢ 9¢'SH 1AN4 S+s+s+q+q YU+ T+ U+ T 6C
YT 6L 00°LL  T9¥8 Prv8 0696 rS6 007001 00001  Q+9+q+q+q  HU+ AT+ T +U+ T 8T
¥8°0 ¥9°0 (44" e 7€9¢C Y6'ST  TEEL WL S+S+8+S A+ A+ + LT
029 s 6°¢l or€l 00'8% 06St  09°LL 09°SL q+s+s+q RCAE R Y Y 9T
8¢t 8¢Y 086 95°6 ¥6'9¢ 9L9¢  OL9Y YTLY s+s+q+q AT+ + Y+ 44
ajpd  T'AWOD-Y ajpd  T'AWOD-Y ajpd  mAWOD-Y ajx)  BAWOD-Y
SLo=20 so=9 sTo=90 [o=20 ozIg [PPOIN

(ponunuoo) €| s|qey

pringer

& s



Journal of Statistical Theory and Practice (2020) 14:16

16 Page 44 of 49

¥1°0 020 8¢°0 81°0 870 920 S+S+s+s+s A+ A T+ T+ + |53
€9 ws 0L'9 vL'S L 69 q+q+s+s+q REAT R A S P R 0¢
0¢'T 48! Y0’ A Pl w S+s+s+q+q A+ T+ T+ + 6C
91°09 82°09 89'89 1’89 99°¢L 9°CL Q+9+q+q+q REAT R A S T S S | 8T
01°0 81°0 €0 $1°0 9%°0 9¢°0 S+S+s+s A+ ST+ + LT
9T 991 vTE 08T ¥9°€ 06'¢ q+s+s+q T+ ST+ Y+ 9T
e 81'C LT T 0ce ore S+s+q+q A+ S+ ST
¥6'6S 05°SS $9°69 0679 80°69 YLL9 Q+9+9q+q S+ ST+ + T
€0 ¥2°0 920 9¢'0 99°0 89°0 S+S+s '+ + €T
Wl (43! 8L'1 9¢'1 0T 95T s+q+s '+ + g w
(43! or'1 89°1 091 9L°1 T s+s+q '+ + K4
788 09°'8 78'8 80°01 81°C1 0L 01 Q+s+q A+ + g 0T
v1'8 (as 006 0’8 9L'6 ¥$'6 s+q+q A+ + g 61
¥9'9S $6'9S ¥6'09 TE68 98'€9 0679 q+q+q A+ + 81
750 ¥T0 70 ¥T0 001 S0 S+S+s A+ + g L1
61 0S'1 P81 091 9¢T e s+s+q A+ + 91
86'S 78'8 056 6 20Tl 8C'I1 s+q+q S+ + S1
88°8¢ TL6S 8579 01°€9 86'S9 ¥9°L9 q+q+q S+ + !
ajxd  TeAWwoD-y ajpd  TeAWOD-Y ajpd  feAWwoD-v
cr=o0 STI=9 [=9 ozIg [OPOIN

(ponunuoo) €| s|qey

pringer

f's



16

Page 45 of 49

Journal of Statistical Theory and Practice (2020) 14:16

¥9°0¢ 060 TOTH 878 08°08 TELL 00001 95°66 q+q+9q+q A+ T+ ¥T
01°0 01°0 870 780 99°¢ 999 86°€€ 06'v€ S+S+s S+ + g €
750 ¥L0 Wl 88'1 9I'6 v6'6 YL 0S YLy S+q+s A+ + g (44
0S°0 89°0 081 81T 01zl ¥8TI  8TYE vL'SY s+s+q S+ + g 1T
8y 88°C 0S'L %56 64T 0€TC  88'LS 9¢'6S q+s+q A+ Y+ 0c
08t ve's 919 8I'L 9%'S1 00T 91°0¢ 06'6€ s+q+q '+ + g 61
T WY 8r9s YLIS  PIP8 608 007001 066 q+q+q '+ 81
90°0 Tro 750 080 9L'9 ¥9'6 8TYE yIse S+s+s S+ + L1
750 790 79°1 8T PEII 98Tl 98°¢9 v€9$ s+s+q S+ + 91
9¢y ¥0'S 959 08'L 8'%C e or'I9 $6°€S s+q+q A+ + ST
Tt 99T 99T 97°¢S 0898 ¥S'L8 007001 00001 q+q+q S+ + !
¥ 920 00'T Tl 8G'L 06'L ¥9'9¢ 8L°TE S+S+s Y+ A+ ¢l
89°0 ¥6°0 991 88'1 ¥SEl 96Tl 90'Lp 99°8¢ s+s+q Y+ A+ 4
9¢'S 97 01’6 801 vI'LT ¥80T  01'69 08°8$ qQ+s+q Yd++ 11
Wy vTe 9L'9 98'L 91 8LYI  ¥I'6C 90°0¢ s+q+q Y+ A+ 01
9GSt 091y T6'9S YEIS 0598 89°18  00°001 88°66 qa+q+q Y+ A+ 6
Tre €T 9¢y 06'S T0°81 96'0c  0£°0S 8961 S+s '+ 8
0S't oSt 0F9 8L'L 8¢'81 YO61  $9Sy 8T°TS s+q Y+ L
vr6S 8196 01'L9 2079 1698 96'%8 007001 9166 Q+q Y+ 9
e 080 91T 8T  O¥Tl WYl 9Ly oLy S+ Y+ S
9I't 9¢'S YLL 9I'6  OY'T 8¢'€T 0679 8¢S s+q W+ a v
TESS 9L'€S 9619 8€°€9 00106 7868 007001 86°66 q+q W+ a €
9¢'9 YL €T 8TTI  +9°0¢€ TLOE 9T 7879 s ' 4
9789 T0L9  YTIL YIL 7868 9868 007001 00001 q g I
HANO  TBAWOD-Y  HGNO  JBAWODY  HINO  JRAWOD-Y N0  TBAWOD-Y
SLo=9 go=29 STo=9 ro=2o az1g [oPOIN

o AINO PUR (7 USIS9p JBAWOD)-Y [9AJ[-€ 10J S[OPOW PIYNUIPE (1091109 Jo 93vu001ad oFe1ony 1 ajqel

pringer

As



Journal of Statistical Theory and Practice (2020) 14:16

16 Page 46 of 49

9T 08'1¢C ¥8°C¢ 8I°LT TE8¢ 9L°€€¢ q+q+q Y+ A+ 6
$€'T 0S'T 0L'T 0S'T $9'1 9L'T S+ L'+ 8
89°C 80°¢ vS'E vSe 8¢'¢ 00y s+q Y+ L
89Tt YE'6€ 0T'LY 89°¢h $6°€S LTS q+q '+ 9
¥1°0 020 70 81°0 9¢°0 e S+ Y+ S
0ST 95T 96T 8I°¢ 8v'c 9I't s+q Y+ v
88°9¢ 09°S¢ or'ey 0Tt 961 9L 6% q+q Y+ €
Y0'€ v0'€ 99°¢ 08°€ vLY 9Lt s ' T
or'Ls 09°LS vL09 Zr19 7559 TTE9 q 4 I
HANO  JBAWOD-V HNO  IBAWOD-Y HANO  TBAWOD-Y
Sr=29 STI=9 [=9 ozI§ [OPOIN
000 000 ¥0°0 80°0 ¥T0 0S'1 85'8 Wl S+s+s+s+s4+s Y+ T+ T+ T+ S
780 96°0 91 or'e Wl el vrel el q+q+q+s+s+q YT+ T+TT+H T+ €
700 01°0 80°0 €0 061 8¢°G v6°'S 8001 S+S+S8+54+q+q YA+ T+TT+H T+ T+ €€
8LT1 970z 0S50 09'LT 7889 T8IL 8LES 81°L6 A+9+9+9+9+q YA+ T+TI+ TG+ 43
000 000 90°0 ¥1°0 860 9¢'1 0591 8T°¢T S+S+s+s+s A+ A T+ T+ I€
vL0 001 €T 81T 0191 01l 8TEE 8691 Q+q+s+s+q A+ T+ S+ + 0¢
01°0 Tro 820 090 099 8%'S 0T8T 96°01 S+s+s+q+q REAT R A S P S | 6C
YLYT 96'81  T8'8T ¥8'LT  88TL 9L'8¢  96'66 7688 Q+q9+9+q+q A+ A T+ T+ S+ 8T
¥0°0 80°0 91°'0 81°0 8¢'¢ W 98'€T 0€'1T S+S+S+S REAT R S LT
¥8°0 9L0 8L'1 90T 0r°s1 W0vL PE9 81°8¢ Q+s+s+q A+ T+ 9T
¥9°0 8L°0 8¢'1 (43! 8701 0€'6 ST 9 1€ s+s+q+q T+ S+ Y+ ST
JNO  TBAWODY  HNO  JPAWODY  HINO  TBAWOD-Y HJNO  TBAWOD-V
SLo=9 S0=9 STo=9 ro=o ozIg [PPOIN

(ponunuoo) 1 s|qey

pringer

f's



16

Page 47 of 49

Journal of Statistical Theory and Practice (2020) 14:16

Y0'€ 0L'6 (4xY vzl WL 08Tl Q+9+9+q+q+q YT+ A+ T+ S+ T+ 43
000 000 000 000 000 000 S+S+S+S+S REAT R B B T Y | 1€
910 ¥T0 750 90 ¥9°0 9¢°0 q+q+s+s+q A+ A T+ T+ + 0¢
80°0 80°0 00 $0°0 90°0 90°0 S+s+s+q+q S+ ST+ A+ 6T
¥1'8 WL 9811 [ 0161 o161 q+9+q+q+q A+ A T+ T+ 8¢
200 000 700 000 000 $0°0 S+S+S+S S+ ST+ LT
€0 20 920 91°0 950 89°0 q+s+s+q REAT R oV Y 9T
020 70 v10 ¥T0 9%°0 09°0 s+s+q+q A+ ST+ + ST
9 el 9 ¥l 0T'LT TrLl 9L°TT 0T¥C qQ+9+q+q REAT R S Y T
000 000 000 90°0 00 80°0 S+S+5 A+ T+ €
01’0 v€0 0S°0 9¢'0 ¥$°0 9%°0 s+q+s '+ + g (44
870 70 vE0 0 €0 050 S+s+q '+ + g |54
0LT 09T v$T 0€'€ 09°€ 8¢ Q+s+q A+ + g 0T
9LC YL'T 9T e 00'¢ 8T'¢ s+q+q '+ + 61
9°1¢ YI'€T 9%°6T 0S1€ 8TLE 75°9¢ Q+q+q '+ + g 81
010 000 00 01°0 ¥0°0 $0°0 S+S+s S+ + L1
81°0 ¥T0 €0 €0 0€°0 950 S+s+q I+ + g 91
97T 98°C 9T 0S°€ 0S°€ v9°¢ s+q+q S+ + g S1
ee 78°'ST 80°6¢C 05°0¢ 90°€€ 99°'LE q+9+q S+ + v1
zro Tro 010 0 ¥1°0 0Z0 S+S+5 Y+ €1
0€°0 870 870 €0 8¢°0 750 s+s+q Y+ A+ Tl
Y0'€ 08C v6'C YLT (\iad 8TY qQ+s+q Y+ A+ 11
90°¢ 0€T 96T v$T 06°€ 9¢'¢ s+q+q Y+ A+ 01
N0  TBAWOD-V HJNO  IBAWOD-Y N0  TBAWOD-Y
SI=29 STI=9 [=9 ozIg [OPOIN

(ponunuoo) 1 s|qey

pringer

& s



Journal of Statistical Theory and Practice (2020) 14:16

16 Page 480f49

000 000 000 000 000 000 S+S+S+Ss+s+S [ AV R B P B ¢
91°0 960 70 80 870 +9°0 Q+q+q+s+s+q Y+ A+ S+ €
000 200 000 000 000 80°0 S+s+s+s+q+q LAV ST B A e S €¢
ANO  BAWOD-Y N0 IBAWOD-Y N0  BAWOD-Y

Sr=29 sT1=0 [=9 az1g [9PON

(ponunuoo) 1 s|qey

pringer

f's



Journal of Statistical Theory and Practice (2020) 14:16 Page490f49 16

References

10.
11.
12.
13.

14.
15.

17.

18.

20.

21.

22.

Bingham DR, Chipman HA (2007) Incorporating prior information in optimal design for model
selection. Technometrics 49(2):155-163

Breiman L (1995) Better subset regression using the nonnegative garrote. Technometrics
37(4):373-384

Calvin JA (1986) A new class of variance balanced designs. J Stat Plan Inference 14(2-3):251-254
Candes E, Tao T (2007) The Dantzig selector: statistical estimation when p is much larger than n.
Ann Stat 35(6):2313-2351

Cheng C-S (1986) A method for constructing balanced incomplete-block designs with nested rows
and columns. Biometrika 73(3):695-700

Chowdhury S (2016) Common variance fractional factorial designs for model comparisons. PhD
thesis, University of California Riverside

Ghosh S, Chowdhury S (2017) CV, ECV, and robust CV designs for replications under a class of
linear models in factorial experiments. J Stat Plan Inference 188:1-7

Ghosh S, Flores A (2013) Common variance fractional factorial designs and their optimality to
identify a class of models. J Stat Plan Inference 143(10):1807-1815

Ghosh S, Tian Y (2006) Optimum two level fractional factorial plans for model identification and
discrimination. J Multivar Anal 97(6):1437-1450

Gupta S, Jones B (1983) Equireplicate balanced block designs with unequal block sizes. Biometrika
70(2):433-440

Hedayat A, Stufken J (1989) A relation between pairwise balanced and variance balanced block
designs. J Am Stat Assoc 84(407):753-755

Kane A, Mandal A (2019) A new analysis strategy for designs with complex aliasing. Am Stat. https
://doi.org/10.1080/00031305.2019.1585287

Khatri C (1982) A note on variance balanced designs. J Stat Plan Inference 6(2):173-177

Li W, Nachtsheim CJ (2000) Model-robust factorial designs. Technometrics 42(4):345-352

Lin CD, Anderson-Cook CM, Hamada MS, Moore LM, Sitter RR (2015) Using genetic algorithms
to design experiments: a review. Qual Reliab Eng Int 31(2):155-167

Mandal A, Wong WK, Yu Y (2015) Algorithmic searches for optimal designs. In: Dean A, Morris
M, Stufken J, Bingham D (eds) Handbook of design and analysis of experiments. Chapman & Hall/
CRC, Boca Raton, FL, pp 755-783

Mukerjee R, Kageyama S (1985) On resolvable and affine resolvable variance-balanced designs.
Biometrika 72(1):165-172

Srivastava J (1976) Some further theory of search linear models. In: Contribution to applied statis-
tics. Swiss-Australian Region of Biometry Society, pp 249-256

Srivastava J, Ghosh S (1976) A series of balanced factorial designs of resolution v which allow
search and estimation of one extra unknown effect. Sankhya Indian J Stat Ser B 38:280-289
Srivastava J, Gupta B (1979) Main effect plan for 2m factorials which allow search and estimation
of one unknown effect. J Stat Plan Inference 3(3):259-265

Yuan M, Joseph VR, Lin Y (2007) An efficient variable selection approach for analyzing designed
experiments. Technometrics 49(4):430-439

Yuan M, Joseph VR, Zou H (2009) Structured variable selection and estimation. Ann Appl Stat
3(4):1738-1757

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer


https://doi.org/10.1080/00031305.2019.1585287
https://doi.org/10.1080/00031305.2019.1585287

	A-ComVar: A Flexible Extension of Common Variance Designs
	Abstract
	1 Introduction
	2 Common Variance Designs
	2.1 Two-Level Designs
	2.2 Three-Level Designs

	3 Identifying Common Variance Designs
	3.1 Challenges in Numerically Identifying Common Variance Designs
	3.2 Proposed Algorithm: Genetic Algorithm for Finding A-ComVar Designs

	4 Numerical Examples
	4.1 Example 1: Designs with One 2-Factor Interaction
	4.2 Example 2: Designs with Two 2-Factor Interactions
	4.3 Example 3: Common Variance Design and A-ComVar Designs for Model Selection

	5 Discussion
	References




