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ABSTRACT

Identifying optimal designs for generalized linear models with a binary response can be a challenging
task, especially when there are both discrete and continuous independent factors in the model. Theoretical
results rarely exist for such models, and for the handful that do, they usually come with restrictive assump-
tions. In this article, we propose the d-QPSO algorithm, a modified version of quantum-behaved particle
swarm optimization, to find a variety of D-optimal approximate and exact designs for experiments with
discrete and continuous factors and a binary response. We show that the d-QPSO algorithm can efficiently
find locally D-optimal designs even for experiments with a large number of factors and robust pseudo-
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Bayesian designs when nominal values for the model parameters are not available. Additionally, we investi-
gate robustness properties of the d-QPSO algorithm-generated designs to various model assumptions and
provide real applications to design a bio-plastics odor removal experiment, an electronic static experiment,
and a 10-factor car refueling experiment. Supplementary materials for the article are available online.

1. Introduction

Our work is motivated by an odor removal study (Wang et al.
2016) conducted in the Department of Textiles, Merchandis-
ing, and Interiors within the College of Family and Consumer
Sciences at the University of Georgia (UGA). In the research,
protein-rich algae were used in the creation of bio-plastic. In
bio-plastic formulation, algae undergo some chemical process-
ing so that their proteins have desired properties. As a side effect
of this chemical processing, algae-based bio-products often have
unpleasant odors, which must be removed or at least signifi-
cantly diminished if the products are to be used for commercial
purposes. Wang’s experiment was carried out to determine the
effect of several processing steps on the presence or absence of
an unpleasant odor.

Table 1 displays the factors thought to be relevant to bio-
plastic odor. The researchers designed their experiment inves-
tigating the four discrete factors and implemented a design
assuming a constant temperature of 25°C. There is currently
no known optimal design for such an experiment with both
discrete and continuous factors, and this may explain why the
researchers at UGA decided to fix the temperature at one arbi-
trary level. The experiment has a binary response Y denoting
whether the odor is successfully removed from the bio-plastic.
In this work, we revisit this experiment and consider designs
incorporating all four discrete factors and storage temperature
as a continuous variable. We model x, the mean response of Y,
using logistic regression and find optimal designs for estimating
all parameters in the model. We refer to such studies with both
discrete and continuous factors as having “mixed factors”

Generalized linear models (GLMs) are widely used to model
the mean response of a Bernoulli random variable. Let Y; be the
response corresponding to the /th combination of factor lev-
els, x; = (1, x1.1, X1 2, . . .), that may include integration terms
among the factors. Without loss of generality, for an experiment
with k factors, we assume the first term of x; corresponds to the
intercept, the next k terms to the factor settings, and any remain-
ing terms to interactions among the factors. Accordingly, the
2nd through the (k + 1)th terms in x; become a support point
of the design and the collection of all such points constitutes the
experimental design, ¥.

In the GLM, the mean response p; of Y; is related to the lin-
ear predictor n; = xlT B by a monotonic link function g(-) via
g(r) = ny, with the logit and probit links being two of the most
commonly used when the response is binary. Here, the range of
values for each factor is assumed to be known. This implies that
we have a known design space where combination levels of the
factors can be selected to observe the response.

The exact design problem is to determine the optimal num-
ber of support points (L), the support points themselves, and
the optimal number of replicates, ny, . . ., nr, subject to the con-
straint n; + - - - + ny = N. The value N is the known total num-
ber of observations for the study and is predetermined either
by the duration or cost of the study. Alternatively, an approx-
imate design optimizes the proportion of the total number of
observations at each support point subject to the constraint that
they sum to unity (Kiefer 1959). For such designs, we relax the
assumption that each proportion p; = n;/N is a ratio of two pos-
itive integers between 0 and 1 and implement the approximate
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Table 1. Factor types and levels for the bio-plastic odor removal experiment.

Levels
Type Factor - +
Discrete Algae Catfish algae Solix Microalgae
Scavenger Activated carbon Zeolite
Resin Polyethylene Polypropylene
Compatibilizer Absent Present
Continuous Temperature Temperature from 5°C to 35°C

design by taking roughly Np; observations at each x; subject to
the requirement that they sum to N and each Npj is an integer.

Let ¥ be a design with support points at x1, . . ., x1, for which
there are n; replicates at each x;. A direct calculation shows that
the Fisher information matrix is

L
I, = Z m Y (m)xix;]
I=1

where Y(n;) = %. A D-optimal design maximizes the
log-determinant of the Fisher information matrix and so it is
appropriate for estimating all parameters in the model. Because
the Fisher information matrix depends on the model parame-
ters, nominal values of the parameters are required before we can
implement the design. Such nominal values typically come from
the literature or pilot studies. The resulting optimal designs are
therefore locally optimal and are often used as building blocks
for constructing more complicated designs (Ford, Torsney, and
Wu 1992) or as benchmarks for other designs when a single best
guess of the parameters is available (Stufken and Yang 2012).

When the design criterion is a concave function of the Fisher
information matrix, such as D-optimality, we verify the optimal-
ity of an approximate design among all designs using an equiv-
alence theorem, see, for example, Kiefer and Wolfowitz (1959)
or Pukelsheim (1993). For the logistic model with q parameters
in the linear predictor, this theorem asserts that the design ¥* is
locally D-optimal among all designs if and only if for all x in the
design space,

exp{B’ x)
(1 + exp{B”x})>

with equality at each support point of the design ¥*. The func-
tion to the left of the above inequality is sometimes called the
sensitivity function.

Often the worth of a design is measured by its efficiency rel-
ative to the optimal design, ¥*. If ¥ is a design of interest and
¥ is a locally D-optimal design for a GLM with g parameters in
the linear predictor, the D-efficiency of ¢ is

< det(Iy) >W @)

x'Ilx—q<0, (1)

If the ratio is one half, the design ¥ requires twice as many
replicates as the locally D-optimal design to obtain the same
information. When the true optimum design is unknown, a
lower bound on the D-efficiency of ¥ is exp{—6/q}, where 0 is
the maximum positive value of the sensitivity function across
the design space (Pazman 1986). Clearly, 6 = 0 if and only if
¥ is locally D-optimal, and the lower bound attains unity. We
refer to the quantity in the numerator of (2), det(Iy)/4, as the

objective function value for the design and report its value for
comparing different designs.

Atkinson and Woods (2015) provided an overview of design
issues for generalized linear models. Some theoretical results
exist for models with all discrete factors (Yang, Mandal, and
Majumdar 2016) or all continuous factors (Yang, Zhang, and
Huang 2011). When theoretical results are not available, com-
putational methods are used to find optimal designs. Mandal,
Wong, and Yu (2015) provided an overview of algorithms for
generating optimal designs, including use of nature-inspired
metaheuristic algorithms for finding a large class of optimal
designs. Early techniques for generating optimal designs for
experiments with outcomes modeled under GLMs include
Fedorov-Wynn type algorithms (Fedorov 1972) and multiplica-
tive algorithms (Titterington 1976). These approaches remain
popular and often form the basis for more recent techniques
such as the cocktail algorithm (Yu 2011). Specific applications of
computational methods to solve real design problems for GLMs
can be found in Woods et al. (2006), Dror and Steinberg (2006,
2008), Waterhouse et al. (2008), and Woods and van de Ven
(2011).

There is little work on constructing efficient designs for
experiments with mixed factors; a reason may be that the theory
and algorithms for constructing D-optimal designs for GLMs
when all factors are continuous or when all factors are discrete
do not directly extend to the case when there are mixed factors.
As far as we know, there is no efficient algorithm for finding
D-optimal designs for such models. Some algorithms, such as
quasi-Newton BFGS (Nocedal and Wright 1999), may be used
to solve these mixed-factor design problems by optimizing the
continuous factor levels and proportions for each fixed combi-
nation of discrete factor levels, but such approaches can be com-
putationally inefficient (see Section 3.3). One common approach
to these mixed factor problems is to discretize the continuous
factors into a few levels and apply algorithms for studies with
all discrete factors. However, the generated design is unlikely to
be locally D-optimal for the original problem if the discretiza-
tion is too coarse, as demonstrated in Section 3.2. Haphazard
discretization of the continuous factors could also cause sepa-
ration issues during analysis. This means that valid maximum
likelihood estimates of the parameters do not exist because there
is a hyperplane in the linear predictors that can perfectly sep-
arate the responses into two categories. More complicated and
specialized estimation techniques, such as penalized maximum
likelihood (Firth 1993; Heinze and Schemper 2002; Woods and
van de Ven 2011; Woods, McGree, and Lewis 2017), or a mod-
ified logistic regression, such as a hidden logistic regression
(Rousseeuw and Christmann 2003), will be required to produce
meaningful parameter estimates.

The primary aim of this article is to propose a new method
for finding D-optimal designs for GLMs with mixed factors and
a binary outcome using quantum particle swarm optimization
(QPSO). This QPSO is a nature-inspired metaheuristic algo-
rithm based on particle swarm optimization (PSO), which is
already widely used in engineering and computer science to
tackle complicated optimization problems. A key advantage
of working with PSO-type algorithms is that they require only
an objective function which can be explicitly written down,
and the design space does not have to be discretized. The latter



property is particularly useful when we design a study with
multiple continuous factors.

This article is organized as follows. Section 2 first provides
a brief review of PSO and QPSO before we describe our pro-
posed d-QPSO algorithm. In Section 3, we apply the d-QPSO
algorithm to find locally D-optimal designs for several real world
problems. Section 4 demonstrates the flexibility of the d-QPSO
algorithm to find pseudo-Bayesian D-optimal designs for situa-
tions in which the nominal values might be unknown. Section 5
summarizes our work with remarks on other possible applica-
tions of the d-QPSO algorithm. In the supplementary materials,
we provide our d-QPSO algorithm code for the odor removal
example and show how it may be used to investigate robustness
properties of the D-optimal designs to violation of the model
assumptions for the motivating example. We report computa-
tional time and accuracy of the d-QPSO-generated designs via
simulations and also demonstrate that the proposed d-QPSO
algorithm can be used to find exact optimal designs.

2. Swarm Optimization

We begin by briefly reviewing PSO and QPSO. We then describe
how we modify QPSO to d-QPSO for finding D-optimal designs
for models with mixed factors and a binary response.

2.1 Particle Swarm Type Algorithms

PSO is a metaheuristic optimization algorithm introduced by
Kennedy and Eberhart (1995). It is a nature-inspired algorithm
that mimics the behavior of a flock of birds as they search an area
for food. Each member of the flock or swarm, known as a par-
ticle, represents a candidate solution to the problem of interest
with a corresponding fitness, and the location of the food repre-
sents the optimum solution. Each particle has its own perception
of where the food is located, based on its own experience. This
position is known as the personal best position (pbest). Each
particle is also aware of the overall best location that the flock
has found, a position called the global best position (gbest). At
each iteration, every particle moves in the direction of both its
pbest position and the gbest position.

Since its inception, many variants of PSO have been devel-
oped, often to adapt PSO to a specific class of problems. For
example, in public health research, Fu et al. (2009) used PSO
to identify optimal screening nodes for spread of the SARS dis-
ease in Singapore; other applications are voluminously docu-
mented in the engineering literature, such as in the IEEE Trans-
actions. Given its success in other application areas, PSO has
also been modified to find optimal designs. Qiu et al. (2014)
appeared to be the first to use the standard PSO to find a vari-
ety of optimal designs for biomedical problems, including opti-
mal designs for estimating parameters in compartmental models
and tumor growth models. It has also been used to find optimal
designs under a nondifferentiable optimality criterion (Chen
et al. 2015a), optimal designs for a variety of mixture models
(Wong et al. 2015), optimal latin hypercube designs (Chen et al.
2013), and most recently, minimax projection designs (Mak and
Joseph 2017). While the standard PSO is fast and effective for
finding optimal designs for a few factors, it may not work very
efficiently for complicated design problems, such as the case
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when we have moderate to large number of mixed factors in
the regression model. This leads us to explore QPSO as a gen-
eral optimization algorithm before modifying it to d-QPSO to
specifically solve difficult design problems.

QPSO was developed after the trajectory analysis by Clerc
and Kennedy (2002) where they showed that the swarm con-
verges if each particle converges to the local attractor, which
is defined as a point between the pbest and gbest positions in
the standard PSO algorithm. QPSO was first introduced by Sun,
Feng, and Xu (2004a), with the central idea that each particle can
appear anywhere in the search space at any time, but has a higher
probability to appear near its current position. This probabilis-
tic scheme is unique to QPSO and justifies the use of the term
“Quantum” in its name. Unlike the standard PSO, QPSO has no
velocity term in its defining equations. Each particle’s stochastic
movement is accomplished by drawing positions from an expo-
nential distribution with parameters determined by the distance
between the particle and the best known positions. This proba-
bilistic draw incorporates the local attractor for each particle and
a position known as the “mainstream thought” or mbest, which
is the average of all pbest positions at the current iteration (Sun,
Xu, and Feng 2004b). By updating particle positions using both
the local attractor and mbest (see Figure 1), QPSO is able to draw
particles toward optimal positions without throwing away infor-
mation from the particles with poor fitness values.

To our knowledge, this is the first work to apply QPSO
to design experiments. The algorithm cannot simply be used
off-the-shelf to find optimal designs because it assumes an
unbounded search space and generally does not optimize dis-
crete and continuous factors simultaneously. Thus, we develop
a variant of QPSO for design of experiments and call it d-QPSO
for short, where d stands for design. In particular, we modify the
algorithm’s behavior and use an elitist breeding mutation tech-
nique to maximize its performance for finding our sought-after
designs. The overall idea of the d-QPSO algorithm is to gen-
erate multiple quantum-behaved particle swarms, where each
swarm works to find the global best position. Information within
swarms is shared just like in a typical QPSO algorithm, but
with special attention paid to the nature of the covariates, the
model structure, and the type of design space. Information is
also pooled across swarms via an elitist breeding mutator with-
out sacrificing the possibly distinct solutions obtained from dif-
ferent swarms.

2.2 d-QPSO: Algorithm Overview

Our proposed algorithm is a multi-swarm QPSO with elitist
breeding that proceeds as follows. Suppose the design prob-
lem for our binary response experiment has k factors, and, to
fix ideas, assume that all discrete factors have two levels. We
first randomly generate s swarms each with w particles, where
each particle is a design with L support points, and s, w, and
L are user-selected positive integers. We refer to the collection
of all swarms as a habitat. The components of each particle are
the L support point settings and the proportion of observations
at each support point. Thus each particle, ¥;,i =1, ... w has
L(k + 1) elements and we search for an optimal design among
them.
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Within each swarm, ¥;,i = 1, ..., w is generated randomly
at the start of the search. We denote the best set of factor settings
and proportion allocations found by particle i at iteration ¢ by

Pt — (wiffl’b“t’”, . w;i‘;;ﬁi’f )) )T, and the best set of factor

settings and proportion allocations found by the entire swarm by
best, t (gbest,t) (gbest,t) .

Plebestt) — (g evesth Lee1) )" Att = 0, the pbest posi-

tions are the initial positions of each particle and the gbest posi-
tion is the best of all pbest positions, where “best” refers to the
position corresponding to the design with the largest value of
the objective function. Each iteration has two update steps, one
at the swarm-level and the other at the habitat-level (Figure 1).
Below we enumerate the steps in the d-QPSO algorithm for
updating each swarm and suppress the swarm indicator for
notational simplicity. The updates must be performed differently
for continuous factor settings, discrete factor settings, and the
proportion allocated to each support point. We collect the com-
ponents of each ¥, into three sets, A, Az, and A, which corre-
spond to continuous factors, discrete factors, and proportions,
respectively. Clearly, A, UAg UA, ={1,2,...,L(k+ 1)}, and
updating each set updates the entire vector.
1. Update the local attractors. For each particle i, i =
1, ..., w, the local attractor aft) = (affl), e aEtL)(kH))T
is the central point around which the particle will appear
at iteration t. For a given swarm, the local attractor
for particle i at component m, m =1,...,L(k+ 1) is
calculated as

d)(t) % 1// (pbest,t—1)

im im

FA =60y x D ifm e A UA,,

()
a. =
,m best,t—1 .
! (pbest.t=1) ifmeAgandr;3 <0.5,
best,t—1 .
,(y,g estt=1) ifme Agandr;; > 0.5,
where ¢;,, = —=— and r;, 7;,, ;3 are independent

rii+rin
draws from U (0, 1), the uniform distribution over the

interval (0, 1).
2. Update particle positions. Each particle is drawn
to both its local attractor, a!’ and to ™t =

1 w (pbest,t—1) 1 w (pbest,t—1)\T .
(5 Zi=1 1//1',1 R Zi=1 wi,L(kH) )", a posi-
tion referred to as the “mbest.” For discrete factors, that
is, m € Ag, Y™ is rounded to 1 or —1. The position
update step is

ajly, +alyg, "

gy {mbest) ‘ log(rim1) ifmeA UAyandriyy > 0.5,
ajly, —alyi, "

,lbr(nmb“t") ‘ log(rim1) ifmeA UAyandri,, <0.5,

—W,-(,tm_l) if m € A4 with probability 7,

1/’,-(,;1) if m € A, with probability 1 — 7,

where 7; .1, ti.m.2 are independent U (0, 1) draws. Here
« is known as the contraction-expansion coefficient and
is decreased linearly from 1.4 to 0.4 as the algorithm
runs (Sun et al. 2012). For the discrete factor update, 7
is the probability of changing factor setting for factors
belonging to x; and is calculated using Hamming dis-
tance as described in Xi et al. (2016). Under this updat-
ing scheme, a vector of discrete factor settings is created
by combining ¢ ™" and ¢4~ ysing a crossover.
In a crossover, two position vectors are split at a random
location and the left partition of one is combined with
the right partition of the other to form a new position
vector. We use the vector with left elements taken from
PPt and right elements taken from €= and
refer to this vector as %" The larger the Hamming
distance between ¥ ") and the particle’s current posi-
tion, the more likely each element of 1/fft_1) is to “flip” fac-
tor settings. For discrete factors, m € Ay, 7; is calculated
based on the x; to which m belongs. That is, for support
point x;, the probability of flipping, 7;, will be the same
for all discrete factor settings of that support point. The
value of 7; is

o x bi(—log(r)) 1}

7; = min
{ ka

]

For Each Particle
Calculate { }
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mbest
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Figure 1. Steps in the QPSO update for generating locally D-optimal approximate designs. The swarm update is applied to each swarm individually, and the habitat update

is performed on all swarms.



where k, is the number of discrete factors in the model, r

is a random draw from U (0, 1), and b; counts the num-

ber of elements in the current candidate 1/r§t) which are

different from the corresponding elements of y (¢!,
restricted to the discrete factors only, for x;. The prob-
ability of changing a factor setting, 7;, increases as by
increases. After the position update, any proportions that
fall below 0 are set to 0. The proportions are then normal-
ized to sum to one. If any value of a continuous factor
falls outside its range, we assign this value to the nearest
boundary on the design space.

3. Update fitness. For each particlei,i = 1, ..., winagiven
swarm, we calculate the value of the objective function. If
alocally D-optimal design is sought, the fitness function
is log det(Iy,), where the logarithm is used for numeri-
cal stability and to ensure the design criterion is concave
for the application of the equivalence theorem. The fit-
ness function used to find pseudo-Bayesian designs is the
approximation to the expected log-determinant of the
Fisher information matrix developed in Gotwalt, Jones,
and Steinberg (2009).

4. Update pbests and gbest. For each particlei,i=1,..., w
in a given swarm, if the fitness of position ") is greater
than the fitness of w;pbeSt‘Fl), we set 1/15[’ best,t) _ i(t),
otherwise PP = PP The PPt ywith the
largest fitness value is chosen as %) for the swarm.

5. Elitist breeding. To encourage exploration of the search
space, we include an elitist breeding mutator similar to
the one described in Yang, Wu, and Min (2015). At
the end of each iteration, each particle undergoes eli-
tist breeding with a small probability (we use probability
0.1). A new position vector is created w;pbm*) = wi(pbeSt't)

and updated by replacing a randomly selected element,

m with a value taken from another randomly selected

element, m* of a random particle’s pbest. Here both m

and m* belong to {1,2,...,L(k+ 1)} and wiff:l’ESt*) is

updated as
(pbest®) __ (pbest,t)
Vim = Viem
where i* € {1, ..., w}, and the position wiﬁrjtyfft’t) is nor-

malized to be in the range of component m. Figure 1
includes a schematic diagram of the elitist breeding
mutator.

Following the swarm update, the habitat update keeps track
of the best position from each swarm and the overall best posi-
tion, which we denote by ¥ where hbest is short for
“habitat best” We share information between swarms using
another elitist breeding mutator. This acts to prevent the swarms
from becoming stuck in local extrema. This elitist breeding
update is similar to the swarm update, except that instead of
selecting particles to breed from within the same swarm, parti-
cles are allowed to breed across swarms. To our knowledge, this
is the first QPSO algorithm to share information across several
swarms using such a technique. At each iteration, we determine
whether the hbest position has improved over all previous iter-
ations. If we are searching for a locally D-optimal approximate
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design, we check the local D-optimality of this generated design
by examining if its sensitivity function satisfies the equivalence
theorem. This can be done either by a grid search or another
QPSO algorithm to maximize the sensitivity function and deter-
mine its minimum D-efficiency lower bound. The algorithm ter-
minates if the desired D-efficiency lower bound is obtained or
the maximum number of iterations has been reached. At termi-
nation, the design constructed using ¥ """ is returned as the
d-QPSO algorithm-generated design.

Tuning the d-QPSO algorithm involves selecting the num-
ber of particles per swarm, the total number of swarms, the
maximum number of iterations, and the maximum number of
support points allowable in the design. For locally D-optimal
approximate designs, the user must also supply a lower bound
for the D-efficiency of the generated design; the algorithm termi-
nates if the lower bound is met. Our general experience is that a
relatively small number of particles (around w = 30) works well,
allowing each particle to have a strong influence on the mean
best position. As a rule of thumb, we suggest using k, swarms,
where k is the number of factors in the model. We also sug-
gest increasing the number of swarms when there are more fac-
tor levels in the study. The maximum number of iterations is
decided by the user and this number should increase with the
number of factors. In general, we find that a few thousand itera-
tions work quite well. Finally, for approximate designs the max-
imum number of support points should be chosen based on the
number of factors in the model. For small number of factors,
it is appropriate to allow L = 2¥ support points; the d-QPSO
algorithm will generally be able to find a design supported on
fewer points. Our experience is that for many experiments with
q parameters in the model, having particles each with 2q to 3¢
points in the algorithm seems to work well. Of course, if these
numbers fail to provide an adequate design, the number of sup-
port points can always be increased.

We have run extensive simulations to assess the effectiveness
of the d-QPSO algorithm. These results, along with several other
sets of results obtained from the d-QPSO algorithm, are pro-
vided in the supplementary materials. In Section S1, we provide
CPU time and accuracy simulations for designing mixed fac-
tor experiments using the d-QPSO algorithm. Section S2 uses
the d-QPSO algorithm to find minimally supported designs. All
computations in this article were carried out using a 2012 Mac-
book Pro 2.6GHz Intel Core i7 with 16G RAM on 64bit OSX El
Capitan. Our code is written in C++ and called from R via the
RCPP package (Eddelbuettel and Frangois 2011).

3. Applications: Locally D-Optimal Designs

We now demonstrate that the d-QPSO algorithm can find
locally D-optimal designs for GLMs with mixed factors and a
binary response of increasing complexity. We start by revisit-
ing the motivating odor removal example and find a more real-
istic locally D-optimal approximate design for the study. We
then apply d-QPSO and obtain locally D-optimal approximate
designs for an electrostatic discharge experiment and a 10-factor
car refueling experiment. In all examples, we use the logit link
function in the GLM, but other link functions can be used as
well (see the supplementary materials Section S3.1).
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Table 2. The d-QPSO algorithm-generated locally D-optimal approximate design for the odor removal experiment with nominal values 8 = (—1,2,0.5, —1,

—0.25,0.13)".

Support Support

point Algae Scav. Resin Comp. Temp. p;(%) point Algae Scav. Resin Comp. Temp. p;(%)
1 —1 -1 -1 -1 9.040 370 8 —1 1 1 —1 16.894 220
2 -1 -1 -1 —1 25788 430 9 -1 1 1 —1 33.366 8.80
3 -1 -1 -1 1 29.710 10.17 10 -1 1 1 1 35.000 6.10
4 —1 -1 1 -1 35.000 473 n 1 -1 -1 1 5.000 5M
5 -1 —1 1 1 29.579 1.59 12 1 —1 1 —1 5.000 10.75
6 —1 1 -1 -1 5.000 9.80 13 1 -1 1 1 5.000 523
7 —1 1 -1 1 5206 7.86 14 1 1 1 1 5.000 971

3.1 Odor Removal Experiment

In the motivating odor removal study conducted by Wang et al.
(2016), the experimenters fixed the temperature variable and
used a 27! regular fractional factorial design with equal num-
ber of replicates. The d-QPSO algorithm allows us to construct a
design that includes storage temperature as a continuous factor
for the model Y ~ Bern(u) with logit(u) = By + B1Algae +
BaScavenger + B;Resin + B,Compatibilizer + fsTemperature.
Using information from their study, we take nominal values
B=(-1,2,05—1,-0250.13)7 and apply the d-QPSO
algorithm to construct a locally D-optimal approximate design.
The tuning parameters we used were 4 swarms, 30 particles
in each swarm, and we initialized our search among designs
with up to 20 support points. The termination rule was either
a maximum of 6000 iterations or when the generated design
attained a D-efliciency lower bound of 99%.

Table 2 displays the d-QPSO algorithm-generated locally D-
optimal approximate design with 14 support points, where only
some of the points have values at the extreme ends of the tem-
perature range. The objective function value for this design is
0.0019'/¢ = 0.3519. The sensitivity plot of the design in Figure 2
confirms its D-optimality. It is instructive to compare this design
to three locally D-optimal approximate designs obtained by
breaking up the continuous temperature variable into 2, 3, and
4 uniformly spaced points across the design space. Designs
using the discretized temperature variable were obtained using
the lift-one algorithm (Yang, Mandal, and Majumdar 2016).
The D-efficiencies of these three designs relative to the d-QPSO
algorithm-generated design were 0.9737, 0.9907, and 0.9965,

S
S .

I\ I
5 10 15 20 25 30 35

Temperature

but the minimum allocations required at a support point were
0.46%, 1.54%, and 0.35% for the 2, 3, and 4 uniformly spaced
point designs, respectively. This means that although theo-
retically these designs can be highly efficient, unless the total
number of observations in the study is large, these lift-one
algorithm-generated designs cannot be implemented in prac-
tice. In particular, the four-point lift-one algorithm-generated
design requires 0.0035N observations at a support point versus
0.022N for the d-QPSO algorithm generated design.

3.2 Electrostatic Discharge Experiment

Whitman et al. (2006) described a similar experiment with con-
tinuous and discrete factors. The experimenters were interested
in finding factors that influence the failure of semiconductors
when exposed to electrostatic discharge (ESD). The response
was whether or not a certain part of the semiconductor failed,
and the model was logistic regression with five factors. The first
two factors, Lot A and Lot B, describe the type of wafer used. The
third factor was ESD handling: whether or not proper ESD pre-
cautions were taken. ESD testing requires a part to be “zapped”
with a pulse at either a positive or a negative polarity and then
to be zapped again by a pulse with the opposite polarity. A lack
of standardization of which pulse order should be used resulted
in the experimenters using pulse order as the fourth factor. The
final factor, voltage applied to the chip, was continuous and
ranged from 25 to 45. The experimental units were single chip
TDMA power amplifiers, chosen for their lack of ESD protection
circuitry. Without protection circuitry, the chips were expected
to be sensitive to changes in experimental factors. Taking Y to

— 111 == 1111
— 1111 - - 121,211
— A1 - - 11,2101
— 11,1, - - 1,1,-1,1
~1,-1,1,-1 ~1,-1,1,1
— 1,-1,1,-1 - 11,11
~1,1,1,~1 ~1,1,1,1
1,1,1,-1 1,1,1,1

Figure 2. Sensitivity plot of the d-QPSO algorithm-generated locally D-optimal approximate design for each fixed combination of discrete factors in the odor removal

experiment.
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Table 3. The d-QPSO algorithm-generated locally D-optimal approximate design for the ESD experiment with nominal values g = (—7.5,1.50, —0.2, —0.15,

0.25,0.35,0.4)".

Support Support

point A B ESD Pulse Volt. p; (%) point A B ESD Pulse Volt. p; (%)
1 -1 -1 -1 -1 28.04 1.80 8 —1 1 -1 1 25.00 10.00
2 —1 —1 -1 -1 25.00 746 9 —1 1 1 -1 25.00 3.80
3 -1 -1 -1 1 25.00 249 10 -1 1 1 —1 3293 13.43
4 -1 -1 -1 1 27.85 774 n —1 1 1 1 25.00 9.20
5 —1 —1 1 -1 25.00 11.65 12 1 —1 1 -1 25.00 123
6 -1 -1 1 1 25.00 8.58 13 1 1 1 —1 25.00 13.40
7 -1 1 -1 —1 25.00 9.20

be 1 if the chip fails and 0 otherwise, we have Y ~ Bern(u), and
the model of interest is logit(x) = Bo + Bi1Lot A + B,Lot B +
B5ESD + B,Pulse + B5Voltage + B34 (ESD x Pulse).

The experimenters discretized the voltage variable into five
levels: 25, 30, 35, 40, and 45 V. The full factorial design with
80 separate settings was implemented to test all possible com-
binations of factor settings. They did not provide a rationale for
treating voltage as a discrete variable, but we note that such tech-
niques are common when constructing exact response surface
designs with continuous factors.

We redesign this experiment by treating voltage as a con-
tinuous variable that ranges from 25 to 45 instead of fix-
ing it to 5 levels. We use the set of nominal values B =
(=7.5,1.50, —0.2, —0.15, 0.25,0.35,0.4)7, motivated by the
parameter estimates reported in the article. The tuning parame-
ters we used were 5 swarms, 30 particles per swarm, and we ini-
tialized our search among designs with up to 18 support points.
The termination rule was either a maximum of 4000 iterations
or a generated design that attains a D-efficiency lower bound of
99%. Table 3 lists the d-QPSO algorithm-generated design with
13 points and its sensitivity function in Figure 3 confirms its
local D-optimality.

The d-QPSO algorithm-generated locally D-optimal approx-
imate design has four unique voltage settings. The original
experimental design has five unique voltage settings, and these
were very different than the ones identified by the d-QPSO
algorithm, which has an objective function value of (1.2639 x
107°)/7 = 0.1997. The D-efficiency of the original 80 point
design relative to the design identified by the d-QPSO algorithm
is 32.85%, indicating that the latter design is approximately three
times as D-efficient as the implemented design.

26 28 30 32 34

Voltage

3.3 Car Refueling Experiment

We now apply the d-QPSO algorithm to solve a high-
dimensional design problem. Grimshaw et al. (2001) described
an experiment to test a vision-based car refueling system.
Here, the investigators were interested in finding whether
a computer-controlled nozzle was able to insert itself into
the gas pipe correctly or not. Table 4 lists the four discrete
factors and the six factors that are naturally continuous:
reflective ring thickness, lighting angle, gas-cap angle (Z-
axis), gas-cap angle (Y-axis skew), car distance, and thresh-
old step value. For illustrative purposes, we take the set
of nominal values for the model parameters to be: B =
(3,0.5,0.75, 1.25, 0.8, 0.5, 0.8, —0.4, —1.00, 2.65, 0.65)7,
where the order of the factors is the order given in Table 4.
Other sets of nominal values could also be used.

We use the d-QPSO algorithm to search for a locally D-
optimal approximate design for the main effects logistic model.
The tuning parameters we used were 10 swarms, 30 particles
per swarm, and we initialized our search among designs with
up to 12 support points. The termination rule was a maximum
of 7000 iterations or a generated design attaining a D-efficiency
lower bound of 99%, which was determined using a second
QPSO algorithm to find the maximum of the sensitivity func-
tion. This second search was used because the design has six
continuous factors, and thus performing a grid search to find
the maximum of the sensitivity function is difficult. While this
search did not find any values to indicate that our design was
not locally D-optimal via the equivalence theorem, we note that
there is a possibility that we did not find the maximum of the
sensitivity function that determines the minimum D-efficiency

— 1121 == 11,11
— 11211 - = 1,111
— A1 - —11,-11
— 11,1, - - 1,1,-1,1
~1,-1,1,-1 ~1,-1,1,1
— 1,-1,1,-1 - - 1,111
~1,1,1,-1 ~1,1,1,1
1,1,1,-1 1,1,1,1

Figure 3. Sensitivity plot of the d-QPSO algorithm-generated locally D-optimal approximate design for each fixed combination of discrete factors in the ESD experiment.



84 J. LUKEMIRE, A. MANDAL, AND W. K. WONG

Table 4. Factor types and levels for the car refueling experiment.

Levels
Type Factor Low High
Discrete Ring type White paper Reflective
Lighting Room lighting 2 flood lights and room lights
Sharpen No Yes
Smooth No Yes
Continuous Lighting angle from 50 degrees to 90 degrees

Gas-cap angle (Z-axis)
Gas-cap angle (Y-axis skew)
Car distance

Reflective ring thickness
Threshold step value

from 30 degrees to 55 degrees
from 0 degrees to 10 degrees
from 18 in. to 48 in.
from 0.125 in. to 0.425 in.
from 5to 15

Table 5. The d-QPSO algorithm-generated approximate design for the car refueling experiment with nominal values g = (3, 0.5, 0.75,1.25,0.8, 0.5, 0.8, —0.4,

—1.00, 2.65, 0.65)7.

Lighting Y-axis Threshold

Ring type Lighting Sharpen Smooth angle Z-axis skew Car dist. Ring thick. stepsize p; (%)
—1 -1 -1 -1 50.00 30.00 4.20 48.00 0.125 5.00 9.1
—1 —1 -1 -1 50.00 30.00 10.00 48.00 0.125 8.57 9.1
-1 -1 =1 -1 50.00 30.00 10.00 45.68 0.125 5.00 9.1
—1 -1 -1 —1 54.64 30.00 10.00 48.00 0.125 5.00 9.1
—1 -1 -1 -1 50.00 32.90 10.00 48.00 0.125 5.00 9.1
—1 =1 =1 -1 50.00 30.00 10.00 48.00 0.125 5.00 8.1
—1 -1 -1 -1 50.00 30.00 10.00 48.00 0.425 5.00 77
—1 -1 -1 1 50.00 30.00 10.00 48.00 125 5.00 9.1
—1 -1 1 -1 50.00 30.00 10.00 48.00 12.5 5.00 9.1
—1 1 -1 —1 50.00 30.00 10.00 48.00 12.5 5.00 9.1

1 -1 -1 -1 50.00 30.00 10.00 48.00 125 5.00 75

1 -1 -1 -1 50.00 30.00 10.00 48.00 0.425 5.00 4.0

of the design generated. Table 5 displays the d-QPSO algorithm-
generated design with an objective function value of (2.5181 x
10~1)1/11 = 0.0382.

To further support our claim that this is design highly D-
efficient, and is indeed locally D-optimal, we run the d-QPSO
algorithm several more times, holding the number of swarms
fixed at 10 and changing the number of particles, the limit on the
number of possible support points, and the maximum number
of iterations. Table 6 provides a summary of the tuning param-
eters used and the results obtained. In all cases, we obtain a
design similar to the one presented in Table 5. Even the worst
design, obtained using only 10 particles per swarm, still had a
D-efliciency of 98% relative to the d-QPSO algorithm-generated
locally D-optimal approximate design in Table 5.

We also attempted to solve this 10-factor problem by dis-
cretizing the design space and using current algorithms, such

Table 6. The d-QPSO algorithm tuning parameters and results for constructing
locally D-optimal approximate designs for the car refueling experiment.

Max support  Particles Support  CPU time
points perswarm Max iterations logdet  points  (Seconds)
12 35 5000 —35.91 12 87.58
12 35 7000 —36.08 n 4938
14 35 5000 —36.04 n 47.51
14 35 7000 —36.02 n 24470
14 20 7000 —36.01 12 140.80
16 35 5000 —35.93 12 70.44
16 10 7000 —36.15 12 67.12
16 20 7000 —35.98 12 85.60
16 35 7000 —35.92 12 m34
16 75 7000 —35.93 12 424.52

as the lift-one and Fedorov-Wynn type of algorithms; how-
ever, the number of candidate points became too large due
to the number of factors, and the algorithms were unable
to run successfully. We also applied quasi-Newton BEGS to
tackle this problem via the optim package in R. This algo-
rithm cannot search over the discrete factor settings, so we
resorted to fixing the discrete factor combinations and apply-
ing quasi-Newton BFGS to find the continuous factor settings
along with the proportions allocated to each support point. The
algorithm took several hours to run, significantly longer than
the d-QPSO algorithm. The resulting design had 16 support
points and its D-efficiency was only 70% relative to the -QPSO
algorithm-generated locally D-optimal approximate design in
Table 5.

4, Applications: Pseudo-Bayesian Designs

The previous section assumes that we have a given set of nom-
inal values for the model parameters to find an optimal design.
When no such reliable nominal values are available, Bayesian
designs provide an attractive, robust solution to the design prob-
lem. These designs require priors for the parameter values and
proceed by maximizing the expectation of the log-determinant
of the Fisher information matrix by choice of a design. In
general, Bayesian designs come at a high computational cost,
as numerical integration must be performed every time the
design changes. To circumvent these numerical difficulties, sev-
eral pseudo-Bayesian methods have been proposed. Woods et al.
(2006) identified exact compromise designs that are robust to
misspecification of both the parameter values and link function.
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Table 7. The d-QPSO algorithm-generated pseudo-Bayesian approximate design for the odor removal experiment using the independent uniform priors for all parameters

specified in Section 4.1.

Support Support

point Algae Scav. Resin Comp. Temp. p;(%) point Algae Scav. Resin Comp. Temp. p;(%)
1 -1 -1 -1 -1 5.000 8.50 8 -1 1 1 1 14.674 5.00
2 —1 —1 —1 —1 3491 3.87 9 —1 1 1 1 34.980 9.49
3 -1 -1 -1 1 28.818 6.60 10 1 -1 —1 1 5.000 9.80
4 -1 -1 1 -1 31.261 10.10 n 1 —1 1 —1 5.000 470

5 —1 1 —1 —1 5.000 7.60 12 1 —1 1 1 5.000 9.92

6 -1 1 -1 -1 21550 315 13 1 1 1 —1 5.000 10.79

7 -1 1 -1 1 5.000 8.18 14 1 1 1 1 5.000 230

Table 8. The d-QPSO algorithm-generated pseudo-Bayesian exact design with 16 support points for the crystallography experiment with independent prior specification
By ~ U(=3,3), B, ~U(4,10), B, ~U(5,M), B; ~ U(=6,0),and B, ~ U(-2.5,3.5).

Support Agitation Composition Evaporation Support Agitation Composition Evaporation
point rate volume Temperature rate point rate volume Temperature rate

1 —1.000 0.378 —1.000 —1.000 9 0.594 —1.000 —1.000 —1.000

2 —1.000 0.791 —1.000 —1.000 10 1.000 —0.990 —1.000 —1.000

3 —1.000 0.212 —1.000 1.000 n 0.446 —1.000 —1.000 1.000
4 —1.000 0.708 —1.000 1.000 12 0.940 —1.000 —1.000 1.000

5 —0.969 1.000 1.000 —1.000 13 1.000 —0.652 1.000 —1.000

6 —0.487 1.000 1.000 —1.000 14 1.000 —-0223 1.000 —1.000

7 —1.000 1.000 1.000 1.000 15 1.000 —0.817 1.000 1.000

8 —0.522 1.000 1.000 1.000 16 1.000 —0397 1.000 1.000

Gotwalt, Jones, and Steinberg (2009) used a quadrature scheme
to approximate the value of the expected Fisher information
matrix. Overstall and Woods (2017) developed an approxi-
mate coordinate exchange algorithm for identifying Bayesian
designs through the use of a Gaussian process emulator. We
next demonstrate the d-QPSO algorithm’s ability to find pseudo-
Bayesian designs using the odor removal experiment and the
16 run crystallography experiment described by Woods et al.
(2006).

4.1 Odor Removal Experiment

We first return to the odor removal experiment. We use the d-
QPSO algorithm to obtain a robust pseudo-Bayesian design by
assuming independent uniform priors for each parameter with
each prior centered at the nominal value and having a width
twice the magnitude of the supposed nominal value used in
Section 3.1. For example, if the nominal value of a parameter
was 1, we use the uniform prior over (0, 2). These indepen-
dent priors for By, ..., Bs are: U(—2, 0) for By and B3, U(0, 4)
for 1, U(0, 1) for By, U(—1,0) for B4, and U (0, 0.26) for fs.
The tuning parameters we used were 2 swarms, 30 particles per
swarm, and we initialized our search among designs with up to
16 support points. The termination rule was 10,000 iterations.
Table 7 displays the d-QPSO algorithm-generated design. We
compare robustness properties of this design with the d-QPSO
algorithm-generated locally D-optimal approximate design in
Section S3.2 of the supplementary materials.

4.2 Crystallography Experiment

Next we consider obtaining a pseudo-Bayesian design for the
crystallography experiment described in Woods et al. (2006).
Following Gotwalt, Jones, and Steinberg (2009), we use the prior

labeled 85 in Table 1 of Woods et al. (2006). This prior speci-
ficationis By ~ U(-3, 3), 1 ~ U4, 10), B ~ U(5,11), B3 ~
U(—6,0), and B4 ~ U(—2.5,3.5). The experiment has four
continuous factors corresponding to the agitation rate, compo-
sition volume, temperature, and evaporation rate. The d-QPSO
algorithm tuning parameters we used were 5 swarms, 30 par-
ticles per swarm, and we initialized our search for the optimal
exact design among all optimal exact designs with up to 16 sup-
port points. The termination rule was 7000 iterations. Table 8
displays the d-QPSO algorithm-generated design for this opti-
mal exact design problem. For comparison, we generate one mil-
lion randomly sampled parameter vectors from the prior and
calculate the objective function value of the 4-QPSO algorithm-
generated design, the design in Woods et al. (2006), the design
presented by Gotwalt, Jones, and Steinberg (2009), the design
obtained using the method of Gotwalt, Jones, and Steinberg
(2009) reported in Overstall and Woods (2017) (referred to as
OW Gotwalt), and the design obtained using the approximate
coordinate exchange (ACE) algorithm in the acebayes R package
from Overstall and Woods (2017). Table 9 compares these meth-
ods using the average objective function values and the median
D-efficiencies of the designs relative to the d-QPSO algorithm-
generated design. The table shows that the d-QPSO algorithm is
competitive with the other methods.

Table 9. Mean objective function value and median D-efficiency relative to the
d-QPSO algorithm-generated pseudo-Bayesian exact design (RE) for each of the
robust designs considered for the crystallography experiment over one million ran-
domly sampled parameter vectors.

Design Mean [XTWX|'/> Median RE
d-QPSO 0.5734 1.0000
Gotwalt, Jones, and Steinberg (2009) 0.4643 0.8194
OW Gotwalt 0.5687 0.9896
Woods et al. (2006) 0.5394 0.9373
ACE 0.5685 0.9933
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5. Summary and Conclusions

In this article, we proposed a novel and flexible d-QPSO algo-
rithm to find several types of D-optimal designs for GLMs with
mixed factors and a binary response. We demonstrated that the
d-QPSO algorithm could find more D-efficient designs than
those obtained by treating continuous factors as discrete. We
applied the d-QPSO algorithm to find alocally D-optimal design
for an experiment with 10 factors, and we also showed it can
be used to find robust pseudo-Bayesian designs when there is
uncertainty in the parameter values.

In conclusion, we view the use of metaheuristic optimiza-
tion algorithms as an effective option for finding solutions to
complicated design problems. We believe that there is definite
potential for further use of nature-inspired metaheuristic algo-
rithms to find different kinds of optimal designs and help us bet-
ter understand properties of optimal designs. For example, Sec-
tion S3.1 of the supplementary materials provides a brief study
on sensitivity of the locally D-optimal designs to misspecifica-
tion of the link function. Applying the d-QPSO algorithm to
find optimal exact designs for correlated responses or minimum
bias designs is potentially interesting. For such problems, there
are no equivalence theorems to resort to for confirming opti-
mality of the generated design because the design criteria are no
longer concave. The only way to assess the optimality of the gen-
erated design by the d-QPSO algorithm or other algorithms is
by developing theoretical results, which are usually only feasible
for relatively simple models. A plausible strategy in this situa-
tion is to show the algorithm generates the same optimal designs
that are already worked out analytically for simple cases, and
then use the algorithm to find optimal designs for more com-
plicated cases where theoretical designs are no longer available.
For example, Chen et al. (2015b) used PSO to generate locally D-
optimal exact designs for the Michaelis—Menten model with cor-
related errors and confirm their numerical results with the the-
oretical optimal designs available from Dette and Kunert (2014)
when only a couple of time points are allowed for taking mea-
surements. Chen et al. (2015b) then used PSO to generate opti-
mal designs for a longitudinal study with more time points than
those considered in Dette and Kunert (2014), where theoretical
results are not available.

Supplementary Materials

S1. d-QPSO Computational Timing and Accuracy: Simu-
lations tracking the speed and accuracy of the d-QPSO
algorithm for finding locally D-optimal approximate
designs for models with up to six mixed factors and a
binary response.

$2. Minimally Supported Designs: Simulations using the
d-QPSO algorithm to construct locally D-optimal
approximate designs for models with one discrete and
one continuous factor and a binary response. We investi-
gate conditions under which the d-QPSO algorithm can
find minimally supported designs.

$3. Sensitivity Study: (i) An illustrative study of the robust-
ness of two factor experiments with binary response to
mis-specification of the link function and (ii) a study of

the robustness of the optimal design for the odor removal
experiment to parameter mis-specification.

$4. Locally D-optimal Exact Designs: Selected D-optimal
exact designs for the odor removal experiment for vari-
ous total sample sizes N.

$5. Optimal Designs on an Irregular Design Space: An
illustrative example using d-QPSO to generate a locally
D-optimal approximate design on an irregular design
space.

$6. The d-QPSO Algorithm for Finding the Optimal
Designs for the Odor Removal Experiment: Provides
the C++ code allowing the reader to reproduce the
results for the odor removal study.
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