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ABSTRACT

With advances in technologies in the past decade, the amount of data generated and recorded has grown 
enormously in virtually all fields of industry and science. This extraordinary amount of data provides 
unprecedented opportunities for data-driven decision-making and knowledge discovery. However, the 
task of analyzing such large-scale dataset poses significant challenges and calls for innovative statistical 
methods specifically designed for faster speed and higher efficiency. In this chapter, we review currently 
available methods for big data, with a focus on the subsampling methods using statistical leveraging 
and divide and conquer methods.

1. INTRODUCTION

The rapid development of technologies in the past decade has enabled researchers to generate and collect 
data with unprecedented sizes and complexities in all fields of science and engineering, from academia to 
industry. These data pose significant challenges on knowledge discovery. We illustrate these challenges 
with examples from three different areas below.

• Higgs Boson Data: Discovery of the long-awaited Higgs boson was announced in July 2012 and 
was confirmed six months later, leading to a Nobel Prize awarded in 2013 (www.nobelprize.org). 
A Toroidal LHC Apparatus (ATLAS), a particle detector experiment constructed at the Large 
Hadron Collider (LHC) in The European Organization for Nuclear Research (CERN) is one of the 
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two LHCs that confirmed the existence of Higgs boson. The ATLAS generates the astronomically 
large amount of raw data about particle collision events, roughly one petabyte of raw data per 
second (Scannicchio, 2010). To put it into more tangible terms, one petabyte is enough to store 
the DNA of the entire population of the USA; one petabyte of average MP3-encoded songs (on 
mobile phones, roughly one megabyte per minute) would require 2,000 years to play. However, 
the analysis of the data at the scale of even tens or hundreds of petabytes is almost unmanageable 
using conventional techniques since the computation cost becomes intimidating or even not af-
fordable at all.

• Biological Experiments: RNA-Seq experiments have been used extensively to study transcrip-
tomes (Mortazavi et al., 2008, Nagalakshmi et al., 2008). They serve as one of the best tools so 
far for novel transcripts detection and transcript quantification in ultra-high resolution, by obtain-
ing tens of millions of short reads. When mapped to the genome and/or to the contigs, RNA-Seq 
data are summarized by a super-large number of short-read counts. These counts provide a digital 
measure of the presence and/or prevalence of transcripts under consideration. In any genome-wide 
analysis, such as the bias correction model proposed by (Li et al., 2010), the sample size goes eas-
ily to millions, which renders the standard statistical computation infeasible.

• State Farm Distracted Driver Detection Data: Huge datasets are often generated by commer-
cial companies nowadays. A dataset has been released by State Farm, the insurance company. 
State Farm is interested in testing whether dashboard cameras can automatically detect drivers 
engaging in distracted behaviors. Two-dimensional dashboard driver images, each taken in a car 
with a driver doing something in the car (texting, eating, talking on the phone, applying makeups, 
reaching behind, etc.) are provided. The goal of statistical analysis is to predict the likelihood of 
what the driver is doing in the picture, i.e. whether computer vision can spot each driver’s dis-
tracted behavior, such as if they are not driving attentively, not wearing their seatbelt, or taking a 
selfie with their friends in the backseat. In this case, the complexity of big data, i.e. the raw data 
being in the form of images, poses the first problem before performing any statistical analysis: 
converting imaging data into the matrix form is needed. In this example, the testing data itself 
consists of 22,424 images of 26 drivers in 10 scenarios, each with 60 to 90 images, and totaling 
the size of about 5 GB. The explosion of data generated can be imagined as the time recorded and 
the number of drivers increases.

This implication of big data goes well beyond the above. Facebook and Twitter generate millions 
of posts every second; Walmart stores and Amazon are recording thousands of millions of transactions 
24 hours 7 day, etc. Super large and complicated data sets provide us with unprecedented opportunities 
for data-driven decision-making and knowledge discoveries. However, the task of analyzing such data 
calls for innovative statistical methods for addressing the new challenges emerging every day due to the 
explosion of data.

Without loss of generality, in the rest of this chapter, we will assume that the datasets are already con-
verted to numerical forms. Different statistical techniques will be discussed for analyzing large datasets. 
These datasets are so large that standard statistical analysis cannot be performed on a typical personal 
computer (PC). From a statistical point of view, the large data could arise in the following cases, either 
huge numbers of predictors, huge numbers of sample size or both. In what follows, we will focus on the 
second scenario. Next, we present the engineering solutions to this problem, point out the advantages 
and disadvantages, and then introduce the statistical solutions.
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1.1. Engineering Solutions

For computer engineers, a straightforward way to reduce computing time is to resort to more powerful 
computing facilities. Great efforts have been made to solve the problem of big data by designing super-
computers. Many supercomputers have been built rapidly in the past decade, such as Tianhe-2, Blue-
water and Blue Gene (Top500.org, 2014). The speed and storage of supercomputers can be hundreds or 
even thousands of times faster and larger compared to that of a general-purpose PC. However, the main 
problem with supercomputers is that they consume enormous energy and are not accessible to ordinary 
users. Thus, although supercomputers can easily deal with large amounts of data very efficiently, they 
are still not a panacea. Instead, cloud computing can partially address this problem and make computing 
facilities accessible to ordinary users. Nonetheless, the major bottleneck encountered by cloud comput-
ing is the inefficiency of transferring data due to the precious low-bandwidth internet uplinks, not to 
mention the problems of privacy and security concerns during the transfer process (Gai and Li, 2012). 
Another relatively new computational facility proposed is the graphic processing unit (GPU), which is 
powerful in parallel computing. However, a recently conducted comparison found that even high-end 
GPUs are sometimes outperformed by general-purpose multi-core processors, mainly due to the huge 
data transferring time (Pratas et al., 2012). In brief, none of the supercomputer, the cloud computing, 
GPUs solves the big data problem efficiently at this point (Chen and Zhang, 2014). Efficient statistical 
solutions are required, which makes big data problem manageable on general-purpose PCs.

1.2. Statistical Solutions

The statistical solutions are relatively novel compared to the engineering solutions. New methodologies 
are still under development. The methods available now can broadly be categorized into three groups: 
(1) divide and conquer method; (2) fine to coarse method; (3) sampling method. To be specific, we 
set our context as a dataset of n identically distributed observations and one response variable with p 
explanatory variables. Our statistical goal will be set for Model Estimation now.

1.2.1. Divide and Conquer Method

The divide and conquer method solves big data problems in the following manner. First, the original big 
dataset is divided into K small blocks that are manageable to the current computing facility unit. Then, 
the intended statistical analysis is performed on each small block. Finally, an appropriate strategy will be 
used to combine the results from these K blocks. As a result, the computation for the divide and conquer 
method can easily be done in parallel. However, the challenge lies in providing strategies for combining 
the results from smaller blocks. This is trivial for some models, like linear models or generalized linear 
models, for which the estimation procedures are linear by construction. More specifically, the estimating 
equations for the full data themselves can be written as a summation of all smaller blocks. The readers are 
referred to (Li et al., 2013) for more detailed discussion and theoretical properties for resulting estimators 
for a single parameter case. For other models, including but not limited to nonlinear parametric models 
(Lin and Xi, 2011), nonparametric models based on kernel regression (Xu et al., 2015), and penalized 
generalized linear regression models (Chen and Xie, 2014), the divide and conquer method in general 
still lacks a universal combining strategy which can handle all these cases.
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1.2.2. Fine to Coarse Method

Another surprising yet proved to be effective idea proposed much recently is the Fine to Coarse method. To 
make intended algorithms for the big dataset scalable, statisticians introduced a simple solution: rounding 
parameters. Hence the continuous real numbers of data are simply rounded from higher decimal places 
to lower decimal places. A substantial number of observations are degenerated to be identical. This idea 
was successfully applied to the functional data analysis using smoothing spline ANOVA models. See 
(Helwig and Ma, 2016) for more details.

1.2.3. Sampling Methods

Another more effective and more general solution to the big data problem is the sampling method. That 
means that we take a subsample from the original dataset with respect to a carefully designed prob-
ability distribution, and use this sample as a surrogate for the original dataset to do model estimation, 
predictions as well as statistical inference. The most important component of this method is the design 
of probability distribution for taking the sample.

One naïve choice for the probability distribution is the simple uniform distribution. If we further set 
the subsample size as n, then it reduces to the procedure of bootstrap (Efrom, 1979, Wu, 1986, Efron, 
1992, Shao and Tu, 2012). On the other hand, a great deal of efforts has been spent on developing 
algorithms for matrix-based machine learning methods and data analyses that construct the random 
sample in a non-uniform data-dependent fashion (Mahoney, 2011). In particular, a large body of litera-
ture specifically pointed out that the subsampling probability distribution using the statistical leverage 
scores outperforms uniform sampling for different purposes, especially in matrix approximation related 
problems (Drineas et al., 2006, Mahoney and Drineas, 2009, Drineas et al., 2011). Furthermore, efforts 
were put on studying the performance of leveraging based estimators from a statistical point of view 
(Ma et al., 2015, Ma and Sun, 2015).

Overall, the main advantage of the sampling method is its general application to various model set-
tings. Moreover, it will automatically give rise to a random sketch of the full data as a byproduct, which 
is useful for the purpose of data visualization. However, the nontrivial part of using sampling method is 
the construction of sampling probability distribution, which plays a crucial role in sampling methods. The 
rest of this chapter is dedicated to elaborate on the different designs of sampling probability distributions.

2. STATISTICAL FORMULATION OF BID DATA PROBLEM

In this section, we first introduce some general background of the linear model, then discuss the general 
sampling method which deals with the linear model problem in big data.

2.1. Classical Linear Regression Model

Throughout the chapter, we define y as the response vector, X as the predictor matrix, n as the number 
of data points and p as the dimension of the predictors.

We start with the classical linear regression model:
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y = X𝛽 + 𝜀 	 (1)

where y is a n×1 vector, X is a n×p matrix consisting of one intercept and p–1 explanatory variables 
and β is the p×1 coefficient vector, ε is the noise term which is assumed to follow a multivariate normal 
distribution N(0, δ2I).

In linear models, the coefficient vector β can be estimated by calculating the ordinary least square 
(OLS), that is:

�
β ββOLS

y X= −argmin
2
 (2)

where .  represents the Euclidean norm on the n-dimensional Euclidean space Rn. When X is full column 
rank, it can be shown that:

�
β ββOLS

Ty X X X X y
T

= − = ( )−argmin
2 1

 (3)

Otherwise, when X is singular, (XTX)-1 should be replaced by a generalized inverse of XTX. Conse-
quently, the predicted response vector ŷ  can be represented as:

ŷ X X X X yT T= ( )−1  (4)

The projection matrix, X(XTX)-1XT, is often referred to the hat matrix H since it looks like a hat on 
response vector y to get ŷ . The hat matrix H plays a crucial role in the subsequent analysis in Section 
3.

To get predicted response ŷ , it suffices to calculate H, i.e. X(XTX)-1XT. For robustness concern, 
people usually carry out the required computations by using the singular value decomposition (SVD) 
instead of calculating the matrix inverse directly (Golub & Van Loan, 2012).

Through some calculations, it can be shown that H=UUT, β̂
OLS

T T TX X X y V U y= ( ) =
−

−
1

1Λ .

Box 1. Singular Value Decomposition

Given any n×p matrix X, we can always decompose it to the form

          X U V
n p n n n p p p

T
× × × ×= Λ ,

where U and V are both orthonormal matrices and Λ is a diagonal matrix with all the singular values of X on the diagonal.
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2.2. General Sampling Method

As mentioned before, in the sampling approach we first choose a small subset of the full data, which we 
term as “subsampling step,” then use this sample to estimate the model parameters, which we term as 
“model-fitting step.” In the linear model setup, this approach can be utilized by sampling a small portion 
of rows from the input matrix X and then by carrying out linear regression on the sample data. Putting 
this idea in the framework of the linear model, we come up with the Algorithm 1.

Remark 1: One may wonder why the weighted least square (WLS) instead of ordinary least square 
(OLS) is used in the second step. This is because the estimator resulting from Algorithm 1 is a 
conditional asymptotically unbiased estimator for β̂

OLS
, i.e., E data

OLS
�β β|( ) ≈ ˆ  and it is also an 

unbiased estimator for the true parameter, i.e. E �β β( ) =  (Ma et al., 2014, Ma et al., 2015). If OLS 
instead of WLS is used in the second step, the conditional asymptotically unbiasedness property 
will be lost. However, in that process of pertaining the unbiasedness, one can potentially end up 
with an estimator with a higher variance. More insights into the gains and losses for estimators 
result from weighted and unweighted least square estimation for subsample data will be given in 
Section 4.

Remark 2: Although not explicitly described, asymptotic evaluation of �β shows that the sampling prob-

ability distribution π
i i

n{ }
=1

 plays an essential role in the property of the resulting �β , especially in 

estimating the variance of �β . The main goal of the rest of the chapter is to propose a computation-

ally efficient design of π
i i

n{ }
=1

 for better estimation accuracy.

Algorithm 1: General Sampling Method in Linear Model

Step 1 (Subsampling): Take a random sample of size r>p from the full data based on a sampling probability distribution π
i i

n{ }
=1

 such 

that 
i

n

i i
=
∑ = < <
1

1 0 1π π, . Record the chosen data as y X
i i i

r
* *,{ }

=1
, along with the sampling probabilities for the chosen data 

π
i i

r
*{ }
=1

.

Step 2 (Model-fitting): Use the subsample to fit a weighted least square with weight 1
1

/ *π
i i

r{ }
=

and obtain the estimator �β  as 

follows: 

           �β β ββ= −( ) −( )argmin y X W y X
T

* * * * ,

where W Diag
i i

r
= { }






=1
1

/ *π
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3. LEVERAGE-BASED SAMPLING METHOD

In this section, we introduce two examples of the general sampling methods, the Uniform Sampling 
Method and Basic Leverage Sampling Method, and give illustrations on the advantages as well as dis-
advantages of both algorithms.

3.1. Uniform Sampling Method

The most naïve version of the sampling method is to apply the Algorithm 2 with uniform probabilities, 

i.e. π
i n
=
1
�, for i=1,2,…,n. In this particular situation, the WLS in step 2 reduces to the OLS.

This algorithm is easy to understand. Instead of using full data to calculate the least square estimator, 
we just take a simple random sample from it and calculate the estimator �β

UNIF
 using the subsample. One 

obvious advantage of this algorithm is the short computing time, which is O(rp2). Another advantage, 
as we mentioned in Remark 1 of Algorithm 1, is the unbiasedness of �β

UNIF
.  However, as implied in 

Remark 2 of Algorithm 1, the large variance of the estimator is the main drawback of this method. When 
the sampling size r is small, there is a good chance that the estimator β̂

UNIF
 can be totally different from 

β̂
OLS

. This situation can be illustrated by the following example.
In Figure 1, the data points sampled from uniform probabilities did not identify the main linear pat-

tern of the full data, which caused a big difference between �β
UNIF

 and β̂
OLS

. This significant difference 
is because Uniform Sampling Method ignores the different contribution of different data points for es-
timating β̂

OLS
. A good sampling strategy should take these differences into account. For example, if the 

subsampled points are spread out, that is, points in the upper right and lower left corners are included, 
then the fitted line will be much closer to the “truth.” Since those points in the upper and lower corner 
of Figure 1 are high leverage points, it is easy to understand the motivation of the leverage-based sam-
pling method discussed below.

3.2. Leverage Score and Basic Leverage Sampling Method

In the previous subsection, we mentioned that we needed to find the data points that are influential for 
fitting the regression line. In the statistical literature for model diagnostics, there exists the concept of 
leverage score to achieve a similar goal (Weisberg, 2005). For the ith data point (yi,Xi), we define the 

Algorithm 2: Uniform Sampling Method in Linear Model

Step 1 (Subsampling): Take a random sample of size r>p from the full data using a uniform sampling distribution and denote the 

subsample as y X
i i i

r
* *,{ }

=1
.

Step 2 (Model-fitting): Using the subsample to fit the least square, obtain the estimator �β
UNIF

 as follows: 

�β ββUNIF
argmin y X= −* *

2
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leverage score as 
∂

∂

ŷ

y
i

i

. Intuitively, if the leverage score is large, it means that a small disturbance in yi 

results in a big change in ŷ
i
, thus playing a crucial role in model diagnostics.

There is also an elegant explanation for this definition. In Section 2.1, we mentioned about the “hat 
matrix” H which follows the relationship ŷ Hy= , i.e.

ˆ

ˆ

ˆ
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Figure 1. Example of the failure of the Uniform Sampling Method. For i=1,…,2000, y=-0.5+xi+εi, where 
xi is generated from t-distribution with df =6 and εi~N(0,1). The small dots are the original data points; 
big dots are the subsample points. The solid line represents the fitted regression line of the full data, and 
the dashed line represents the fitted regression line of the subsamples.
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Using this relationship, the leverage score can be written as:

∂

∂
=
∂








∂
=

=∑ˆ
.

y

y

h y

y
hi

i

j

n

ij j

i
ii

1
 (6)

Hence, the leverage score for the ith data point is just the ith diagonal element of hat matrix H.
Also, it is easy to show that Var e Var y y h

i i i ii( ) = −( ) = −( )ˆ 1 2σ , which means the high leverage 
points have small variances of residuals and that in general 0<hii<1. This result shows that the regression 
line tends to pass close to these data points with high leverage scores, indicating their large impact on 
the regression line. For example, in the univariate linear model, where the design matrix X can be writ-
ten as

X

x

x

x
n

=
… …

























1

1

1

1

2  (7)

h
n

x x

x x
ii

i

j

n

j

= +
−( )
−( )

=∑
1

2

1

2
,  

where x
x

n
j
n

j=
∑ =1 . In this particular case, the data points with large leverage scores are the data points 

far away from the mean of the full data, like the points in the upper right corner and lower left corner of 
Figure 1, confirming our previous guess. This result also meets the general understanding of a high 
influential point.

When the model matrix X is full column rank, the sum of all the leverage scores of the full data is 

just the dimension p. Hence, 0 1< = <π
i
BLEV ii

h

p
� with ∑ ==i

n
i
BLEV

1
1π , since

∑ = ( ) = ( )





 = ( )








=

− −

i
n

ii
T T T Th tr H tr X X X X tr X X X X

1

1 1

 = ( ) =tr I p
p

 (8)

These facts motivate the Basic Leverage Sampling Method (BLEV) discussed in Algorithm 3.
This Basic Leverage Sampling Method is another application of the General Sampling Method, in 

which the sampling probability are substituted by the probability distribution constructed from leverage 
scores. The computational complexity for BLEV is O(np2). Same as �β

UNIF
, �β

BLEV
is also a conditional 

asymptotically unbiased estimator of �β
OLS

 (Ma et al., 2014, Ma et al., 2015). An example of the BLEV 
is shown in Figure 3.
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Compared to Figure 1, the advantage of BLEV is obvious, since the fitted regression line of the 
leverage sub-samples is very close to the fitted regression line of the full data. The probability that this 
scenario occurs equals to the multiplication of the leverage sampling probabilities for the sub-samples, 
which is 2×10-30 in this case. This sub-sample is relatively unlikely to be sampled from uniform prob-
ability distribution, since (1/2000)10=1×10-33. In contrast, the sub-sample in Figure 1 is relatively unlikely 
to be sampled from leverage probability distribution, since the multiplication of the leverage sampling 
probabilities for the sub-samples in Figure 1 equals to 3.7×10-37, which is much smaller than (1/2000)10.

From the example in Figure 1 and Figure 3, the Basic Leverage Sampling Method can be utilized to 
solve linear model problems in big data intuitively.

Figure 2. Illustration of the leverage scores of the data points from the example in Figure 1. In a univari-
ate linear model, the data points far away from the mean have higher leverage scores.

Algorithm 3: Basic Leverage Sampling Method in Linear Model

Step 1 (Subsampling): Take a random sample of size r>p from the full data using the probability distribution 

π
i
BLEV

i

n
ii

i

n
h

p
{ } =












=

=
1

1

 and denote it as y X
i i i

r
* *,{ }

=1
. Record the corresponding sampling probability as π

i i

r
*{ }
=1

.

Step 2 (Model-fitting): Use the subsample to fit a weighted least square with weight 1
1

/ *π
i i

r{ }
=

 and obtain the estimator �β
BLEV

.
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3.3. Disadvantage of Basic Leverage Sampling Method

From the observation in the last subsection, one may assume that BLEV should always have better 
performance than UNIF. This seems to be true in algorithmic point of view. Prior work has adopted an 
algorithmic perspective that focuses on providing worst-case run-time bounds for different inputs. It has 
been shown that leverage-based sampling provides worst-case algorithm results that are uniformly su-
perior to the uniform sampling method (Drineas et al., 2006). However, in a statistical point of view, 
neither BLEV nor UNIF dominates the other (Ma et al., 2014, Ma et al., 2015). Actually, it has been 
shown that the variance of estimator �β

BLEV
 may be inflated by extremely small leverage scores. This 

could happen when the data distribution has a heavy tail, e.g. a Student-t distribution with small degree 
of freedom or Cauchy distribution. In such cases, the data points on the tail tend to have enormous lever-
age scores which dominate the others. For example, consider the case when the dataset has a different 

Figure 3. An example of the Basic Leverage Sampling Method. The data are the same that in Figure 1. 
The small dots are the original data; the big dots are the sample. The solid line represents the fitted re-
gression line of the full data, and the dashed line represents the fitted regression line of the subsamples.
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distribution in each dimension, the Basic Leverage Sampling Method may fail to capture all the high-
influential points. Such a case can be illustrated by the example in Figure 4.

As shown in Figure 4, the high-leverage-score points are only the high influential points for the first 
dimension, but not for the second dimension. Hence, the subsamples chosen by BLEV are inadequate 
to predict the second dimension of �β

OLS
, leading to a bad estimator �β

BLEV
. That indicates that simply 

using the leverage score as a sampling probability seems too aggressive.
Furthermore, it poses the interesting question of if we could try different subsampling probabilities 

and propose even better sampling method than BLEV. These will be discussed in the next section.

4. NOVEL LEVERAGING-BASED SAMPLING METHOD

In this section, we will introduce two novel Leverage-Based Sampling Methods which aims at overcom-
ing the drawback of BLEV.

Figure 4. Illustration of the leverage scores of the 1000 data points from a two-dimensional data set, 
which the first dimension comes from a Student-t distribution with degree of freedom 4 and the second 
dimension comes from a standard normal distribution.
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4.1. Shrinkage Leveraging Method

Recall that we want to give large sampling probabilities to the points with large leverage scores since 
these points are more influential to the fitted regression line. Using the leverage score as the sampling 
probability is a simple way to accomplish this goal, which generates the Basic Leverage Sampling Method.

In fact, as long as we preserve the ranking of the leverage score, we can still take the benefit of the 
influential points. We can achieve this goal by comparison between applying the following relatively 
conservative probability distribution SLEV (shrinkage leveraging) and applying the basic leverage score 

distribution. Let π
i
BLEV  denote a distribution defined by the basic leverage scores (i.e., π

i
BLEV ii

h

p
= ) 

and let π
i
UNIF

n
=

1  denote the uniform distribution; then the sampling probabilities for the shrinkage 

leveraging can be written as:

π απ α π α
i
SLEV

i
BLEV

i
UNIF= + −( ) ∈ ( )1 0 1, ,  (9)

for i=1,2,…,n.
Applying these sampling probabilities leads us to the Shrinkage Leverage Sampling Method (SLEV).
The computational complexity for SLEV is O(np2). The performance of the Shrinkage Leverage 

Sampling Method depends on how we choose the shrinkage index α. If we choose α very close to 0 or 
1, it will just degenerate into the uniform sampling method or basic leverage sampling method. How-
ever, if we choose the α more wisely, the SLEV method can overcome the large variance problem. The 
recommended value of α is falling in the interval [0.8, 0.9] (Ma et al., 2014, Ma et al., 2015). Under 
this situation, the SLEV can preserve the ranking of the leverage score without containing extremely 
large or extremely small sampling probabilities, compared to Basic Leverage Sampling probabilities. 
Furthermore, all these observations also hold if we use the approximate leverage score instead of using 
the exact leverage score in the method. For these reasons, the SLEV procedure with approximate lever-
age score is the most recommended method for linear models in big data.

4.2. Unweighted Leverage Sampling Method

Before introducing the Unweighted Leverage Sampling Method, we need to discuss the criteria for judg-
ing whether a particular sampling method is good or not. From a statistical point of view, we need a 

Algorithm 4: Shrinkage Leverage Sampling Method in Linear Model

Step 1 (Subsampling): Take a random sample of size r>p from the full data using the probability distribution π
i
SLEV

i

n{ }
=1

 and denote 

it as y X
i i i

r
* *,{ }

=1
. Record the corresponding sampling probability as π

i i

r
*{ }
=1

.

Step 2 (Model-fitting): Use the subsample to fit a weighted least square with weight 1
1

/ *π
i i

r{ }
=

 and obtain the estimator �β
SLEV

.
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comprehensive criterion to consider both bias and variance simultaneously. The mean squared error 
(MSE) is a reasonable choice. The formula for MSE for �β  is given below.

MSE y E
OLS

� �β β β| ˆ( ) = −
2

 (10)

Some decomposition analysis will give that

MSE Bias tr Var� � �β β β( ) = ( ) + ( )( )
2

�  (11)

where we denote Bias E
OLS

� �β β β( ) = ( )− ˆ . This decomposition is sometimes termed bias-variance 
decomposition in the statistics literature.

We know that the estimator generated by UNIF, BLEV and SLEV are all unbiased estimators. This 
is a very appealing property, and we only need to focus on minimizing the variance of the estimator. 
However, if our goal is to minimize MSE, it is not necessary to let the estimator be asymptotically unbi-
ased. In other words, an estimator with bias can still be a good estimator if it has a relatively small bias 
but significantly smaller variance. This is also the main motivation of Unweighted Leverage Sampling 
Method discussed in Algorithm 5.

It could be theoretically shown that the unweighted leverage estimator is an unbiased estimator to β 
as well as a conditionally unbiased estimator to the weighted least square estimator β̂

WLS
 conditional 

on given data (Ma et al., 2014, Ma et al., 2015). As a conditionally biased estimator, β̂
WLS

 is rarely a 
concern from an algorithmic perspective. However, from a statistician’s point of view, the disadvantage 
brought by biasedness can be mitigated by the advantage by a significant decrease in variance if our 
main goal is to minimize MSE. This is exactly the main advantage of an unweighted leverage estimator 
compared to the Basic Leverage Sampling Method, i.e. it overcomes the inflated variance problem.

5. SOFTWARE IMPLEMENTATION

The key step of our BLEV, SLEV, LEVUNW method is the calculation of leverage scores a design 
matrix, i.e. applying SVD on it. Almost all the popular statistical software packages are available for 
this task such as command svd in R base, command svd in MATLAB, subroutine SVD from SAS. The 

Algorithm 5: Unweighted Leverage Sampling Method in Linear Model

Step 1 (Subsampling): Take a random sample of size r>p from the full data, probability distribution π
i
LEVUNW

i

n
ii

i

n
h

p
{ } =












=

=
1

1

 

and denote it as y X
i i i

r
* *,{ }

=1
.

Step 2 (Model-fitting): Use the subsample to fit an ordinary least square and obtain the estimator �β
LEVUNW

.
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Box 2. R Code

################################################################## 
# First, we construct a univariate linear model and set the true 
# beta vector as (10,5). 
################################################################## 
setseed=100 
set.seed(setseed) 
n = 10000 
xx = rnorm(n) 
y = 10+ 5*xx+ rnorm(n) 
################################################################## 
# Second, we construct the predictor matrix X.
################################################################## 
X = cbind(1,xx) 
################################################################## 
# Third, we perform SVD for matrix X. Then, we extract the U
# matrix of X. Using U, we extract the leverage scores of all 
#observations and put in vector hii. 
################################################################## 
svdx = svd(X) 
U = svdx$u 
hii = apply(U,1,crossprod) 
################################################################## 
# We construct subsampling probability distribution for BLEV and 
# SLEV. 
################################################################## 
blev.prob = hii/2 
slev.prob = hii/2*0.9+ 1/n*0.1 
################################################################## 
# We set the subsample size r. 
################################################################## 
r = 100 
################################################################## 
# Next, perform subsampling using hii as subsampling probability 
# distribution and record the subsampling probabilities of the 
# subsampled data 
################################################################## 
blev.ind = sample.int(n=n,size=r,replace=TRUE,prob=blev.prob) 
slev.ind = sample.int(n=n,size=r,replace=TRUE,prob=slev.prob) 
y.blev = y[blev.ind] 
y.slev = y[slev.ind] 
xx.blev = X[blev.ind,] 
xx.slev = X[slev.ind,] 
wgt.blev = 1/blev.prob[blev.ind] 
wgt.slev = 1/slev.prob[slev.ind] 
################################################################## 
# Now perform WLS on the subsampled data for BLEV and SLEV, 
# perform OLS on the subsampled data for LEVUNW 
################################################################## 
lm.blev = lm(y.blev~xx.blev-1, weights = wgt.blev) 
lm.slev = lm(y.slev~xx.slev-1, weights = wgt.slev) 
lm.levunw = lm(y.blev~xx.blev-1) 
bt.blev = lm.blev$coefficients 
bt.slev = lm.slev$coefficients 
bt.levunw = lm.levunw$coefficients 
################################################################## 
# In order to evaluate the performance of these sampling methods, 
# we run the OLS for full data 
################################################################## 
lm.full = lm(y~X-1) 
summary(lm.full) 
bt = lm.full$coefficients 
################################################################## 
# Finally, we calculate the SE of estimator from this subsampled 
# data. 
################################################################## 
SE_blev = crossprod(bt-bt.blev) 
SE_slev = crossprod(bt-bt.slev) 
SE_levunw = crossprod(bt-bt.levunw)
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underlying source code for these procedures is all from LAPACK routines or equivalent. For illustration, 
we provide an R code.

Remark 3: When n gets large enough, calculating SVD poses a challenge in computer memory. In 
practice, QR decomposition is recommended instead of SVD in this case.

The order of computational cost of all the subsampling methods introduced in this chapter so far are 
dominated by the SVD of original data matrix X, which will be O(np2) using one of the earliest algorithms 
(Golub and Van Loan, 2012) and this is the same magnitude of the time order for solving the original 
linear problem with full data. Fortunately, there already exists fast approximation algorithms for leverage 
scores that can be used to achieve this goal, which decreases the running time from O(np2) to o(np2) 
(Drineas et al., 2012). In specific, given an arbitrary n×p matrix X such that n≫p, and an error param-
eter ε∈(0,1), the main algorithm of (Drineas et al., 2012) is based on random projection, and it computes 
l
i
�  as an approximation of the hii in the sense that  l h h

i ii ii
�− ≤   for all i=1,…,n. This algorithm runs 

in roughly O(nplog(p)/ε) time, which will be o(np2) under appropriate settings. See Blendenpik (Avron 
et al., 2010), LSRN (Meng et al., 2014) as well as (Gittens and Mahoney, 2013) for further upgrading 
of aforementioned random projection algorithms. It is documented in these studies that if the dimension 
of input matrix is at least as small as several thousand by several hundred, the run time of the leveraging-
based methods can be competitive compared to solving the original linear problem by QR decomposition 
or SVD with e.g. LAPACK.

6. DEMONSTRATION: TWO CASE STUDIES

To illustrate the performance of the sampling methods on real data, two datasets are considered: an 
Illumina HiSeq data set downloaded from TCGA (http://cancergenome.nih.gov) and the “YearPredic-
tionMSD” dataset, a subset of the Million Song Dataset (http://labrosa.ee.columbia.edu/millionsong/). 
The former has a strong linear pattern while the latter does not. This property of the dataset will influ-
ence the behavior of these methods.

Coefficient estimates were obtained using four subsampling algorithms (UNIF, BLEV, SLEV(0.9) 
and LEVUNW) for five different subsampling size: 2p, 4p, 6p, 8p, 10p. The subsampling size is chosen 
based on the n=10p rule, which proposed by (Loeppky et al., 2012). For each subsample size, we take 
200 hundred subsamples and calculate estimates based on each of the subsampling algorithms. We then 
calculate the empirical conditional biases and variances with respect to the full sample least square estimate.

6.1. Illumina HiSeq Dataset

Considering an Illumina HiSeq data set downloaded from TCGA for 59 cancer patients which contain 
n=20,529 genes. Here, one patient’s data are randomly chosen as the response y and use the remaining 
patients’ data as the predictors through a linear model. Thus, the number of predictors in this setup is 
p=58. We first adopt a commonly used transformation for the counts data, i.e. log(X+ 1). After trans-
forming the original data, we fit a linear model for the entire data. The adjusted-R2 is 0.9879, which 
represents an almost perfect fit. Next, the dataset is fit to a linear model using subsampling methods with 
five different subsampling sizes. Figure 5 shows the summary of our results.
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In the left panel of Figure 5, we plot the empirical conditional squared biases of the four methods. 
Observe that BLEV and SLEV both have smaller squared biases than UNIF and LUVUNW, which in-
dicates that both BLEV and SLEV capture the main linear pattern of the whole dataset more efficiently 
than UNIF. As mentioned above, compared to β̂

OLS
, LUVUNW is a conditionally biased estimator. 

Thus, as the sample size becomes larger, the squared bias of LUVUNW does not decrease. Since the 
conditional variance, the dominant part of MSE, of LUVUNW is much smaller than that of UNIF, it 
still outperforms UNIF when MSE is our final consideration. In this example, BLEV and SLEV have 
almost the same performance and are consistently better than UNIF and LUVUNW. This is due to the 
strong linear pattern of the dataset. The phenomenon of a weak linear pattern of the dataset will be 
strongly influenced by the behavior of these sampling methods could be seen in the next example.

6.2. “YearPredictionMSD” Dataset

In this section, we consider the “YearPredictionMSD” dataset, which is a subset of the Million Song 
Dataset. This dataset includes 515,345 songs, with 12 features of “timbre.” We take these 12 features 
as well as 78 timbre covariances as predictors, i.e., 90 predictors in total. We take the year of release as 
the response and fit a linear model to this data set. We tried all four sampling methods on the dataset, 
and the summary of our results is shown in Figure 6.

The performance of the conditional squared bias of these four methods in this dataset has almost the 
same pattern as the performance in the Illumina dataset. Interestingly, in the middle panel, the graph shows 
that the conditional variance of LUVUNW is much better than all the other three methods, which also 
makes the MSE of LUVUNW decrease much faster than the other methods as the sample size increases. 
However, because of the large bias of LUVUNW, its best performance on MSE only shows up when 
the sample size is not too big compared to the entire dataset. The performance of BLEV and SLEV are 
still quite similar in this example, which is due to the lack of an extremely large leverage score in this 
dataset. As previously mentioned, if more influential points exist with leverage scores dominating the 
other data points, SLEV will be more robust than BLEV.

Figure 5. Empirical results for the Illumina HiSeq data set. The left panel is the empirical conditional 
squared biases of the UNIF, BLEV, SLEV, LEVUNW; middle panel is the empirical conditional vari-
ance; right panel is the empirical conditional MSE. Solid lines for UNIF; dash lines for BLEV; the thick 
dotted line for LEVUNW; the thin dotted line for SLEV with 𝛼= 0.9.
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7. SUMMARY

Sampling method, as an effective and general solution for big data problem, becomes more and more 
attractive. In this chapter, we focus on algorithm leveraging methods for solving large least-squares re-
gression problems. It is a recently proposed popular sampling method, shown to be efficient in sampling 
influential data points. We compared the performance between Uniform Sampling and Basic Leverage 
Sampling, then discussed two newly-proposed leverage-based algorithms, Shrinkage Leverage Sam-
pling Method (SLEV) and Leverage Unweighted Sampling Method (LEVUNW), aiming at minimizing 
MSE. Moreover, our case study provided a detailed evaluation of these algorithms on the real dataset. 
Based on the empirical results, we have shown that these two new algorithms, SLEV and LEVUNW, 
providing improved performance. However, there is no universal solution here. Based on the primary 
goal, careful consideration is needed before applying appropriate method. If the goal is to approximate, 
we suggest SLEV with either exact or approximate leverage scores. The reason is that SLEV results in 
much better conditional biases and variance compared to other existing methods according to empirical 
evidence. On the other hand, if our primary goal is to infer the true and most of the data does not have 
a relatively good linear pattern, or the sample size is much smaller than the entire data size, LEVUNW 
is recommended mainly due to its advantage in giving smaller variances. Finally, although not covered 
in this chapter, the leverage-based sampling method can also be applied to generalized linear models, 
time series models, variable selections, etc. A further refinement of the current methods and even brand 
new algorithms are under intensive development.
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