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ABSTRACT

This article considers a robust hierarchical Bayesianagugr to deal with random
effects of small area means when some of these effects agsdrame values, re-
sulting in outliers. In the presence of outliers, the staddray-Herriot model, used
for modeling area-level data, under normality assumptairandom effects may
overestimate the random effects variance, thus providisg than ideal shrinkage
towards the synthetic regression predictions and inhidpithe borrowing of infor-
mation. Even a small number of substantive outliers of raméffects results in
a large estimate of the random effects variance in the Fayidgienodel, thereby
achieving little shrinkage to the synthetic part of the maafdlittle reduction in
the posterior variance associated with the regular Bay@sasr for any of the
small areas. While the scale mixture of normal distribwi@rith a known mixing
distribution for the random effects has been found to becéffe in the presence
of outliers, the solution depends on the mixing distribnticAs a possible alter-
native solution to the problem, a two-component normal mixtmodel has been
proposed, based on non-informative priors on the modeamad parameters, re-
gression coefficients and the mixing probability. Data gsialand simulation stud-
ies based on real, simulated and synthetic data show an tadeanf the proposed
method over the standard Bayesian Fay-Herriot solutioivelgéiunder normality
of random effects.

Key words: Hierarchical Bayes; heavy-tail distribution; non-infaative priors;
robustness to outliers; small area estimation.

Introduction

Small area estimation methods are becoming increasingtylap among survey
practitioners. Reliable small area estimates are ofteicitgal by policy makers
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from both government and private sectors for planning, etarg and decision

making. In order to meet the growing demand for reliable sarala estimates, re-
searchers have developed methods that combine informfationsmall areas and
other related variables. Ghosh and Rao (1994), Rao (20@8) dnd Labhiri (2006),

Datta (2009) and Pfeffermann (2013) provided a compretiensiview of the re-

search in small area estimation.

The landmark paper by Fay and Herriot (1979) used the erapiBiayes (EB) ap-
proach (see, for example, Efron and Morris, 1973) and pojzeld model-based
small area estimation methods. Denoting the design-basect durvey estimator
of theith small area byy; and its auxiliary variable by;, anr x 1 vector, Fay and
Herriot (1979) introduced the model

Y=6+e, G6=xB+v, i=1..m (1.1)

Here 6 is a summary measure of the characteristic to be estimateddih small
area,g is the sampling error of the estimatygr and the random effectg denote
the model error measuring the departuredofrom its linear regression ox. It is
assumed thag, . .., e, are independent and normally distributed véth- N(O, D),
and are independent ©f, ..., vy, which are i.i.d.N(0,A). The sampling variances
Di’s are treated as known, but the model paramgieaadA are unknown. Random
effectsvi’s are also known as small area effects.

In this paper we focus on hierarchical Bayes (HB) methodsfea-level models.
The classical area-level Fay-Herriot model was primardyadoped as a frequentist
model, which was later given a Bayesian formulation (Rad32@tta et al. 2005).
Estimators obtained from the Fay-Herriot model are shgekastimators, i.e., a
weighted average of the direct estimator and the modelebsgathetic estimator,
and these weights depend on the model assumption. Dattalareh@012) gave
an extensive review of shrinkage estimation in the smak @stimation context.
Shrinkage estimators are primarily constructed to impsigadard estimators. For
instance, in the small area context model based shrinkaigea¢srs are constructed
to improve the precision of direct estimators such as theokamean or the Horvitz-
Thompson estimator. Datta and Lahiri (1995) discussed hailiecs can affect
shrinkage estimators, claiming that even a single outligy lead all the small area
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estimates to collapse to their corresponding direct estignd his phenomenon was
also mentioned in the context of estimation of multiple nakrnmeans under the
assumption of an exchangeable normal prior (cf. Efron andrisld971, Stein
1981, and Angers and Berger 1991). One or more substantilrersiconsiderably
inflate the standard estimator of model variance.

An overestimation of model variance due to one or more sobgeaoutliers prac-
tically results in no shrinkage of any of the direct estirsaiéthe small area means
to the synthetic regression estimator. This also limitsrétiction in the posterior
variances of the model-based estimates. To rectify thisleno, following the work
of Angers and Berger (1991), who used a Cauchy distributarriife small area
meang;, Datta and Lahiri (1995) recommended a broader class of/hmded dis-
tributions through a scale mixture of normal distributioi®iey showed that under
these assumptions, in the presence of substantive oy#&isators corresponding
to the outlying areas converge to their corresponding testimators but leave the
non-outlying areas less affected. One difficulty with thet laethod is that the mix-
ing distribution for the scale parameter is considered tkrnmsvn. For example, one
can usd-distribution for random effects, as in Xie et al. (2007). wéwer, in the
absence of any information regarding the degrees of freedamneeds to specify
a prior. Xie et al. (2007) assumed a gamma prior for the desgoé&eedom. The
hyperparameters involved in this gamma distribution nedeketspecified. Bell and
Huang (2006) argued that, under practical circumstante#etl information is ob-
tained from the data regarding the degrees of freedom, atekid they used several
fixed values for the degrees of freedom.

In order to avoid specifying the mixing distribution in theepious paragraph, in
this paper we propose a two-component normal mixture digtdn for the random
small area effects. Our model accommodates means for ogthtieas to come
from the distribution with a larger variance. This is a simpktension of the Fay-
Herriot model with a contaminated random effects distrduivith possibly small

proportion of areas having a larger model variance. Comtared models have
been extensively used in empirical evaluations of the robawpirical best linear
unbiased prediction (EBLUP) approach of Sinha and Rao (R0O0& consider an
HB approach by assigning non-subjective priors to the patars involved in the
model. Some components of these priors are improper, heageavide sufficient
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conditions for the posterior distribution to be proper.

In a recent article, Datta et al. (2011) demonstrated th#éhenpresence of good
covariatesy;, the variability of the small area meafBismay be accounted for well
by x;, and including a random effects in the model (1.1) may be unnecessary.
These authors test a null hypothesis of no random effectseirsnall area model
and if it is not rejected, they propose more accurate syictlestimators for the
small area means. In a more recent article, Datta and Mag8ab} argued that
even if the null hypothesis was rejected in this case, it ditel reasonable to expect
only a small fraction of the small areas means would not beately explained
by the covariates, and only these areas would require a macgmponent to the
regression model.

Using the HB approach, Datta and Mandal (2015) considerespkée and slab”
distribution for the random small area effects in order topmse a flexible balance
between the Fay and Herriot (1979) and Datta et al. (2011)etsodHowever, it
is often difficult to find reliable covariates that would dele the response well,
particularly, if the number of small areas is large. For sdatasets, not only the
test proposed by Datta et al. (2011) would suggest the ilclus the small area
effects, but also the model proposed by Datta and Mandabj20auld estimate the
probability of the existence of random effects as very highis would effectively
suggest the Fay-Herriot model, but, in reality, only a srpedportion of small areas
may not be adequately explained by a model with one siAglEhis would result in
an overestimation oA, thereby resulting in a poor fit, particularly when the numbe
of small areasn is large. Even if most of the small areas would require a rando
effects term in the regression model, it is more likely thayy@ small proportion of
small areas would need a bigger valué&\pénd a smaller value of the same would be
sufficient for other areas. In this paper, we assumeuhat. , vy, are independently
distributed with mean 0 and a two-component mixture of ndmisributions with
variance eitheA; or Ay(> A1). This model is potentially useful for handling large
outliers in small area means.

Bell and Huang (2006) presented an insightful discussionalising d-distribution
with a known d.f. to handle outliers in the Fay-Herriot mod&he theoretical re-
gression residuals from (1.1) consist of the sum of the sagekror and the model
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error, which are not individually observable. Bell and HggdB006) argued that a
residual may be an outlier, either due to the sampling enmrdh® model error. It
is difficult to distinguish between the scenarios of the damgperror outlier or the
model error outlier, since the data used in fitting the motldl)(cannot readily dis-
entangle the two cases. They explained that the consequeht®ese two types of
outliers are quite different. If the model erngris an outlier for some areas, then the
regression model (or synthetic estimation) is not goodHes¢ areas. In that case,
the direct estimatoY; should be used as the small area estimator. Datta and Lahiri
(1995) considered this case using a scale mixture of noristitdition. An alter-
native to this approach is proposed in the present articuth a two-component
normal mixture. Bell and Huang (2006) noted that, in the gnes of a model out-
lier, if the direct estimator also has large variabilityetthno satisfactory solution
exists. On the other hand, if the sampling erepis an outlier due to an under-
estimation of the variancBj, then the direct estimatof is not reliable; Bell and
Huang (2006) argued that the “synthetic estimatgdi3 may be used for prediction.
To address this issue, they proposeddistribution for the sampling distribution.
For further discussion, we refer to this article.

There is a substantive literature on the frequentist agbréa the robust estimation
of small area means in the presence of outliers. Ghosh e2@08] considered the
robust empirical Bayes estimation of small area means fea Bavel model. They
used the Huber'gs-function to limit the influence of outliers. For unit leveladels
Sinha and Rao (2009) and Chambers et al. (2014) proposedst rabdification of
EBLUPs of the finite population means of small areas. They ased the Huber's
W-function to limit the impact of outlier observations on testimators of model
parameters and the best linear unbiased predictors. Whitea&nd Rao (2009)
provided robust projective EBLUPSs (in the terminology ofaftbers et al. (2014))
of the finite population small area means, the latter grouputiiors discussed the
limitation of such predictors in terms of bias, and also & robust predictive
EBLUPs to remedy this concern.

This paper is organized as follows. In Section 2 we desctieeptoposed model
and discuss some properties of our new shrinkage estimaogection 3 we illus-
trate our method to estimate U.S. poverty rates for 3141 tesrbased on 5-year
estimates from the American Community Survey. The perfoicaaof the model,
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in comparison with the traditional Fay-Herriot model, isadissed in Section 4 and
Section 5. Section 6 provides a concluding discussion. Ailget proof of the
propriety of the posterior distribution is moved to the Apgix.

Two-component normal mixture model

Fay and Herriot (1979) proposed a model which has been éxégnssed in many

small area estimation applications to provide reliablénmeses of poverty and in-
come measures. While for regular data the model succesgftdduces accurate
shrinkage estimators of small area means, it breaks dowmeiprtesence of sub-
stantial outliers among small area means. In order to at¢douithe outliers, we

consider a two-component normal mixture extension of theHrarriot model. This

model is given by

yi=9|+37 6|:X|'TB+(1—d)V1i—|—&V2i,i:].,...,m, (21)

wheree, &, i, Vo are independently distributed with(& = 1|p) = 1—p, vqj ~
N(0,A1) andvy ~ N(0,Az). Asin (1.1),B is anr x 1 vector of regression param-
eters, and the sampling err@s. .., e, are independently normally distributed. To
complete our HB structure, we consider the following clagsriors,

(B, A1, A, p) = T8 (A, A2) DA A 21 (0< Ap < Ag < ). (2.2)

We use a uniform prior on the regression paramgt@nd the mixing proportion
p. For the prior on the variance parameters, we cha@nse 1 < a» suitably, and
we discuss the permissible choices of the valuez,adnd o, later. We impose the
restrictionA; < A, so that we do not have a label switching problem leading s no
identifiability. The area-specific random effects corregfing to the outlying areas
in the model are assumed to follow a normal distribution Watiger variance, which
remains the motivation behind imposing such a restrictithile for the parameter
B common to all the components of the mixture model, an imprapéorm prior

is reasonable, the prior fédy andA,, which are not common in all the components
of the mixing distributions, is required to be at lepattially proper. By partially
proper we mean that while the marginals are improper, camdik priors for A,
given A1, andA; given A, are proper. For this to hold for our class of priors for
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A1, A, it is necessary and sufficient thaf < 1 < a,. A partially proper prior is
required for the parameters that are not common to all coemgsof a Bayesian
mixture model (cf. Scott and Berger, 2006).

Since the Bayesian model involves improper priors, in TegoR.1 below we pro-
vide sufficient conditions that ensure the resulting pastetistribution from the
proposed model will be proper. A detailed proof of Theorethi2.given in Sec-
tion 6.

Theorem 2.1 The resulting posterior distribution from model (2.1) ahé prior in
(2.2) will be proper if (&) m>r+2(2— a3 —az) and (b)2—a; — ay > 0.

The sufficient conditions in Theorem 2.1 provide a set of pesible values foor;
and a». In conjunction with the condition 2 a; — az > 0, the conditiona, > 1
impliesa; < 1. We noted earlier that the last two conditions are necgdealicit
partially proper priors. The special cagg= 0 is feasible, which corresponds to a
uniform prior, provided Xk a» < 2. However, it is not possible to assign a uniform
prior onAy. If ay = 3, then 1< a2 < 3. Also, for mixture models, Jeffreys’ prior
has no closed-form expression to work with.

Our choice of a prior for the mixing parameteiis Uniform(0,1). We can modify
this prior if subjective information is available. If pastperience in an application
suggests any information regarding the proportion of thitymg areas, it can be
incorporated in the model by modifying the prior fpr Sufficient conditions for
the propriety of the posterior density will remain unchahg&or instance, if the
model is modified with the assumption thatfollows a knownBetadistribution,
the sufficient conditions provided in Theorem 2.1 will remadtact.

It is well-known that even a single substantial outlier witllapse shrinkage esti-
mators of allé’s based on the model (1.1) to the direct estimaipis (see Dey
and Berger, 1983; Stein, 1981). As a result, model-basachasirs will fail to
borrow strength from other small areas. To protect agaimist add behaviour,
Angers and Berger (1991), and Datta and Lahiri (1995) sugdesrobust shrinkage
model. These authors used a suitable scale mixture of nalisteabutions to model

a long-tail distribution of the’s. These methods assume the knowledge of the
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scale mixing distribution, which may not be available. Thegose of our mixture
model proposed in (2.1) is to provide an alternative sofutltat does not require
the knowledge of the mixing distribution and to facilitatertowing information
among non-outlying observations in the presence of som&taut/e outliers.

Below we discuss a heuristic comparison of the shrinkagpauty of the Bayes es-
timators of6 under the Fay-Herriot model and our proposed model, in thegnce
of substantial outliers. For the Fay-Herriot model, giviemvtalues of the parameters
B andA, an estimator o8 is

D; -
GIFH :yi_.—(yi—xlTB), i=1...,m (2.3)

In the presence of outliers, the frequentist estimatoré @fill be large, and the
posterior density oA will have a long right tail, which will also result in a large
Bayesian estimator oA. Consequently, an estimate of the shrinkage coefficient
Di/(Di+A) will be rather small, and the Bayes or the EB estimatd efill borrow

little from its synthetic regression prediction and it wibllapse to direct estimator

y; for all i.

We now argue that the proposed mixture model is more flexitetain shrinkage
of the non-outlying observations in the presence of owtlieetE (6|3,A1, A2, p,Y)
= 6iMiX' USing iterated eXpe(:tz-:“:id:l_ﬂ(el ‘B7A17A27 p, y) = E[E(el |BvAlaA27 da p, y)‘

DiX' B+ A 5V
B, A1,A2, p,y|, and after noting the (6 3,A1,A2,&,p,Y) = DX B+ Auia¥
Di +A1+d

P(& = 0|BvAlvA27 pvy)l we get

oM —yi— (o ) Bt (e ) = B) | =X B),  (24)
(

1ﬁi:

Di+A Di+A;
where
p 1 (=X B)?
~ (Di+A))? exp{ 2 (Dit+A) } 2.5)
b = — a2 —— )
p _10i—%'B) (1-p) _1i—XB)
(Di+A1)? eXp{ 2 Dith) }+ (Di+A9)? eXp{ 2 DFAe) }

fori=1,...,m. Inthe presence of substantially large outligis,— x' 3)2 and A,
are expected to be high, heneéd = 0|3,A1,A2, p,Yi) = 0. This will result in the
second shrinkage term within square brackets in (2.4) todmeirthnt. However,
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since the posterior distribution @6 has a long tail, the shrinkage coefficient asso-
ciated with the second component will be small & ~ v, i.e., if thei" area is
outlying then the small area estimator based on this modebwivery close to its
direct estimator. On the other hand, for any non-outlyirepap; will be away from

0, and their shrinkages will be less impacted by the outliers

Data Analysis

We illustrate our proposed methodology by analysing a ratd dbtained from the
“American Fact Finder” website maintained by the US Censuse8u. The data
set contains 5-year ACS estimates of the overall povergsriar 3141 US coun-
ties along with their associated design-based standavtseithe county identifiers
are not available for confidentiality reasons. In order t@rove direct design-
based estimates, government agencies implement stéte-aft small area estima-
tion methods to produce model-based estimates using ayxiiata. For poverty
estimation, the domain-level tax data are typically useduwasliary information.
However, tax data are not available for public use, due tal leggtrictions. In our
analysis we use the foodstamp participation rate as ourantiiary variable (the
correlation between the foodstamp participation rate aedterall poverty rate is
0.81). Initially we fit the Fay-Herriot model (1.1) with thestricted maximum like-
lihood method (REML) as well as the hierarchical BayesiaB)hhethod, assuming
flat priors for regression and variance parameter. The REMLBayes estimates
of the model parameters are very cloS8EML = (0.056,0.634)T, AREML — 0,0009
and3Ba¥es— (0.051,0.634), ABaves— 0.0009.

Table 1: HB estimates of model parameters (for the ACS county leveépy rates
data)

Posterior  Posterior Posterior Quantiles
Parameter Mean sd 5%  Median 975%
B1 0.0465 0.0013 0.0440 0.0465 0.0491
B 0.6605 0.0075 0.6459 0.6607 0.6748
Ay 0.00054 0.00003 0.00049 0.00054 0.00059
Ao 0.00619  0.00103 0.00454 0.00609 0.00854

p 0.0725 0.0237 0.0470 0.0704 0.1037
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Figure 1: Analysis of the American Community Survey data

We have applied the proposed method to this data set and tbparesults in Ta-
ble 1. Our choices afi; anda; are 03 and 13 respectively. We have also performed
further analysis with other choices af anda, within the feasible range, but the
results were not considerably different. From Table 1, we that the posterior
mean ofAx(= 0.00619) is almost ten times larger than thafgf= 0.00054). In ad-
dition, the estimatg = 0.07 indicates that there are about 7% of small areas which
have much larger area specific variability compared to thprita The outlying
areas can be identified by computing the Bayes estimatessténpmr probabilities
P(& = 1]y). We plot the estimates of these probabilities for each ardagure 1.

It shows that although most areas have low probabilitiesagirtyg high random ef-
fects, some of them have higher chances of having a largabits in the model
error or the random small area effects. According to ounaislapproximately 7%
(221 out of 3141) of small areas have the posterior proltg#id = 1)y) > 0.15,

and approximately .B% (40 out of 3141) of small areas have the posterior proba-
bility P(& = 1]y) > 0.9.
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Exploration of the shrinkage coefficients

We compare the shrinkage coefficients resulting from thegsed method with
those resulting from the standard Fay-Herriot model. Byusations we demon-
strate that the proposed method usually provides betténksige than the Fay-
Herriot method in the presence of outliers in the data. Onother hand, simu-
lated data from the standard Fay-Herriot model yield stagekcoefficients based
on the proposed model that are very similar to those basdukedrety-Herriot model.
These two simulations, presented in Figure 2 essentiatiwshe robustness of the
proposed method to outliers.

We mentioned in Section 2 that the proposed method is exghéaterovide better
overall shrinkage than Fay-Herriot method in the preseriautiers. In order to
demonstrate this property of the model, we conduct thewiatig simulations. We
replace the direct estimates of the first 10% of small arediseoflata by simulated
values and retain the rest of the data set intact. The punipdseartificially con-
taminate the data set. We generate the direct estimate® dirsh 10% of small
areas from the model (1.1). We use the sampling variancdgeeétareas to gener-
ate the corresponding sampling errors. We use the estimegeglssion parameters
B = (0.06,0.6)" and model variance.0009 obtained from the Fay-Herriot analysis
of the original data, using the Prasad-Rao method. We use tin@del parameter
values and the values of the auxiliary variables from theé¥é df small areas to
retain the mean structure and variability of the small areams which are nearly
similar to the original population. We introduce outliehsdugh the use of a heavy
tail distribution or large model variance for random effeedRandom small area ef-
fects are generated from (&)~ t1, (b) vi ~ t5, (C) Vi ~ t3, with proper scaling for
each and (dy; ~ N(0,5? x a?). Note thatt; distribution is the Cauchy distribution
which does not have a variance (indeed it does not have a nitban)eWe rescale
0.75

the draws fronty, t, andts, multiplying them by the adjusting factos;+a, where

075
No.75 andT(f;5 are the 78 percentile ofN(0,1?) andt (for a specified df) respec-

tively. By multiplying the draws by this adjusting factorewntend to match the
inter-quartile range of draws from thedistribution to the inter-quartile range of a
N(0,a?) distribution. Since the Prasad-Rao estimate of the randteute variance
based on the original data isOD09, we choose? = 0.0009 in order to maintain
consistency.



12 A. Chakraborty, G. S. Datta, A. Mandal: A two-componembred . . .

RN IREIEITInE
g ; ;E ;j
L Dl D8 [

L == o LT

Proposed  Fey-Herriot Proposed  Fey-Heriot Proposed - Fey-Herriot Proposed  Fey-Herriot Proposed  Fey-Heriot
(@) (b) (€) (d) (€)

Figure 2: Boxplots of the estimated shrinkage coefficients for twdoust In
plots (a)-(d), data are partially simulated for some small areas byvdrag random
effects from (a)1t (b) to, (c) t3, (each of (a)-(c) scale adjusted) and (d) (9,5 x
(0.03)?). In plot (e), we fully simulate data for all areas by drawirandom effects
from N(0, (0.03)?).

We apply the proposed method, as well as the Fay-Herriotodetind compare the
estimates of shrinkage coefficients in Figures 2 and 3. Wdrsae Figure 3 that
when we patrtially contaminate the data set using (a) reed¢alCauchy) and (d)
N(0,5% x (0.03)?), the overall shrinkage obtained from the proposed modeiris ¢
siderably higher than the overall shrinkage obtained froeregular Fay-Herriot
method. This result shows the flexibility of the proposed slad borrowing in-
formation from other areas when outliers in the random &fface present. Panels
(b), (c) and (e) of Figure 2 show that the proposed methodped similarly to the
Fay-Herriot method when the departure of the random effdistabution from the
normal is moderate or none.
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Figure 3: Histograms of the estimated shrinkage coefficients of tlensthods
when the data are partially simulated by drawing randomatfférom (a) t, (b) to,
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Performance of the proposed method

In order to evaluate the performance of the proposed modstribed in Section 2,
we conduct a simulation study. This analysis is based onithelated data sets
generated under different settings. For eack 100, 500 and 1000, we generated
100 data sets. Here we set= 2, x = (1,x;)" and generaten copies ofx; from
N(10, (v/2)?). For each choice ah, the set of covariates is generated exactly once
and used for all 100 data sets. Our choicg8a$ 8 = (20,1)". The sampling error
g’s are generated fro(0,D;), i = 1,...,m, whereD;’s are from the se{0.5, 1,

15, 2, 25, 3, 35, 4, 45, 5}, and each value in the set is allocated to the same
number of small areas. Random effects in model (1.1) arergeteunder three
different settings:

vi ~N(0,1?), (5.1)
Vi ~ (1— &)N(0,1%) + &N(0,5%), and (5.2)
Vi ~ 13, (5.3)

wherei = 1,...,m. For the normal-mixture setup (5.2), we get= 1 for eachi
multiple of 5 and keep the rest of tlig= 0, the simulated data sets contain 20%
of observations from the normal distribution with a variaraf 25. Based on the
generated set of’s , we compute both thé’s andy;’s by (1.1). For each of 100
simulated data sets for each setting, we preflistbased on the Fay-Herriot model
and the proposed area-level normal-mixture model. We neaise performance of
each prediction method by computing the (empirical) mearaseg error (MSE)=
%E (6 — 6)2, the mean absolute error (MAE}FI——E |6 — 8], the mean relative

m
squared error (MRSE)-1L (6 9) and the mean relative absolute error (MRAE)=
1

=~ Z 15-8| 9' , whereg's are true andg’s are estimated small area means (for our

S|mulat|on setup, all thé’s are positive). These empirical deviation measures are
typically used in the small area estimation literature tmpare the accuracy of
various estimation methods (Rao, 2003). For each simuliéaset, we compute
MSE, MAE, MRAE and MRSE for two different methods and reptw faverage
values based on all simulated data sets. The results of tindadion study are
presented in Tables 2 and 3. In Table 2 we report the MSE and B#&En Figure 4
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we plot the MRAE and MRSE based on the overall simulationystiidble 3 shows

a more detailed result when tiwgs are drawn according to equation (5.2). From
Table 3 we can compare the performance of the two predictiethoadls for outlying
areas (random effects drawn fra{0,5%)) and non-outlying areas (random effects
drawn fromN(0,12)), separately. The simulation results indicate that the@psed
method tends to perform better than the Fay-Herriot methoehvwhe possibility of
the presence of outliers is high, and performs similarheothise.

Table 2: Comparison of the methods based on the simulated MSE and MAE o
prediction. The results are based on 100 simulated data sets

m=100 m=500 m=1000
Scenario Proposed FH Proposed FH Proposed FH
(5.1) Normal MSE 0.72 0.71 0.69 0.69 0.68 0.68
' MAE 0.67 0.67 0.66 0.66 0.66 0.65
(5.2) Mixture MSE 1.48 1.75 1.49 1.81 1.30 1.87
' MAE 0.86 1.01 0.85 0.98 0.84 1.04
(5.3)t MSE 1.14 1.27 1.01 1.20 1.14 1.30
278 MAE 0.83 0.84 0.79 0.81 0.80 0.84
MRSE MRAE
) H Normal ‘E ) ® Normal
o » B Normal Mixture| - B Normal Mixture
S g - B twith df=3 e . B twith df=3
o o - ‘ o g | e
° .. L S e
3 e ot £
g S -
S s 8
Q B, 2 S
=1 o e - =1
K o
[ i SR
5 £
- S e—_—

100

500

Number of small areas (m)

(@)

1000

500

Number of small areas (m)

(b)

1000

Figure 4: (a) The mean relative squared error (MRSE) and (b) the mekative
absolute error (MRAE) based dibOsimulated data sets; A dotted line for the Fay-
Herriot method and a solid line for the proposed method.
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Table 3: Comparison of the methods based on the simulated MSE, MAESER
and MRAE of prediction. The results are based on 100 simdildé#a sets. The
performance of the methods is compared separately foringtBnd non-outlying
areas based on the simulation design.

Scenario (5.2) Mixture

m=100 m=500 m=1000

Proposed FH Proposed FH Proposed FH

MSE Ar=1%2 0.90 1.26 0.80 1.06 0.80 1.32
Ar=5% 3.39 3.69 4.25 4.80 3.28 4.03

MAE A=1° 0.73 0.88 0.69 0.82 0.70 0.91
Ay =52 1.43 1.47 1.49 1.61 1.39 1.59

Ai=1° 0.10 0.14 0.09 0.12 0.09 0.15

100<MRSE Ar=5% 0.3 0.50 0.53 0.56 0.44 0.61
A1=1% 0.25 0.30 0.23 0.27 0.24 0.30

10<MRAE Ay =52 0.50 0.52 0.51 0.54 0.49 0.57

Discussion

In this paper, we propose a robust alternative to the Fayibienodel. The pro-
posed hierarchical Bayesian estimation procedure igysitfarward. Another ro-
bust alternative is &distribution for the random effects, which requires imh@tion
regarding the degrees of freedom. Xie et al. (2007) propaseéthod to estimate
the degrees of freedom. However, Bell and Huang pointedhatitanly a very lim-
ited information could be extracted from the data regardiegdegrees of freedom
parameter. We propose a method based on non-informatiges gar the param-
eters. We provide sufficient conditions for the proprietytlté resulting posterior
distributions.

Model-based small area estimates depend on the accurdog ohtlerlying model
assumptions. Larger values of the area specific randomt&ffieay be caused by
a poor choice of the linking model or the lack of predictivealiy of the auxil-
iary variables. If the model-based estimates of the areafspeandom effects are
significantly larger for some areas compared to the othesarieis probably mean-
ingful to retain the direct estimates instead of the moaelelnl estimates for those
areas to avoid possible inaccuracy. Nevertheless, wediheutautious in this rec-
ommendation if there is any indication that the samplingavare is underestimated.



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 17

Datta and Lahiri (1995) recommended heavy-tailed priorsrdmdom effects by
emphasizing the fact that estimators obtained by usingetpeisrs were similar
to direct estimators for the areas with extreme observatidiowever, the estima-
tors for non-outlying areas should shrink direct estimgmtoore towards synthetic
estimators. Also, the magnitude of this shrinkage may deémenthe quality of

the auxiliary information. While for an outlying obsenati our model limits the

shrinkage of the Bayes predictor to the synthetic estimdtornon-outlying ob-

servations it enables the Bayes predictors to retain thekstge to the synthetic
estimator when the regression model provides a good fit.
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Appendix

Gibbs sampling for the proposed model

In order to apply our model, we use Gibbs sampling. We delinedet of full
conditional distributions from the posterior joint degsif 8 = (6y,...,6m)", B =
(Bi,...,B:)", 8 =(01,...,6m)", A, A2 andp, which is given by

(6, B,A1,A2,0,ply) O {]r__nlEXp{_(yi Z_D?I)Z}}[ml [pa(l— )0

ol

X {\/% xexp{_(el_TiB)z}}l_a]

x ATMA92 x 1(0 < Ay < Ap). (6.1)

From (6.1), we get the following full conditional distrilbons:

ind \ (DX B+Ao5Yi  Difsg
) 618.ALA.5 py ™ N(— :

),i:l,...,m;

(1) B|6,A1,A2,3,p,y ~N (Gl [E A2_1§xi6‘.] ,Gl> , whereG is given by
iZ1

D A1 uoT
iglAz’dXiXi'

(1) IO, B,Ar. Ao, 5,y ~ Beta(E S+im_ % a+1);
i=1 i=1

(IV) AqlAz6,B,5,p,y has the pdffy (A1), where,

—(o+3y" 3 m el_ TB)?
fl(Al) DAl( +Z|71 Z)exp{_21W}l(Al<A2),

(V) A2|A1,6,B,9,p,y has the pdffa(A2), where,

m (- m — — X 2
fZ(AZ) DA;(G2+Zi:1< ZQ))eXp{—z (1 d)(ei X;rB) }I(Al <A2),

i£1 2A;

(Vl) Fori=1,...,m, &/6,08,A1,A2,p,y are independent with
P (6 B)*
Fexp{ - CERY
P(d = 1|97B7 pay) = p (9]7)(1]'5)2 (17p) (9|*X1TB)2 :
e e
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Our goal is to estimaté, i.e., small area mean for the area,i = 1,...,m We
implement Gibbs sampling using the conditional distridag (1)-(VI) in order to
find posterior means and standard deviation§'sf Conditional distribution (1V)
and (V) may not have always admit a closed form expression.

Proof of Theorem 2.1

Note that under the mixture model, the likelihood functidrihe® model parameters
B, A1, A; and p based on the marginal distributionyf, . .., ym is given by

. =X B)? 1 =X B)?

_ p 2(Ai+Di) 27 P) o 2(A2+Dj)
L(B,A1,A2, p) CXD[(Al—i—Di)%e 1 +(A2+Di)%e )
(6.2)

whereC is a generic positive constant not depending on the modelnpaters.
Suppose for < a< b < o we havea<D; <b,i=1,...,m Since(A;+b) >
(A1+Dj) > (a/b)(A1+b), (A2 +b) > (A2 +Dj) > (a/b)(Ax + b), from (6.2)

(yi —x B)? (yi —x B)?

1P o 2A+b) (AP 2R+ D)
L(B,Al,Az,p)<C><i|1[(Al+b)%e 1 +(A2+b)%e 2 ]

(6.3)

Fork=0,1,---.m, let B, = {S(lk),ﬁk)} be an arbitrary partition of1,2,--- ,m},
wheresﬁk) hask elements an@k) hasm—k = | (say) elements. Let?, denote all
(%) collections of{Sflk),Sék)}. Then, expanding the product of the right hand side
of (6.3), we get

L WX X )
pt(1—p)™*e e’ 2(Ar+b) S’ 2(Ar+b)

m
L(BvAlvAZv p) <C m—
k;ﬂ;@k (A1+Db)2(Ag+b)"z"

(6.4)

To show propriety of the posterior density, we show inteiitslof each of the 2
summands on the right hand side of (6.4) with respect to tioe given in (2.2).

We first consider the case= 0. Here %, has one element ar@? is a null set. Let
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Q(y) =y' [l = X(XTX)"1XT]y. In this case, the integrai® of the term is

n Wi —X B)° —X B)?

m 7>
2e 2%2dAy,  (sincea; < 1)

" 2 A

= C/ Az"” “(A+b) Fe
< Cf AT Hda < (6.5)
JO

ifand only if 2— a1 — a2 >0 and 1-a; —ax — ™5 < —1, which are equivalent
to the conditions outlined in Theorem 2.1.

For the cas& = m, again there is one term iz, and the resulting integral, pro-
ceeding as in(?, is bounded above by

C / AT (ALD) T [ A S2d A A
0 At
= C/ AL (A L )" dA (Sincedy > 1) < oo, (6.6)
0

under the conditions of the theorem.

Now consider a case where<lk <m—1. LetS(lk) be a set of indiceéiy, ..., ik} and
let S = {j,....j1} = {1,2,--- ,m}\ S). Let us defineM; = (x,,...,%,)" and
Mz = (Xj,,...,%;)" . Supposa@ = rank(My). If g> 0, suppos® = {ay,...,aq} C
{i1,....ik}, so that{xq,,...,Xq, } is linearly independent. 1§ =0, the setB is
empty. SUppPoséy;, ..., % —g} C {j1,..., ji} suchthatXa,, ..., Xag, Xy - - Xy_o | IS
linearly independent. Let us define ther matrixF = (Xq,, ..., Xag, Xy - - - ,xy,fg)T,
which is non-singular. Consider the non-singular lineansformation off3 by
@ = F 3. With these developments, the integral of the term idedtlﬁye{élk),ék)}
in the right hand side of (6.4) with respect to the prg3,A;, Az, p) is bounded
above by a positive generic const&htimes

s (i —x'B)? (i —x'B)?
0 oo AT 020 '651 2(A1+b) 'Esz 2(A2+b)
A

dBdAdA
(AL+D)5(A2+b)> pfedhs

A .
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<9 (yau UB)Z ,g( % _X-)I;B)z
o o A-Gip-G2g 20 2(Ag+D) S A1 b)
SN : l dBdAxdA
0 JA JR (Al-i-b)?(Az-i-b)?
oy Ve, —@)? Cyrmg O = @y)?
(o) 00 —a1 az =1 2(A1+b) =1 Z(A +b)
= [T AReE : dpd Aol A
Jo Ja JR Al+b)§(A2+b)§
alA az
= / / = r+g dAldAZ
A Al-i-b Az-l—b)
alA az
< // 2 |7r+gdA2dA1
A A1+b +b)"z
Al ap;— az
0 (A1+b) (A1+b)
0 Al ai1—ar
0 (As+b)z

by the conditions of the theorem. Since the integrabilityditons do not depenk
oron theindicegis,...,ix} and{j1,..., ji } and on the valuelsandl, the conditions
2—a1—az >0andm>r+2(2— a; — a2) will be sufficient to ensure the propriety
of the posterior]



