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Small Area Estimation With Uncertain Random Effects
Gauri Sankar DATTA and Abhyuday MANDAL

Random effects models play an important role in model-based small area estimation. Random effects account for any lack of fit of a
regression model for the population means of small areas on a set of explanatory variables. In a recent article, Datta, Hall, and Mandal
showed that if the random effects can be dispensed with via a suitable test, then the model parameters and the small area means may be
estimated with substantially higher accuracy. The work of Datta, Hall, and Mandal is most useful when the number of small areas, m, is
moderately large. For large m, the null hypothesis of no random effects will likely be rejected. Rejection of the null hypothesis is usually
caused by a few large residuals signifying a departure of the direct estimator from the synthetic regression estimator. As a flexible alternative
to the Fay–Herriot random effects model and the approach in Datta, Hall, and Mandal, in this article we consider a mixture model for
random effects. It is reasonably expected that small areas with population means explained adequately by covariates have little model error,
and the other areas with means not adequately explained by covariates will require a random component added to the regression model. This
model is a useful alternative to the usual random effects model and the data determine the extent of lack of fit of the regression model for
a particular small area, and include a random effect if needed. Unlike the Datta, Hall, and Mandal approach which recommends excluding
random effects from all small areas if a test of null hypothesis of no random effects is not rejected, the present model is more flexible.
We used this mixture model to estimate poverty ratios for 5–17-year-old-related children for the 50 U.S. states and Washington, DC. This
application is motivated by the SAIPE project of the U.S. Census Bureau. We empirically evaluated the accuracy of the direct estimates and
the estimates obtained from our mixture model and the Fay–Herriot random effects model. These empirical evaluations and a simulation
study, in conjunction with a lower posterior variance of the new estimates, show that the new estimates are more accurate than both the
frequentist and the Bayes estimates resulting from the standard Fay–Herriot model. Supplementary materials for this article are available
online.

KEY WORDS: Empirical best linear unbiased prediction; Fay–Herriot model; Finite mixture models; Hierarchical Bayes; Mixed effects;
SAIPE project.

1. INTRODUCTION

Sample surveys are indispensable to estimate various char-
acteristics of a population of interest. Reliability of estimates
from sample surveys depends on the size of the sample. While
government agencies need to estimate, for example, income and
unemployment rates for the entire nation, they are also required
to estimate these same characteristics for various geographic
and demographic subdomains. Even though a survey may select
a large sample to produce an estimate with desired accuracy
for the whole population, the subsamples it allocates to various
subdomains, also known as small areas, may be rather small to
produce reliable direct estimates of small area characteristics
based on individual subdomain samples.

Small area estimation methodology provides essential tools
to statistical agencies for production of reliable small area es-
timates. Since a design-based direct estimate of a small area
characteristic based on the area sample is usually less reliable,
model-based approach to small area estimation has become very
popular to produce indirect estimates. Importance and useful-
ness of model-based small area estimation approach may be
assessed from an explosive growth of research publications. For
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early frequentist applications of small area estimation, we refer
to Fay and Herriot (1979), Battese, Harter and Fuller (1988),
and Prasad and Rao (1990). For a recent comprehensive review
of this literature, one may refer to Rao (2003), Jiang and Lahiri
(2006), and Pfeffermann (2013).

The landmark article by Fay and Herriot (1979) has popu-
larized the model-based small area estimation in government
statistics. Model-based small area estimation methods rely on
appropriate regression models connecting direct estimates to
suitable auxiliary variables that are available from other surveys
and administrative records. These authors introduced an area-
level model to develop model-based estimates of per capita in-
come for small places in the United States with population less
than 1000. Denoting the design-based direct survey estimator
of the ith small area characteristic by Yi and the correspond-
ing area-level auxiliary variable by xi , a q × 1 vector, Fay and
Herriot (1979) introduced the model

Yi = θi + ei, θi = xTi β + vi, i = 1, . . . , m, (1)

where θi is a summary measure of the characteristic to be es-
timated for the ith small area, ei is the sampling error with the
estimator Yi , and the random effects vi denotes the model er-
ror measuring the departure of θi from its linear regression on
xi , xTi β. We assume that e1, . . . , em are independent and nor-
mally distributed with ei ∼ N (0,Di), and are independent of
v1, . . . , vm, which are i.i.d. N (0, σ 2

v ). The sampling variances
Dis are treated as known, but the model parameters β and σ 2

v

are unknown. Random effects vis are also known as small area
effects. The model (1) was also introduced independently by
Pfeffermann and Nathan (1981).
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In model-based small area estimation, the goal is to develop
an optimal predictor of θi and a measure of error associated
with this predictor. In small area estimation, both the frequentist
and Bayesian approaches have been extensively used. In the
frequentist approach based on the model given by (1), while
Fay and Herriot (1979) developed an empirical Bayes (EB)
predictor for θi , Prasad and Rao (1990) and Lahiri and Rao
(1995) considered an empirical best linear unbiased predictor
(EBLUP) of θi . For the normal mixed linear model in (1), EB
predictor and EBLUP predictor of θi are identical. Prasad and
Rao (1990), Lahiri and Rao (1995), Datta and Lahiri (2000),
and Datta, Rao, and Smith (2005) accurately approximated the
mean squared error (MSE) of EBLUP of θi by ignoring all
terms of order o(m−1). These authors also provided second-
order unbiased estimators of the MSE with an approximate bias
to the order o(m−1).

In the Bayesian approach to predict θi based on model in (1),
a hierarchical Bayes (HB) model, given below, is completed
by assigning a prior distribution on the model parameters ψ =
(βT , σ 2

v )T .

Model H1:

1. Conditional on θ1, . . . , θm and ψ , direct estimators Yi ∼
N (θi,Di) for i = 1, . . . , m, independently.

2. Conditional on model parameters ψ , small area means
θi ∼ N (xTi β, σ

2
v ) for i = 1, . . . , m, independently.

3. Model parameters ψ are given a prior distribution with a
density π (ψ).

The aforementioned HB model has been considered, for exam-
ple, by Berger (1985), Ghosh (1992), Datta, Rao, and Smith
(2005), among others.

The success of developing reliable model-based small area
estimates depends very much on the availability of good co-
variates that relate strongly with the small area means θi . In the
presence of good covariates, it is expected that random small
area effects vi in (1) will have small variation leading to sig-
nificant shrinkage of the direct estimator Yi to the synthetic
regression estimator.

In a recent article, Datta, Hall, and Mandal (2011) demon-
strated that in the presence of good covariates xi , the variability
of the small area means θi may be accounted well by xi , and
the inclusion of a random effects term vi in the model (1) may
be unnecessary. They argued that while the random effects may
improve the adaptivity and flexibility of the Fay–Herriot model,
it also increases the uncertainty of both point and interval esti-
mators of small area means. In an effort to increase the accuracy
of the small area estimators, these authors tested a hypothesis
of no random effects in the small area model. If the null hy-
pothesis is not rejected, these authors proposed more accurate
synthetic estimators to estimate the small area means. They con-
sidered a discrepancy statistic measuring the lack of fit of the
proposed multiple linear regression model of θi on the covari-
ates xi as a test statistic. The discrepancy function is constructed
by combining certain deviance measures for all the small areas.
The deviance measures the extent of lack of fit of the proposed
model for each small area.

In contrast with the Fay–Herriot model which includes for
each small area a random effects term to the regression function

xTi β of θi , the method of Datta, Hall, and Mandal (2011) ad-
vocates excluding the small area effects for all the small areas
when a nonsignificant discrepancy statistic is realized. On the
other hand, when a significant discrepancy statistic is obtained,
it is often the case that the bigger value is due to large deviance
from a small number of domains for which the regression model
fails to be adequate. To develop a model reflecting this scenario,
and as a middle ground between the Datta, Hall, and Man-
dal (2011) method and the Fay–Herriot model, we propose a
“spike and slab” distribution for the random small area effects.
In this formulation, with certain positive probability (1 − p),
the random effects is assumed to be absent (i.e., a degenerate
distribution at zero) for any small area, and with probability
p the random effects has a nondegenerate distribution. In Sec-
tion 2, we introduce this new HB model and compare it with the
Fay–Herriot model. The new model provides a more flexible
data-dependent shrinkage of the direct estimator to the syn-
thetic estimator. To our knowledge, this type of model has not
yet been explored in small area estimation. In Section 3, we ex-
plore the propriety of posterior distribution of our HB model that
results from an improper prior distribution on the model param-
eters. As HB predictors of small area means for our proposed
model do not admit closed-form expressions, we obtain them by
Gibbs sampling. We provide the set of required full conditional
distributions.

In Section 4, we consider an application of our model to
the estimation of poverty ratios of school-age children for the
U.S. states. We create a map of the poverty ratios based on
the direct estimates and the HB estimates from the proposed
model. Our proposed model uses a mixture of a degenerate
distribution and a normal distribution for the random effects.
Lahiri and Rao (1995) relaxed the normality of the random
effects in the Fay–Herriot model by assuming finite higher order
moments to estimate the MSE of the EBLUPs of small area
means. For the application in Section 4, we present in Section 5
an external evaluation of the proposed estimator based on 2000
census data. We also compare the posterior variances of our
estimators with the second-order unbiased estimators of the
MSE of EBLUP, proposed by Lahiri and Rao (1995) for the
nonnormal random effects Fay–Herriot model. We included a
simulation study as supplementary materials to compare our
estimators with the other standard estimators in terms of their
measures of uncertainty and empirical measurers of accuracy.
The simulation results show superiority of the proposed model.
The article concludes with a brief summary in Section 6.

2. A MODEL WITH UNCERTAIN RANDOM EFFECTS

As in the Fay–Herriot model, in the proposed model we as-
sume that the direct estimator Yi is an unbiased estimator of the
small area mean θi admitting a normal distribution with vari-
anceDi , for i = 1, . . . , m. The HB representation of our model
is given as follows:

Model HM :

I. Conditional on θ1, . . . , θm, δ1, . . . , δm, v1, . . . , vm, p,
βM and σ 2

vM , direct estimators Yi ∼ N (θi,Di) for i =
1, . . . , m, independently.
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II. Conditional on δ1, . . . , δm, v1, . . . , vm, p, βM and σ 2
vM ,

θi is given by

θi = xTi βM + δivi, i = 1, . . . , m, (2)

where δ1, . . . , δm are independent and identically dis-
tributed with

P (δi = 1) = p = 1 − P (δi = 0).

Conditional on δ1, . . . , δm and σ 2
vM , random effects

v1, . . . , vm are independently distributed with vi = 0
when δi = 0, and conditional on δi = 1, vi ∼ N (0, σ 2

vM )
for i = 1, . . . , m, independently.

III. A priori the hyperparameters βM , σ 2
vM and p are indepen-

dently distributed with prior density

π (βM, σ
2
vM, p) = πσ 2

vM
(σ 2
vM )πp(p),

where we assign a standard improper uniform prior dis-
tribution on the regression parameter βM , and proper
densities πσ 2

vM
(σ 2
vM ) and πp(p) on σ 2

vM and p.

While a proper prior distribution on a bounded parameter p is
usually suggested, a proper prior distribution on the unbounded
model variance parameter σ 2

vM is mandatory, for reasons ex-
plained next.

Based on stages (I) and (II) of the hierarchical model HM ,
after integrating out the v1, . . . , vm, and δ1, . . . , δm from the
joint density of (Yi, vi, δi), i = 1 . . . , m, we get, conditional on
βM , σ 2

vM and p, that Y1, . . . , Ym are independently distributed,
where Yi has a two-component mixture of normal distributions
given by

f (yi |βM, σ 2
vM, p)

= 1√
2π

⎡
⎣ (1 − p)√

Di

e
− (yi−xTi βM )2

2Di + p√
Di + σ 2

vM

e
− (yi−xTi βM )2

2(Di+σ2
vM

)

⎤
⎦ .
(3)

For the model HM , we use the subscript M to emphasize the
mixture part of the model. Also, we use the subscript M to
the model parameters βM and σ 2

vM to distinguish them from
the model parameters in H1. From (3) we note that the first
component of the mixture in the density of Yi does not include
σ 2
vM . This necessitates a proper prior distribution for σ 2

vM so
that the HB model admits a proper posterior distribution. For a
discussion on this point, we refer the reader to Scott and Berger
(2006).

The prior distribution of vi in (2) of Model HM assigns a
positive mass (1 − p) at 0 and spreads the remaining mass p
according to a normal distribution with mean zero and variance
σ 2
vM . Ishwaran and Rao (2005) used this type of prior distribu-

tion, which is known in the literature as a “spike and slab” prior,
in gene selection based on microarray data. Scott and Berger
(2006) also recommended this prior in multiple hypothesis test-
ing to determine the activated (or expressed) genes in microarray
experiments. In their setup in the microarray context, since only
a small fraction (p) of genes are expected to be activated, they
assigned a prior distribution on p which is concentrated near
zero. We are adopting this model in the small area estimation
context to modify the prior distribution for the random effects
vi in the Fay–Herriot model in (1). While for some small areas

there may be a need to add a nondegenerate random effects
to account for a lack of fit of the regression of θi on xi , it is
unlikely that all small areas will need nondegenerate random
effects. In the spirit of Scott and Berger (2006), we generalize
the Fay–Herriot model to specify the more flexible hierarchical
model HM . In fact, in the special case of p = 1, our model HM
encompasses the Fay–Herriot model.

We estimate the small area mean θi based on the HB model
HM by posterior mean of θi , θ̂iM (say), and measure the accuracy
of the estimator by the posterior variance of θi , ViM (say). While
the numerical computation of these estimators will be performed
by Gibbs sampling, to compare the estimators θ̂iM with the
estimator of θi under the Fay–Herriot model, we first consider
θ̃iM (βM, σ 2

vM, p, yi), the conditional mean of θi , conditional on
the model parameters βM , σ 2

vM , p and data y1, . . . , ym. By direct
calculation,

θ̃iM (βM, σ
2
vM, p, yi) = xTi βM + σ 2

vM

σ 2
vM +Di

(
yi − xTi βM

)
× p̃i

(
βM, σ

2
vM, p, yi

)
= yi − BiM

(
yi − xTi βM

)
, (4)

where the direct estimate yi of θi is shrunk to the regression (or
synthetic) “estimate” xTi βM ; the extent of the shrinkage depends
on the coefficient

BiM = 1 − σ 2
vM

σ 2
vM +Di

p̃i
(
βM, σ

2
vM, p, yi

)
, (5)

with p̃i(βM, σ 2
vM, p, yi) = P (δi = 1|βM, σ 2

vM, p, yi) being
given by

p̃i
(
βM, σ

2
vM, p, yi

)
= p

p + (1 − p)
√
σ 2
vM+Di
Di

exp
{
− 1

2
(yi−xTi βM )2σ 2

vM

Di (Di+σ 2
vM )

} . (6)

Note that p̃i is increasing in p and |yi − xTi βM |, and BiM is
decreasing in σ 2

vM for fixed p̃i , and is decreasing in p̃i for fixed
σ 2
vM . Thus, the shrinkage coefficient BiM will be large if either

p, σ 2
vM or the “residual” |yi − xTi βM | is small, all of which make

intuitive sense. While the shrinkage of the direct estimator for
the proposed model is influenced by “residual” |yi − xTi βM |
(i.e., the fit of the regression of the direct estimator on the
covariate xi), this is not the case for the Fay–Herriot model,
where the shrinkage coefficient BiFH is given by

BiFH = Di

σ 2
v +Di

= 1 − σ 2
v

σ 2
v +Di

, (7)

and for known model parameters β and σ 2
v , the Bayes predictor

of θi is given by

θ̃iFH = yi − BiFH (yi − xTi β). (8)

Note that while the shrinkage coefficient in the Fay–Herriot
model depends only on the ratio Di

σ 2
v

, but not on the residual |yi −
xTi β|, for the proposed mixture model the shrinkage depends on
both these quantities and in turn it achieves a greater flexibility.

Datta, Hall, and Mandal (2011) used an estimated version
of the squared standardized residual (yi − xTi β)2/Di as the de-
viance of the ith small area to compute a discrepancy statistic
that they proposed to test for the absence of a random effect.
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While a fraction of small areas may contribute large deviances to
the discrepancy statistic pushing it to be significant, suggesting
a positive σ 2

v and thereby reducing the shrinkage for all small
areas, the shrinkage coefficient BiM for the proposed model is
more robust to large deviances from other small areas. It is def-
initely desirable to borrow more from the regression model by
shrinking more a less reliable direct estimator to a regression
synthetic estimator.

3. COMPUTATIONAL ISSUES AND THE POSTERIOR
DISTRIBUTION

The HB mixture model HM proposed to estimate small area
means θi , for i = 1, . . . , m, is rather complex. We will imple-
ment Gibbs sampling (see, Gelfand and Smith 1990) to compute
the posterior mean and posterior variance of θi .

We discussed earlier that we need a proper prior distribution
on the variance parameter σ 2

vM since it does not appear in all
components of the mixture distribution. We will use a proper
inverse gamma distribution as the prior with a corresponding
density

πσ 2
vM

(
σ 2
vM

) ∝ exp

{
− a

σ 2
vM

} (
σ 2
vM

)−(b+1)
, (9)

where both the rate parameter a > 0 and the shape parameter
b > 0 are assumed to be known. Here, the mixing parameter p is
the apriori probability that a random effect is nondegenerate. Our
experience with small area estimation applications suggests that
in the presence of good covariates nearly half of the small areas
will not need any random effect term in the Fay–Herriot model.
Based on such consideration, we propose a beta distribution
with parameters c, d, with 0 < c < d. We use suitable values
for a, b, c and d in our data analysis.

To derive the full conditional distributions needed for Gibbs
sampling, we start with the joint posterior density of βM ,
v = (v1, . . . , vm)T , δ = (δ1, . . . , δm)T , p, and σ 2

v . Based on the
hierarchical model HM and the prior densities for σ 2

vM , p, and
βM , we get

π
(
v1, . . . , vm, δ1, . . . , δm, βM, p, σ

2
vM |y1, . . . , ym

)
∝ exp

[
−1

2

m∑
i=1

(yi − xTi βM − δivi)2

Di

]

×
m∏
i=1

{
(σ 2
vM )−

1
2 exp

(
− v2

i

2σ 2
vM

)}δi
{I (vi = 0)}1−δi

p
∑m

i=1 δi (1 − p)m−∑m
i=1 δi (σ 2

vM )−(b+1)

× exp

{
− a

σ 2
vM

}
pc−1(1 − p)d−1. (10)

Let y = (y1, . . . , ym)T , D = diag(D1, . . . , Dm) and X =
(x1, . . . , xm)T . We assume that rank(X) = q. For an m-
dimensional vector ζ = (ζ1, . . . , ζm)T , by ζ(−i) we denote
the (m− 1)-dimensional vector (ζ1, . . . , ζi−1, ζi+1, . . . , ζm)T .
From (10), it follows that

1. βM |v1, . . . , vm, δ1, . . . , δm, p, σ
2
vM, y ∼

N ((XTD−1X)−1XTD−1(y − δ · v), (XTD−1X)−1)
where δ · v = (δ1v1, . . . , δmvm)T ;

2. vi |v(−i), δ, βM, p, σ 2
vM, y is degenerate at zero if δi = 0,

and if δi = 1, then

vi |v(−i), δi = 1, δ(−i), βM, p, σ 2
vM, y

∼ N

(
σ 2
vM

σ 2
vM +Di

(
yi − xTi βM

)
,
σ 2
vMDi

σ 2
vM +Di

)
;

3. P [δi = 1|v, δ(−i), βM, p, σ 2
vM, y] = p̃i(βM, σ 2

vM, p, yi)
(see Equation (6));

4. p|v, δ, βM, σ 2
vM, y ∼ Beta(c + ∑m

i=1 δi, d +m−∑m
i=1 δi);

5. σ 2
vM |v, δ, βM, p, y follows inverse gamma distribution

with shape parameter b + 1
2

∑m
i=1 δi and rate parameter

a + 1
2

∑m
i=1 δiv

2
i .

Since an improper prior density has been used for βM , we
investigate next the condition under which the posterior density
is proper.

Theorem 3.1. The posterior distribution corresponding to the
HB model HM is proper, that is, the posterior density is inte-
grable, if and only if m ≥ q.

Proof. If Part: To prove the propriety of the posterior distribu-
tion, we need to show the integrability of the right-hand side of
(10) with respect to βM , v1, . . . , vm, δ1, . . . , δm, p, and σ 2

vM . Let
	(δ, σ 2

vM ) = diag(D1 + δ1σ
2
vM, . . . ,Dm + δmσ

2
vM ). Integrating

the right-hand side of (10) with respect to v1, . . . , vm, we get

π (βM, δ1, . . . , δm, p, σ
2
vM |y1, . . . , ym) = K|	(δ, σ 2

vM )|− 1
2

× exp

[
−1

2
(y −XβM )T 	−1(δ, σ 2

vM )(y −XβM )

]
×πσ 2

vM
(σ 2
vM )πp(p)p

∑m
i=1 δi (1 − p)m−∑m

i=1 δi . (11)

Here, and elsewhere in the proof, K is a generic positive constant
not depending on βM , δ, p, and σ 2

vM . Since	(δ, σ 2
vM ) is positive

definite and rank(X) = q,XT	−1(δ, σ 2
vM )X is also positive def-

inite. Noting that
∫ 1

0 p
∑m

i=1 δi (1 − p)m−∑m
i=1 δi πp(p)dp ≤ 1, inte-

grating out p and βM from (11) we get that

π (δ1, . . . , δm, σ
2
vM |y1, . . . , ym)

≤ K|	(δ, σ 2
vM )|− 1

2 |XT	−1(δ, σ 2
vM )X|− 1

2

× exp

[
−1

2
R

(
y,	(δ, σ 2

vM )
)]
πσ 2

vM

(
σ 2
vM

)
≤ K|	(δ, σ 2

vM )|− 1
2 |XT	−1(δ, σ 2

vM )X|− 1
2πσ 2

vM
(σ 2
vM ). (12)

where R(y,	(δ, σ 2
vM )) = yT [Im −	−1(δ, σ 2

vM )X(XT	−1

(δ, σ 2
vM )X)−1XT ]	−1(δ, σ 2

vM )y. We show below that for each
δ,

|	(δ, σ 2
vM )|− 1

2 |XT	−1(δ, σ 2
vM )X|− 1

2 ≤ K (13)

for all σ 2
vM . Using (13) in (12) and integrating

σ 2
vM from π (δ1, . . . , δm, σ

2
vM |y1, . . . , ym), we get that

π (δ1, . . . , δm|y1, . . . , ym) ≤ ∫ ∞
0 Kπσ 2

vM
(σ 2
vM )dσ 2

vM = K < ∞.
Since π (δ1, . . . , δm|y1, . . . , ym) is finite for all δ, we get∑

δ π (δ1, . . . , δm|y1, . . . , ym) < ∞, and the propriety of the
posterior density (11) follows. �

We now prove (13). For the case δ = (0, . . . , 0)T ,	(δ, σ 2
vM ) is

free from σ 2
vM and (13) holds trivially. Now suppose,

∑m
i=1 δi =

m1 ≥ 1. Corresponding to the indices i1, . . . , im1 , let δi1 = · · · =
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δim1
= 1. Define an m1 × q matrix X1 = (xi1 , . . . , xim1

)T . We
also define the matrix X2 which is formed by the remaining
rows of X. Let rank(X1) = r1 and rank(X2) = r2. Note that 0 ≤
r1 ≤ m1, 0 ≤ r2 ≤ m−m1, and r1 + r2 ≥ q ≥ max(r1, r2).

We first consider the case r1 = 0. Then, X1 is a null
matrix and XT	−1(δ, σ 2

vM )X = ∑
j∈A D

−1
j xj x

T
j is free from

σ 2
vM , where the index set A = {1, . . . , m} \ {i1, . . . , im1}. Since

|	(δ, σ 2
vM )| ≥ |D|, it follows that∣∣	(δ, σ 2

vM )
∣∣− 1

2
∣∣XT	−1(δ, σ 2

vM )X
∣∣− 1

2

≤ |D|− 1
2

∣∣∣∣∣∣
∑
j∈A

D−1
j xj x

T
j

∣∣∣∣∣∣
− 1

2

≤ K.

Now suppose r1 ≥ 1. We note that

XT	−1(δ, σ 2
vM )X ≥ (D(m) + σ 2

vM )−1XT1 X1 +D−1
(m)X

T
2 X2

= G(say). (14)

Let P be an orthogonal matrix such that PTXT1 X1P =
diag(λ1, . . . , λr1 , 0, . . . , 0), where λ1 ≥ . . . ≥ λr1 > 0 are the
positive eigenvalues ofXT1 X1. LetD−1

(m)P
TXT2 X2P = B be par-

titioned as ((Bkl)), where B11 is r1 × r1 and B22 is (q − r1) ×
(q − r1). Writing (D(m) + σ 2

vM )−1 = u, we note that

PTGP =
[
B11 + u˜diag(λ1, . . . , λr1 ) B12

B21 B22

]
.

Since PTGP is a positive-definite matrix, it follows that B22

is positive definite. Consequently, B11.2 = B11 − B12B
−1
22 B21

is defined. Since B is a nonnegative definite matrix, so
is B11.2. Then, |PTGP | = |B22||B11.2 + udiag(λ1, . . . , λr1 )| ≥
(λ1 . . . λr1 )|B22|ur1 , which, in turn, implies that

|XT	−1(δ, σ 2
vM )X|− 1

2 ≤ |G|− 1
2 = |PTGP |− 1

2 ≤ Ku− r1
2

= K(D(m) + σ 2
vM )

r1
2 .

Finally, we get∣∣	(
δ, σ 2

vM

)∣∣− 1
2
∣∣XT	−1

(
δ, σ 2

vM

)
X

∣∣− 1
2

≤ K
(
D(1) + σ 2

vM

)− m1
2
(
D(m) + σ 2

vM

) r1
2 ,

and since r1 ≤ m1, the right-hand side of this inequality is a
bounded function of σ 2

vM . This completes the proof of (13).
Only If Part: Integrability of the posterior den-

sity implies that for each δ1, . . . , δm, the function
π (βM, σ 2

vM, p, v1, . . . , vm, δ1, . . . , δm|y) is integrable. In par-
ticular, corresponding to δ1 = . . . = δm = 0, the function∏m
i=1 e

− 1
2Di

(yi−xTi βM )2

π (σ 2
vM )πp(p) needs to be integrable. This

implies
∏m
i=1 e

− 1
2Di

(yi−xTi βM )2

needs to be integrable with respect
to βM . A simple argument will show that the set {x1, . . . , xm}
must contain q linearly independent vectors, that is, m ≥ q.�

4. ESTIMATION OF CHILD POVERTY RATIO

The United States Census Bureau as part of their Small Area
Income and Poverty Estimation (SAIPE) program annually pro-
vides estimates of poverty measure for various age groups at the
state and county level. One measure of particular interest is the
poverty ratio for the school going related children for the 5−
to 17−year-old group, used by the United States Department of

Education to implement the No Child Left Behind program. To
provide an application of our method, we consider estimation
of state-level poverty ratio for this demographic group based on
the Current Population Survey (CPS) for the year 1999. Direct
estimate yi for the ith state computed from the CPS is usu-
ally subject to large sampling error due to small sample size.
To develop more accurate estimate of this characteristic, the
Census Bureau suggested combining the direct estimate with
other administrative data through a suitable regression model.
The Census Bureau explored using the Internal Revenue Ser-
vice (IRS) data measuring poverty ratio based on the number of
child exemptions (covariate 1) and IRS nonfiler rate (covariate
2) which are found to be correlated with the direct CPS esti-
mate of poverty rate y. The Census Bureau also found out that
the residuals from fitting a model for the 1989 census poverty
data on these covariates for the year 1989 have good predictive
power in predicting the prevailing child poverty ratio in 1999.
In our application, we consider the year 1999 since the poverty
ratio obtained from the 2000 census data which collects poverty
information for the income year 1999 can be used as a bench-
mark to compare accuracy of our proposed estimates and other
various estimates available in the literature.

The discrepancy statistic of Datta, Hall, and Mandal (2011)
suggested to test the absence of a random effects term in the

Fay–Herriot model in (1) is given by T = ∑m
i=1

(yi−xTi β̂WLS)2

Di
,

where β̂WLS = (XTD−1X)−1XTD−1y, and (yi − xTi β̂WLS)2/Di

is the deviance of the ith small area that contributed to the dis-
crepancy statistic. For our application, the value of T is 67.72
which was significant with a p-value of 0.025, computed based
on chi-square distribution with 47 degrees of freedom. From
Figure 1, we note that only 9 or 10 (about 20%) of the 51 de-
viances have values larger than 4, the largest one being 14.2, cor-
responding to Massachusetts. While this test for the entire data
suggests inclusion of the random effects term in the Fay–Herriot
model, the result is dramatically different if we refit the model

Figure 1. Plot of deviances of different states (small areas) that
contributed to the discrepancy statistic T of Datta, Hall, and Mandal
(2011).
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excluding Massachusetts. The new discrepancy statistic is quite
small with a nonsignificant p-value of 0.284, and most of the
individual deviances are smaller than 3.

An exploratory analysis of the poverty data presented earlier
suggests adaptive shrinkage of the direct estimates to the syn-
thetic regression-based estimates. We estimate the poverty ratio
θi by applying the HB Fay–Herriot model and the proposed
model. For the Fay–Herriot model, we use an improper uniform
prior π (β, σ 2

v ) = 1 to conduct the Bayesian analysis. It is well-
known that the resulting posterior will be proper (see Berger
1985), and we implement Bayesian computing via Gibbs sam-
pling. For the proposed uncertain random effects model (add
a random effect if δi = 1, or do not add any random effect if
δi = 0), we use a partially proper prior. It is explained earlier
that a proper prior on σ 2

vM is necessary to ensure a proper pos-
terior distribution. We consider an inverse gamma distribution
with mean D̄ and variance D̄2, where D̄ is the average sam-
pling variance. The motivation behind this choice is to scale
the prior variance in terms of the (average) error variance D̄
which is commonly done for a hypervariance (see, Scott and
Berger 2006, p. 2146). We use improper uniform prior for βM ,
and a proper Beta(1, 4) prior for p. The beta prior reflects a
20% a priori probability that a random effects to a small area is
nondegenerate (it is zero if δi = 0).

For each model, we obtain a point estimate of the small area
mean θi by the corresponding posterior mean, and measure the
uncertainty of the point estimate by the posterior variance. To
demonstrate the effectiveness of the proposed model, we have
plotted the ratio of the posterior variance of the proposed model
to the posterior variance of the Fay–Herriot model in Figure 2.
We find that except for Massachusetts, the ratio is less than 80%

Figure 2. Plot of ratio of uncertainty measures of various model-
based estimates of small area means. The solid dot represents the ratio
of the posterior variance of the proposed model (2) to the posterior
variance of the Fay–Herriot model and the asterisk represents the ratio
of posterior variance of the proposed model (2) to the estimated MSE
of the Lahiri and Rao (1995) model discussed in Section 5.

Figure 3. Plot of shrinkage coefficients of different states against
the corresponding square-root deviance.

for all other states, and the ratio is less than 50% for nearly half
of the states. Only for Massachusetts the posterior variance of θi
for the proposed model is about 60% higher than the posterior
variance of θi for the Fay–Herriot model. The average of this
ratio for all the states is 0.54.

We compare the shrinkage coefficients for all the small ar-
eas for the two models. For the Fay–Herriot model, we use
Di/(Di + σ̂ 2

v,FH-HB) as the estimated shrinkage for the ith small
area, here σ̂ 2

v,FH-HB is the posterior mean of σ 2
v based on the

Fay–Herriot HB model (we found that this value is not much dif-
ferent from the average of the Gibbs sample values ofBi,FH(σ 2

v )).
For our proposed model, we estimated the shrinkage coeffi-
cient by E(BiM |y), where the posterior expectation is com-
puted by averaging the values of BiM (βM, σ 2

vM, p, yi) over
the Gibbs samples generated from this model. In Figure 3,
we plot these shrinkage coefficients. The plot shows that for
most states shrinkage coefficients of the proposed model are
much larger than the shrinkage coefficients provided by the
Fay–Herriot model. This suggests that a random effects term
in the Fay–Herriot model may not be needed for many areas.
Indeed, we found that of the fifty-one 95% prediction intervals
for the random effects in the Fay–Herriot model, 22 include the
zero value.

For our proposed model, we computed the posterior prob-
ability of {δi = 1} for all the states, which are displayed in
Figure 4. Except for Massachusetts, which has this probabil-
ity 0.83 (nearly 1), all other states have this probability less
than 0.30. Compared to a prior odds of 1 to 4, the poste-
rior odds of δ = 1 is nearly 5 to 1 for Massachusetts, and
nearly 1 to 2 (or less) for the other states. This indicates that
a presence of random effects is suggested by the data only for
Massachusetts.

We noticed earlier that the direct CPS estimate for Mas-
sachusetts does not fit the Fay–Herriot model well, and our
model shrinks the CPS estimate much less to the synthetic
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Figure 4. Plot of P (δi = 1|data).

estimate than the Fay–Herriot model shrinks it to the synthetic
one. We also note that while our model provides greater shrink-
age for CA and NY, the Fay–Herriot model shrinks much less
for these two states.

In Figure 5, we provide the posterior density of δivi for three
states (Massachusetts, California, New York). Each posterior

distribution has a large positive mass at vi = 0. The vertical
bar at vi = 0 corresponds to the posterior probability of vi = 0
(which is the same as P (δi = 0|data)), and the smooth density
displays how the remaining probability mass is distributed over
nonzero values of vi . A higher value of the vertical bar and/or a
higher concentration of the density near zero will indicate sub-
stantial shrinkage of the direct estimator toward the synthetic
estimator. From these plots, we see that the direct estimate for
Massachusetts is subject to moderate shrinkage, since the prob-
ability mass of vi at zero is quite small (0.17) and the remaining
mass of 0.83 is spread over 0 to 15 (with practically no mass
below zero), indicating that the direct estimator is substantially
bigger than the synthetic estimator. This last fact is in agreement
with the large positive residual for Massachusetts in Figure 1. On
the other hand, direct estimates for CA and NY shrink substan-
tially toward their synthetic values under the proposed model
(the, respective, estimated shrinkage coefficients are 0.86 and
0.87). This large amount of shrinkage is also confirmed from the
last two plots in Figure 5. Each of the plots has a large positive
mass (bigger than 70%) at vi = 0, and the remaining mass of
about 30% is spread over a relatively narrow interval around
zero.

Finally, we create a poverty map to compare the CPS es-
timates with those obtained from the Fay–Herriot model and
the proposed model. These maps, created by subtracting the
“true” values (described in Section 5) of the poverty measures
from these estimates, show the effectiveness of the proposed

Figure 5. Histogram of the posterior distribution of δivi .
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Figure 6. Poverty map: Panel (d) shows the “true poverty map,” whereas panels (a), (b), and (c) show the differences of these estimates from
the “truth,” for the proposed model, FH model, and CPS estimates, respectively.

model. Panel (d) in Figure 6 provides the state poverty map us-
ing the true poverty ratios based on census data. Panels (a)−(c)
plot the maps of the departures of the estimates from the true
poverty ratios. Panel (a) is for proposed estimates, (b) is for the
Fay–Herriot estimates, and (c) is for the CPS direct estimates. In
panels (a)−(c), states with deviations of the estimated poverty
ratios from the true ratios between −2% and 2% are shaded
green, states with true poverty ratios underestimated by 2% or
more are shaded with red, and overestimated by 2% or more
are shaded with blue. These maps empirically demonstrate that
the proposed model produces more accurate estimates than the
Fay–Herriot model. While the proposed model produces esti-
mates that are right on the target for 47 states (with deviations
within 2%), it overestimates the poverty ratio by more than 2%
for only three states, namely, MS, LA, and WV, and underesti-
mates by more than 2% for MA alone. On the other hand, the
estimates from the Fay–Herriot model miss the true state poverty
ratios by more than 2% for eight states. The Fay–Herriot model
overestimates for five states, namely, MS, LA, SD, KY, and WV,
and underestimates for three states, namely, KS, DE, and MA.
If we turn to the CPS estimates, they are much less accurate and
they overestimate for 16 states and underestimate for 10 states.
Additionally, smaller posterior variances associated with the
estimates from the proposed model compared to the posterior
variances associated with the estimates from the Fay–Herriot
model for all states except one justify the superiority of the
proposed model.

5. EXTERNAL EVALUATION AND COMPARISON
WITH A ROBUST FREQUENTIST METHOD

We evaluate performance of the proposed model by compar-
ing the poverty ratio estimates generated by our model with the
corresponding population level poverty ratio we obtained from
the 2000 census for the 50 states and Washington, DC. Since
the questionnaires measuring poverty in the CPS are usually
different from the questionnaires used in the census, there may

be a systematic difference between the two sets of numbers. To
account for any such difference, we compute ratio benchmarked
census states poverty ratios by multiplying the 51 census poverty

ratios by a scale R, where R =
∑51

i=1(pop)i yi∑51
i=1(pop)i ci

, (pop)i is the esti-

mated population of the 5 − 17 age group of related children
in the ith state, ci is the poverty ratio for the group obtained
from the 2000 census. This adjustment should allow an “apple
to apple” comparison of the estimates based on the CPS sample
to the “truth” based on the 2000 census.

To compare empirically the accuracy of an estimator t, we
calculate the set of small area estimates {ti , i = 1, . . . , 51} and
we compute various deviation measures of this set of numbers
from the benchmarked census numbers {c′i , i = 1, . . . , 51},
where c′i = Rci . Note that

∑51
i=1(pop)ic′i = ∑51

i=1(pop)iyi , thus
the benchmarked “true” census numbers c′i are calibrated so that
national “true” number of poor children agrees with the national
CPS number of poor children, the latter is considered quite
accurate since it is based on a large national sample. To evaluate
effectiveness of an estimator t, we computed average absolute
deviation AAD(t) = 1

51

∑51
i=1 |ti − c′i |, average squared devi-

ation ASD(t) = 1
51

∑51
i=1(ti − c′i)

2, average absolute relative

deviation ARB(t) = 1
51

∑51
i=1

|ti−c′i |
c′i

, and average squared

relative deviation ASRB(t) = 1
51

∑51
i=1

(ti−c′i )2

(c′i )2 of the estimated
values {ti , i = 1, . . . , 51} from their corresponding “true”
values {c′i , i = 1, . . . , 51}. We evaluated these four summary
performance measures for the direct estimate (y), the FH-HB
predictor, θ̂FH−HB, and the proposed HB predictor θ̂M−HB. We
display these summary measures for these three estimates in
the following table. The table shows that model-based small
area estimates perform much better than the direct estimates.
Moreover, the lowest values of these deviation measures are
realized by our proposed predictor. Figure 2, which shows that
the posterior variance from the proposed model is nearly half of
the posterior variance of the Fay–Herriot model, in conjunction
with Table 1, establishes the superiority of our proposed model.
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Table 1. Effectiveness of the proposed estimator

Estimate
AAD =

1
51

∑ |ti − c′
i |

ASD = 1
51

∑
(ti − c′

i)
2

ARB =
1
51

∑ |ti−c′i |
c′
i

ASRB =
1
51

∑ (ti−c′i )2

(c′
i
)2

Direct (y) 2.718 12.291 0.196 0.067
θ̂FH−HB 1.139 2.354 0.076 0.009

θ̂M−HB 1.007 1.963 0.067 0.007

5.1 EBLUP Prediction for Nonnormal Small Area Means

It is well known that the BLUP of a small area mean based
on a mixed linear model depends only on the first two moments
of the random effects and the sampling error, and not on their
distributional assumptions. In particular, the BLUP continues to
remain valid under nonnormality of random effects.

Steps I and II of the model HM can be reexpressed as

Yi = θi + ei, θi = xTi β + v∗
i , i = 1, . . . , m, (15)

where ei, v∗
i , i = 1, . . . , m are independently distributed with a

common mean zero, ei’s are normally distributed with variance
Di , and v∗

i ’s are identically distributed as the viδi’s. Clearly, the
random effects v∗

i are not normally distributed but they have all
moments of positive order finite. This setup is a special case of
the pioneering article by Lahiri and Rao (1995). They estimated
β by a two-stage weighted least squares method and the model
variance σ ∗2

v by the ANOVA method (see Prasad and Rao 1990).
We omit the details here. Denoting the estimators by β̂GLS and
σ̂ ∗2
v , the EBLUP of θi , derived by Lahiri and Rao (1995) is

given by θ̂i,EBL−LR = Yi − BiFH (σ̂ ∗2
v )(Yi − xTi β̂GLS(σ̂ ∗2

v )). As-
suming finite (8 + ε)-th moment of v∗

i , with ε > 0, Lahiri and
Rao (1995) obtained a second-order accurate approximation to
the MSE of θ̂i,EBL−LR. In a serendipitous discovery, Lahiri and

Table 2. Performance of the proposed methodology−average ratios
of various deviation measures from the truth (Columns (1)−(4)) and
average ratios of posterior variances of the Fay–Herriot model to the

proposed model (Column (5))

AAD ASD ARB ASRB Post Var
p σ 2

v,M (1) (2) (3) (4) (5)

0.1 25 1.198 1.183 1.215 1.254 1.667
50 1.301 1.309 1.317 1.401 1.751
75 1.389 1.466 1.401 1.588 1.811

100 1.474 1.660 1.492 3.121 1.872

0.2 25 1.164 1.076 1.169 1.085 1.677
50 1.261 1.204 1.261 1.262 1.682
75 1.339 1.334 1.330 1.532 1.704

100 1.405 1.431 1.404 2.774 1.732

0.5 25 1.040 0.952 1.029 0.910 1.400
50 1.090 1.040 1.076 1.087 1.284
75 1.117 1.096 1.094 1.099 1.263

100 1.137 1.129 1.104 1.119 1.273

0.75 25 0.979 0.922 0.967 0.876 1.205
50 1.005 0.974 0.996 0.974 1.117
75 1.012 0.997 0.998 0.974 1.094

100 1.015 1.004 1.000 0.981 1.084

Rao (1995) noted that the second-order unbiased estimator of
the MSE, mse(θ̂i,EBL−LR), derived in (5.15) of Prasad and Rao
(1990) continues to be a second-order unbiased estimator of the
MSE of the EBLUP θ̂i,EBL−LR, under the model (15).

The uncertainty of the EBLUP predictors of the small area
means θi are given by the estimated MSE. For our poverty ratio
data, these estimates are very similar to the posterior variances
of the θi in the Fay–Herriot HB model. In Figure 2, we also
plot the ratio of the posterior variance of θi for our proposed
model to mse(θ̂i,EBL−LR). This plot displays that except for the
state MA, for the other 50 states, the proposed model results in
predictors of small area means which are more accurate than
the predictors, frequentist or Bayes, based on the traditional
Fay–Herriot model.

Additionally, the estimated shrinkage coefficients,
BiFH (σ̂ ∗2

v ), are very similar to the estimated shrinkage
coefficients for the HB Fay–Herriot model with a uniform prior
distribution on the model parameters. This results in very simi-
lar point estimates of the small area means. Various deviation
measures of the θ̂i,EBL−LR from the “true” census poverty ratios
are nearly identical to those for the HB Fay–Herriot model.
Among the four sets of predictors of small area means, namely,
Yi , θ̂i,FHM, θ̂i,FH−HB, and θ̂i,EBL−LR, our proposed predictors
θ̂i,M−HB have the smallest deviation measures.

6. CONCLUSION

We propose a flexible alternative to the Fay–Herriot model
for estimation of small area means and compare performance
of the resulting small area predictors with other predictors of
small area means. Our model includes as special cases both the
Fay–Herriot model and the model without any random effects
term that may be suggested by the Datta, Hall, and Mandal
(2011) method. Our model determines the “goodness of fit” of
the proposed regression model for the small area mean, and
adaptively includes a random effects to the model for small
area mean θi , if necessary. We use a Bayesian approach to fit
our model, which was applied to estimate poverty ratios for
schoolgoing children for the U.S. states. Our application shows
the superiority of the proposed model when comparing resulting
estimators with the HB and EBLUP predictors of small area
means based on the Fay–Herriot model, in terms of posterior
variance or estimated mean squared error of the estimates and
various deviations of the estimates from the “true” values of
the means based on census data. This superior performance
continues to carry over for various simulated scenarios of our
model.

The uncertain random effects model proposed in this article,
which assumes an equal probability p of a nondegenerate effect
in all small areas, may be generalized to unequal probabilities
pi . Moreover, in the presence of suitable auxiliary variables,
these probabilities may be modeled through a logistic regres-
sion. However, similar to the case of equal p for all small areas,
here also we should use a proper prior on the logistic regression
coefficients to ensure a proper posterior.

In this article, the proposed methodology has been illustrated
with the example of SAIPE data. However, there are other ap-
plications that can also benefit by using our new method. For
example, a four-person state-level median income data for the
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U.S. States reported by Fay (1987) or a hospital data reported
by Morris and Christiansen (1995) and analyzed by Jiang and
Tang (2011) are examples of potential application. Details of
these examples can be found in the supplementary materials. In
both examples, the proposed method produces smaller posterior
variances than those from the Fay–Herriot HB model.

SUPPLEMENTARY MATERIALS

Supplementary materials contain the simulation study men-
tioned in the article, and additional examples.

[Received April 2014. Revised December 2014.]
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