
�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 755 2015-4-13

�

�

�

�

�

�

21
Algorithmic Searches for Optimal Designs

Abhyuday Mandal, Weng Kee Wong, and Yaming Yu

CONTENTS

21.1 Introduction. .755
21.2 Algorithmic Approach to Solve a Design Problem: A Motivating Example.756

21.2.1 Drug Discovery Problem. .757
21.3 Background. .758
21.4 Review of Selected Traditional Algorithms. .761

21.4.1 Fedorov–Wynn Type of Algorithms. .762
21.4.2 Exchange Algorithms. .763
21.4.3 Issues with Algorithms. .764

21.5 Alternative Algorithms for Finding Optimal Designs. .765
21.5.1 Multiplicative Algorithms. .767
21.5.2 Application of Multiplicative Algorithm in Pharmacology.768
21.5.3 Cocktail Algorithm. .769
21.5.4 Application of a Cocktail Algorithm in Pharmacology. .770

21.6 Metaheuristic Algorithms. .771
21.6.1 Genetic Algorithms. .772
21.6.2 Simulated Annealing. .775
21.6.3 Particle Swarm Optimization. .776

21.7 Summary. .778
Acknowledgments. .779
References. .780

21.1 Introduction

Research in optimal experimental design has a long history and dates back as early as 1918
in a seminal paper by Smith (1918) and probably earlier. This chapter discusses algorithms
for finding an optimal design given a statistical model defined on a given design space.
We discuss background and the need for algorithms to find an optimal design for various
situations. There are different types of algorithms available in the literature, and even for
the same design problem, the researcher usually has several algorithms to choose from
to find an optimal design. There are also algorithms that use specialized methods to find
an optimal design for a very specific application. For example, Syed et al. (2011) used a
mathematical programming technique to search for a D-optimal design using cyclotomic
cosets. The literature on algorithms to find an optimal design for a statistical model is
therefore huge and diverse.

755

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 756 2015-4-13

�

�

�

�

�

�

756 Handbook of Design and Analysis of Experiments

The aim of this chapter is to give a brief overview on algorithms for finding opti-
mal designs and to discuss selected algorithms that represent some of the current trends.
We also highlight algorithms that are more widely applicable for solving different types
of design problems. We discuss typical problems encountered in using an algorithmic
approach to find an optimal design and present alternative algorithms from other fields that
seem capable of generating efficient designs quickly and easily for any model and objec-
tive in the study. Along the way, we provide pseudocodes for some of these algorithms and
illustrate how they work to solve real and current design problems in biomedicine.

In recent years, experimental costs have risen steeply at many levels, and researchers
increasingly want to minimize study costs without having to sacrifice the quality of the sta-
tistical inference. Even with cost considerations aside, design issues are still very important.
This is because a poor design can provide unreliable answers either because the estimates
have unacceptably large variances or it provides low power for testing the main hypoth-
esis in the scientific study. In the extreme case, when the study is so badly designed, it
may not even provide an answer to the main scientific question of interest no matter how
large the sample size is. Thus all studies should be carefully planned at the onset. The
main goal or goals have to be clearly specified in advance, along with all model assump-
tions, constraints, and practical concerns associated with execution and interpretation of
the experiment.

Typically, a mathematical function called a design optimality criterion is formulated
to reflect the objectives of the study as accurately as possible. A common criterion is
D-optimality for estimating all model parameters; if only a subset of the model parameters
is of interest, Ds-optimality is used. Both criteria seek to minimize the volume of the con-
fidence region for the parameters of interest when errors are independent and normally
distributed. Other commonly used design criteria are discussed in other chapters of this
book. In general, given the user-selected criterion and a statistical model, the design prob-
lem is to find the optimal distinct combinations of the independent variables that define
the treatments for which the outcome is to be observed and the number of replicates (or
repeats) at each of these settings. Throughout the chapter, we assume the sample size n is
predetermined, and so we are not dealing with a sample size determination problem.

This chapter is organized as follows. In the next section, we discuss the need for a care-
fully designed study in a real biomedical problem and briefly describe how design issues
can be addressed using an algorithm described later in the chapter. Section 21.3 provides
background material, fundamental concepts in designs, common terminology, and tools
to find an optimal design as well as verify if a design is optimal. Section 21.4 reviews two
popular types of algorithms: Fedorov–Wynn type of algorithms and exchange algorithms.
In Section 21.5, we discuss alternative and modern algorithms for generating an optimal
design, and in Section 21.6, we present metaheuristic algorithms, which have more recently
been used as effective and practical tools for finding optimal designs. A summary is offered
in Section 21.7.

21.2 Algorithmic Approach to Solve a Design Problem: A Motivating Example

This section provides an example of a real problem that can be solved using an algorithm
discussed in this chapter. We omit technical details but provide references for the source
where the solution of the problem, codes, and implementation of the actual algorithm can

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 757 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 757

be found. The motivating application we have in mind is how to efficiently design a drug
discovery study.

21.2.1 Drug Discovery Problem

Identifying promising compounds from a vast collection of feasible compounds is a chal-
lenging problem in drug discovery. In this combinatorial chemistry problem, the goal is
to obtain sets of reagents (or monomers) that maximize certain efficacy of a compound.
However, here, the objective is to identify several “nearly best” combinations, rather than
only one “best” or optimal one. In a typical problem, a core molecule is identified to which
reagents are attached at multiple locations. Each attachment location may have tens or
hundreds of potential monomers. Mandal et al. (2009) considered an example where a com-
pound was created by attaching reagents to the three locations of a molecule, denoted by
A, B, and C (e.g., see Figure 21.1). In this kind of application, the compound library (the
set of all feasible compounds) may consist of 5 feasible substructures (monomers) at posi-
tion A, 35 at position B and 250 at position C. That is, the compound library has a total of
5 × 35 × 250 = 43,750 chemical compounds. Production of all these compounds for physi-
cal testing is expensive, and thus, it is desirable to select a relatively much smaller subset
of the compounds with desirable properties. Once a compound is created, its physiochem-
ical properties (namely, absorption/administration, distribution, metabolism, excretion,
toxicity [ADMET]) are used to identify whether the compound is promising or not.

Using terminology in the design literature, we have here three factors (A, B, and C) in
this design problem with 5, 35, and 250 levels, respectively. The response can be one of the
ADMET properties of a compound, identified by a particular combination of A, B, and C.
Alternatively, we can use a multiple-objective design discussed in Chapter 25 to capture the
goals of the study simultaneously. The purpose of this study is to identify level combina-
tions that can reduce, say, the toxicity of a compound, and at the same time increase, say, its
absorption capability. Mandal et al. (2007) used desirability scores to reduce the dual goals
to a single-objective optimization problem, where the goal was to identify a compound
(i.e., a design point) xi that will maximize the objective function ψ given by

ψ(xi) = ψ(xi1, . . . , xip). (21.1)

Here, p = 3 and (xi1, xi2, xi3) denote the levels of the three factors A, B, and C. Common
design techniques such as fractional factorial designs, orthogonal arrays, and response sur-
face designs have been widely used in screening studies for a long time in many industries
(Dean and Lewis 2006). In this problem, the outcome or outcomes do not have a known
mean structure in terms of the factors, and so they cannot be applied directly. With the

B

C

A

FIGURE 21.1
The core molecule of a compound with three reagent locations. Reprinted with permission from Mandal, A.,
Johnson, K., Wu, C.F.J., and Bornmeier, D., Identifying promising compounds in drug discovery: Genetic algo-
rithms and some new statistical techniques, J. Chem. Inf. Model., 47, 981–988. Copyright 2007 American Chemical
Society.

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 758 2015-4-13

�

�

�

�

�

�

758 Handbook of Design and Analysis of Experiments

advent of technology, more complicated assumptions are increasingly required, and con-
sequently, nonstandard design approaches are called for to solve the design problem. There
is no analytical description of the optimal design, and so an optimal design has to be found
using an algorithm. In this case, we applied a metaheuristic algorithm to search for an
optimal design.

Metaheuristic algorithms are gaining in popularity because of their many successes in
tackling high-dimensional optimization problems in other fields. The research in this field
is very active; there are many book chapters and monographs in this area, including some
that are updated in less than 2 years just to keep track of its rapid development; see Yang
(2008, 2010) for example. Metaheuristic algorithms are based on heuristics that are, in part
or all, not supported by theory. Here, we take the term heuristic to mean any procedure,
or algorithm, that is not wholly supported by theory but appears to work well in prac-
tice. For example, in the algorithm used by Cook and Nachtsheim (1982) described just
before Section 21.4.1, the authors offer a heuristic rule calling for restarting their algorithm
after every 25 iterations for greater efficiency. Such rules are provided based on empirical
experience and may not even apply to other problems or scenarios. The prefix meta- in
metaheuristic suggests that it has a common mission and not a specific one for a particu-
lar problem. In our case, a metaheuristic algorithm for finding an optimal design means
no specific feature of the design problem should greatly affect the functionality of the
algorithm. For instance, the algorithm should work whether the design criterion is differ-
entiable or not or whether the criterion is convex or not. Within broad limits, performance
of the algorithm should not depend on the number of design variables, and constraints on
those variables should be easily accommodated. Generally, only obvious modifications of
the algorithm are required, and they will include, for example, modifying the statistical
model or the design criterion or the design space. This is in contrast to, say, Fedorov-type
algorithms where it is assumed that the optimality criterion is differentiable. Of course, as
expected, more complicated optimization problems will require more time to solve.

Mandal et al. (2006) used a version of the genetic algorithm (GA), which is a meta-
heuristic algorithm, to find the optimal compounds to be created in the laboratory. In
their application, p = 3 and xi1, xi2, and xi3 take the possible values of A, B, and C,
respectively. The ψ in (21.1) is user selected and an example of such a function is given in
(21.9). In that section, we illustrate how GA can be applied to identify the settings that
maximize the objective function.

21.3 Background

Throughout this chapter, we assume that we are given a model, an optimality criterion,
and a fixed sample size n and the problem is how to take n independent observations from
the given design space in an optimal way. When a parametric approach is adopted, the ith
outcome yi is modeled by

yi = f (xi,β) + εi, i = 1, . . . , n. (21.2)

Here, εi is the error incurred at the ith trial, and all errors are independent, and each is
distributed as εi ∼ N(0,σ2). The mean response function f (x,β) is assumed to be known,
and β is the vector of unknown parameters. All outcomes are observed at user-selected

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 759 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 759

points from a specified compact design space X , which can be multidimensional. The
choice of the user-selected points x1,x2,. . ., xn ∈ X makes up the design for the study.

Linear models are commonly used in scientific studies. They arise as a special case of
(21.2) when the mean response function can be written as the product of two components
with f ′(xi,β)= f ′(xi)β and f (x) is the regression function with p linearly independent com-
ponents. In this chapter, linear models with heteroscedastic, independent, and normal
errors are called general linear models and defined by

yi = f ′(xi)β + εi, i = 1, . . . , n. (21.3)

We follow optimal design terminology and use an efficiency function λ(x) to incorporate
the heteroscedasticity by letting Var(εi) = σ2/λ(xi). When the efficiency function is known,
design issues can be directly addressed using a suitably transformed homoscedastic model.

Following convention, the goodness of a design is measured by the Fisher information
matrix. Apart from an unimportant multiplicative constant, this matrix is obtained by first
computing the expectation of the matrix of second derivatives of the log likelihood function
at a single point and then averaging it over all the design points and multiplying by −1.
For nonlinear models, this matrix depends on the unknown parameters β, but not so for
linear models. For example, if (21.3) holds and we have resources to take ni observations
at xi, i = 1, 2, . . . , k, then the information matrix for this linear model is

∑
nif (xi)f ′(xi),

apart from a multiplicative constant. When the model is nonlinear, we approximate the
information matrix by replacing f (xi) by the gradient of f (xi,β) in the aforementioned
matrix. The simplest way to construct optimal designs for nonlinear models is to assume
that nominal values forβ are available. After plugging the nominal values into the informa-
tion matrix, the criterion no longer depends on β, and the design problem can be solved
using design techniques for linear models. Because such optimal designs depend on the
nominal parameter values, they are termed locally optimal. In what is to follow, the infor-
mation matrix is denoted by M(ξ,β) where ξ is the design used to collect the data. If we
have a linear model, the information matrix does not depend on β, and we simply denote
it by M(ξ).

There are two types of optimal designs: approximate optimal designs and exact optimal
designs. Approximate designs, or continuous designs, are easier to find and study than
exact optimal designs. Approximate designs are essentially probability measures defined
on a compact and known design space. In our setting, we assume that we are given a pre-
selected sample size n, a design criterion, and a statistical model. The design questions
are how to choose design points in the design space to observe the outcome in an optimal
manner. For approximate designs, the optimization problem finds the optimal probabil-
ity measure that then has to be rounded appropriately to an exact design before it can
be implemented in practice. For example, if n is the total number of observations to be
taken in the experiment and the approximate design calls for taking observations at three
points x1, x2, and x3 from X with weights w1, w2, and w3, the implemented design takes nwi
observations at xi, i = 1, 2, 3 such that nw1 +nw2 +nw3 = n, and the weights are rounded so
that each of the summands is an integer. Clearly, the implemented design is not unique as
it depends on the rounding procedure. In contrast, an optimal exact design solves the opti-
mization problem by finding an optimal integer variable k, the number of unique design

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 760 2015-4-13

�

�

�

�

�

�

760 Handbook of Design and Analysis of Experiments

points, where these points x1, x2, . . . , xk are from the design space and the number of obser-
vations n1, n2, . . . , nk to be taken at each of these design points and subject to the constraint
that they sum to n.

The main appeal of working with approximate designs is that after formulating the
objective as a convex function of the information matrix, we have a convex optimization
problem, and equivalence theorems from convex analysis theory can be directly used to
verify whether a design is optimal or not (Kiefer 1974). In addition, algorithms are available
for finding different types of optimal approximate designs. There is no general algorithm
for finding an optimal exact design and no general analytical tool for confirming whether
an exact design is optimal or not.

The traditional way of finding an optimal design is a mathematical derivation based on
model assumptions. Frequently, tedious algebra and specialized mathematical tools that
exploit special properties of the regression functions are required to determine the optimal
design. For simpler problems, a closed form formula for the optimal design may be pos-
sible, but at other times only an analytical description is available. Generally, D-optimal
designs are considered the easiest to find compared with other types of optimal designs.
For example, if we wish to estimate only a subset of the whole set of model parameters
in the mean function, formulae can be complicated. Furthermore, a Ds-optimal design for
estimating selected parameters in a polynomial regression model is usually described by a
system of equations whose solutions provide the canonical moments of the optimal design,
and the optimal design is then recovered from the set of canonical moments in a complex
manner; details are given in a monograph by Dette and Studden (1997).

Having a formula or a closed-form description of the optimal design is helpful because
it facilitates studying properties of the optimal design, including its sensitivities to model
assumptions. However, a purely theoretical approach to describing an optimal design ana-
lytically can be limiting in terms of scope and usability. This is because the optimal design
is derived under a very strict set of assumptions, and so the theoretical results are appli-
cable to that specific setting only. For instance, model assumptions frequently made at
the onset of the study may be questionable, and it is desirable to know how robust the
optimal design is when some aspects of the model assumptions are changed. Chapter 20
elaborates on this important issue and how to make a design more robust to model assump-
tions. As a specific case, errors are often assumed to have a known homoscedastic structure
for simplicity. What is the corresponding optimal design when errors become slightly het-
eroscedastic? Unfortunately, the optimal design for the model with heteroscedastic errors
frequently cannot be deduced from the theory used for the construction of the optimal
design for the homoscedastic model because the technical justifications used in the deriva-
tion of an optimal design are usually quite involved and not applicable for another model.
This is especially true for nonlinear models where the method of proof usually depends
uniquely on the model and the design criterion. Consequently, analytical results stated for
a particular situation are of limited use in practice where different conditions apply.

Algorithms are therefore very useful for generating different types of optimal designs in
practice because they can overcome the problems just described associated with the theo-
retical approach. Algorithms generally do not depend on the mathematical complexities
of the problem as much as analytical approaches, and at the same time, they can also
apply more generally to different settings. Users provide design inputs for the problems of
interest, and the algorithm converges to the optimal design or a design close to the
optimum. If the criterion is differentiable, Fedorov-type algorithms have been shown to
converge to the optimal design for a linear model (Fedorov 1972). If the criterion is not
differentiable, we know of no algorithm that has been proven to converge to the optimal

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 761 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 761

design for a general linear or nonlinear model. An example of a class of nondifferentiable
criteria is the minimax type of criteria, where the optimal design minimizes the maximum
of some quantity and the minimization is over all designs associated with the defined space.
For example, in response surface estimation, one may want to find a design that minimizes
the maximum variance of the fitted response over a user-selected region. Another exam-
ple of a minimax criterion concerns parameter estimation, where there are variances from
a few estimated parameters in the model, and the goal is to find a design that minimizes
the maximum of these variances. A sample of work in the construction of minimax opti-
mal designs for linear models can be found in Wong (1992), Wong and Cook (1993), Brown
and Wong (2000), and Chen et al. (2008). King and Wong (2000) constructed minimax opti-
mal designs for the two-parameter logistic model when the nominal value of each of the
two parameters was known to belong to a specified interval, and the goal was to find a
minimax D-optimal design that minimized the maximal inefficiency that could arise from
misspecification of the nominal values from the two intervals. Using similar ideas, Berger
et al. (2000) found minimax optimal designs for the more complicated item theory response
models commonly used in education research. Most recently, Chen et al. (2014) proposed a
nature-inspired metaheuristic algorithm for finding minimax optimal designs in a general
nonlinear regression setup.

21.4 Review of Selected Traditional Algorithms

This section provides a review of a few algorithms to find an optimal design. Because there
are many algorithms in the field, we only discuss selected methods and provide a list of
references from the literature.

With continued advances in technology, computational cost has decreased rapidly, and
exhaustive search is becoming feasible for some problems thought to be prohibitively large
even a decade ago. However, with the advancement of science, the demand for more com-
plex designs has gone up as well. One example is in the construction of optimal designs
for event-related fMRI studies in Chapter 25. Finding alternatives to an exhaustive search
is always desirable, and some of the old algorithms, after suitable modifications, have
reemerged and have been shown to be quite successful in recent years. For example, Ranjan
et al. (2008) used the branch-and-bound algorithm proposed by Welch (1982) and found
sequential optimal designs for contour estimation using complex computer codes. Yang
et al. (2015) used Fedorov-type exchange algorithm, originally published in 1969 (see also
Fedorov 1972), to obtain optimal designs for generalized linear models. There are several
versions of the exchange algorithms where the search begins with a single random design,
and then each design point is considered for exchange with other points. The pair of points
chosen for exchange is the pair that results in maximum gain of the optimality criterion.
Similarly, the “DETMAX” algorithm proposed by Mitchell (1974) may be considered an
early version of an exchange algorithm. Atkinson et al. (2007) discussed variants of the
exchange algorithms.

To delineate properties of the algorithms, it is helpful to compare their performances
under a broad variety of settings and identify situations where some may outperform
others. This is typically a hard job as one has to carefully define the scope and choose appro-
priate algorithms to compare using several well-defined measures of goodness. Cook and
Nachtsheim (1980) compared several algorithms for constructing exact discrete D-optimal

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 762 2015-4-13

�

�

�

�

�

�

762 Handbook of Design and Analysis of Experiments

designs, and Johnson and Nachtsheim (1983) gave guidelines for constructing exact
D-optimal designs. Nguyen and Miller (1992) gave a comprehensive review of some
exchange algorithms for constructing exact discrete D-optimal designs.

Applications of computer algorithms to find an optimal design are abundant in the lit-
erature, and several of them can be found in our reference list. One such example is given
in Cook and Nachtsheim (1982), where they wanted to estimate uranium content in cali-
bration standards. They assumed the underlying model is a polynomial of degree 1–6 and
modified the Fedorov’s algorithm described in the succeeding text to find an optimal design
capable of providing maximal information on the uranium density along the uranium log.
The optimal design provides useful guidelines for how the alternating sequence of thin and
thick disks should be cut from the uranium–aluminum alloy log before the thin disks are
used for destructive analyses.

21.4.1 Fedorov–Wynn Type of Algorithms

The Fedorov–Wynn type of algorithm is one of the earliest and most notable algorithms for
finding optimal approximate designs that has enjoyed and continues to enjoy widespread
popularity. In the most basic form, the algorithm requires a starting design and a stopping
rule. It then proceeds by adding a point to the current design to form a new design and
repeats this sequence until it meets the condition of the stopping rule. There are several
modifications of the original algorithm currently in use; they may be tailored to a particular
application or modified to speed up the convergence. A main reason for its popularity is
that this is one of the few algorithms that can be proved to converge to the optimal design
if it runs long enough. Many subsequent algorithms in the literature for finding optimal
designs have features in common with the original Fedorov–Wynn algorithm.

As an illustration, we describe here the essential steps in the Fedorov–Wynn type of
algorithm for finding a D-optimal approximate design for a general linear model in (21.3)
where Var(y(x)) is σ2/λ(x) so that λ(x) is inversely proportional to the known variance of
the response at the point x ∈ X . Technical details of the algorithms including proof of its
convergence can be found in Fedorov (1972).

Pseudocode for Fedorov–Wynn algorithm:

1. Set t = 0 and choose a starting approximate design ξt with a nonsingular informa-
tion matrix.

2. Compute its information matrix M(ξt) and obtain its inverse M−1(ξt).
3. Determine the point x∗ that maximizes λ(x∗)d(x∗, ξt) over all x in the design space,

where d(x, ξt) = f ′(x∗)M−1(ξt)f (x∗) is the variance of the fitted response at the
point x∗, apart from an unimportant multiplicative constant.

4. Generate a new design ξt+1 = (1−αt)ξt+αtνx∗ where α′
is is a preselected sequence

of numbers between 0 and 1 such that its limit is 0 and its sum is infinite. Here, νx∗
is the one point design supported at the point x∗.

5. If the stopping rule is not met, replace t by t + 1 and go to step 2.

A more specific choice for αt is possible to increase the efficiency of the algorithm. For
example, one may choose αt to maximize the increase in the determinant of the current
information matrix at each iteration. It can be shown using simple calculus that this leads
to the choice of αt = ζt/[(ζt + p − 1)p] where ζt = λ(x∗)d(x∗, ξt−1) − p and p is the number
of the parameters in the mean function. In the last step, the stopping rule is user specified.

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 763 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 763

Two common examples of stopping rules are the maximum number of iterations allowed
and when λ(x∗)d(x∗, ξt)−p < κ for some small prespecified positive κ. The term λ(x)d(x, ξt)

appears frequently when we study D-optimal designs for heteroscedastic models and is
sometimes called the weighted variance of the response at the point x using design ξt.

21.4.2 Exchange Algorithms

In this section, we review several exchange strategies for exact designs. Some of these are
analogues of Fedorov–Wynn algorithms of the previous section for exact designs. Con-
sider the general optimization problem where the objective function is ψ(x1, . . . , xn) and
one wishes to maximize ψ(·) with respect to xj ∈ X , j = 1, . . . , n, where X is the design
space. Again, let us use D-optimal designs for linear regression as an example. Suppose an
observation is taken at the design point xi, and the outcome is modeled as yi = f ′(xi)β+εi,
where εi ∼ N(0,σ2) and all errors are independent. D-optimality corresponds to maximiz-
ing ψ(x1, . . . , xn) = det [f ′(X)f (X)] where X′ = (x1, . . . , xn) and f ′(X) = (f (x1), . . . , f (xn)). In
other words, each design point {xj} corresponds to a row of the model matrix f (X).

Exchange algorithms iteratively modify the current design by deleting existing design
points and adding new points from the design space X in an effort to increase the design
criterion ψ. Multiple runs with different starting designs are often performed due to issues
with local maximizers. Well-known algorithms that fall in this category include Wynn’s
(1972) algorithm, Fedorov’s (1972) algorithm and its modification (Cook and Nachtsheim
1980), and k-exchange algorithms (Johnson and Nachtsheim 1983). A basic step in these
algorithms is exchanging a point xi in the current design with some x∗ ∈ X where x∗ is
chosen such that the improvement in the objective function ψ is the greatest. They differ,
however, in the choice of xi. For Fedorov’s algorithm, xi is chosen such that the improve-
ment in ψ after the exchange is the greatest among all xi. Thus, each exchange effectively
performs n optimizations, one for each xi in the current design, but only implements the
best of these exchanges in the next design. Cook and Nachtsheim (1980) propose a mod-
ified Fedorov algorithm, where each iteration performs n exchanges, one for each xi. The
following are basic pseudocodes for these algorithms:

Pseudocode for Fedorov algorithm:

1. Choose the initial design (x0
1, x0

2, . . . , x0
n).

2. At iteration t, suppose the current design is (xt
1, xt

2, . . . , xt
n).

a. For 1 ≤ j ≤ n, compute ψj ≡ maxx ψ(xt
1, . . . , xt

j−1, x, xt
j+1, . . . , xt

n) where the
maximization is over all x ∈ X . Let x∗

j be the corresponding maximizer.

b. Find j∗ = arg maxj ψj. Set xt+1
k = x∗

k , k = j∗ and xt+1
k = xt

k, k �= j∗.
3. Stop when there is no appreciable improvement in ψ.

Pseudocode for modified Fedorov algorithm:

1. Choose the initial design (x0
1, x0

2, . . . , x0
n).

2. At iteration t, suppose the current design is (xt
1, xt

2, . . . , xt
n). For j = 1, . . . , n in turn,

set xt+1
j = arg maxx ψ(xt+1

1 , . . . , xt+1
j−1, x, xt

j+1, . . . , xt
n) where the maximization is over

all x ∈ X .
3. Stop when there is no appreciable improvement in ψ.

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 764 2015-4-13

�

�

�

�

�

�

764 Handbook of Design and Analysis of Experiments

In the k-exchange method, a subset of k current design points is chosen for exchange
(replacement). These k points are often chosen so that deletion of each results in the smallest
k decreases inψ. More sophisticated algorithms include the DETMAX algorithm of Mitchell
(1974). For some design criteria, these algorithms exploit special relationships between ψ

before and after the exchange. For example, for D-optimality, when a design point xi is
replaced by another point x∗ ∈ X , the multiplicative change in ψ is given by

�(xi, x∗) = 1 + v(x∗, x∗) − v(xi, xi) + v2(xi, x∗) − v(x∗, x∗)v(xi, xi), (21.4)

where v(a, b) = f ′(a)M−1f (b) and M is the information matrix before the exchange, M =
f ′(X)f (X). There is also a simple formula to compute M−1 after each exchange without any
full matrix inversion.

Meyer and Nachtsheim (1995) proposed a cyclic coordinate-exchange algorithm and
showed its effectiveness on several common design criteria such as the D-criterion and
the linear criteria (i.e., linear functionals of the inverse information matrix). Rodriguez
et al. (2010) used a similar strategy for G-optimal designs. In its basic form, the cyclic
coordinate-exchange algorithm works as follows. Suppose each design point can be writ-
ten as a vector with p coordinates, and suppose the design space X is the Cartesian product
of the corresponding p subspaces. Writing the design criterion as

ψ(x1, . . . , xn) ≡ ψ(x11, . . . , x1p, . . . , xn1, . . . , xnp) (21.5)

where xi ≡ (xi1, . . . , xip) ∈ X , we iteratively optimize ψ over each xij, i = 1, . . . , n, j =
1, . . . , p in turn. Thus, the method is an example of the widely used cyclic ascent algorithm.
Here, each xij may be discrete or continuous. For a continuous one-dimensional xij, one can
use various optimization routines such as golden-section search or parabolic interpolation
(Rodriguez et al. 2010). One cycle of the algorithm consists of a sequence of np optimiza-
tions, one over each variable xij. The algorithm is stopped either when there is not much
improvement in ψ after the latest cycle or when a prespecified number of cycles have been
performed. As with other exchange methods, multiple runs with different starting values
are recommended.

21.4.3 Issues with Algorithms

Many algorithms proposed in the literature typically proceed sequentially as follows. The
user first inputs quantities that define the design problem. They typically include the
statistical model, the design space, and the optimality criterion. If the model is nonlin-
ear, the user would also have to supply nominal values for the model parameters before
running the algorithm. The user then provides a (nonsingular) starting design, and the
algorithm iterates until the stopping criterion is satisfied. For approximate designs, the
procedure typically iterates by mixing the current design with a specially selected point to
form a new design; this can be done simply by taking a convex combination of the design
and the point using a sequence of weights that converges but not prematurely. An example
of such a sequence of weights is to use 1/n at the nth iteration. For a differentiable design
criterion, such as D-optimality, the selected point to introduce at each iteration is the point
that maximizes the weighted variance function. The user also specifies a stopping criterion
to tell the algorithm when to stop; this can be in terms of either the maximum number
of iterations allowed or the minimum change in the criterion value over successive itera-
tions. These steps are clearly exemplified in the Fedorov–Wynn type of algorithms and its

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 765 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 765

many modifications. Technical details including proof of their convergence can be found
in design monographs such as Fedorov (1972), Silvey (1980), and Pázman (1986). Cook and
Nachtsheim (1980) provide a review and comparisons of performance of various algo-
rithms in different settings.

With algorithms, the main issues are proof of convergence, speed of convergence, ease
of use and implementation, how applicable they are to find optimal designs for different
types of problems, and how their performance compares to that of competing algorithms.
Therefore, care should be exercised in the selection of an appropriate algorithm. For exam-
ple, the Fedorov–Wynn type of algorithms introduces a point to the current design at each
iteration, and frequently the generated design has many support points clustered around
the true support points of the optimal design. Sometimes, periodic collapsing of these clus-
ters of points to single points can accelerate convergence. Typical rules for collapsing the
clusters of points into single points may be applied after a certain number of iterations, say,
100, with the expectation that this number may vary from problem to problem. If the rule
for collapsing accumulated points is not appropriate, it may take a longer time to find the
optimal design. Some algorithms, such as particle swarm optimization (PSO)-based algo-
rithms described later on in the chapter, do not have this issue. However, mathematical
proof of convergence of Fedorov–Wynn type of algorithms is available, but none exists for
particle swarm–based algorithms.

Another issue with algorithms is that they may get stuck at some design and have dif-
ficulty in moving away from it in the direction of the optimal design. This can happen
randomly or in part because of a poor choice of the starting design. Further, even though
an algorithm has been proven to converge for some types of models, the result may not
hold for others. For example, we recall the proof of convergence of Fedorov–Wynn type of
algorithms was given for linear models only. When we apply them to nonlinear models or
models with random effects, the algorithm may not work well.

A distinguishing feature of approximate designs is that when the criterion is a convex
function of the information matrix, it is possible to verify whether the generated design is
optimal or not. When the design space is low dimensional, a graphical plot can confirm
optimality using convex analysis theory. The same theory also provides a lower bound
for the efficiency of the generated design if it is not optimal. The case with exact optimal
designs is very different. Frequently, there is no guarantee that the design generated by the
algorithm is indeed the optimal one because a general tool for confirming optimality is not
available. Researchers often show that their proposed algorithm works better by producing
a design that is superior to those obtained from other algorithms.

21.5 Alternative Algorithms for Finding Optimal Designs

As mentioned before, there are other numerical tools for finding optimal designs. For exam-
ple, Chaloner and Larntz (1989) used Nelder–Mead method to search for Bayesian A-,
c-, and D-optimal designs for logistic regression models with one independent variable.
Purely exchange-type algorithms are known to perform extremely poorly in this context.
One can also rewrite the approximate design problem as an unconstrained optimization
problem and apply the popular conjugate gradient or quasi-Newton methods to solve the
resulting optimization problem (Atkinson et al. 2007). These are powerful and general opti-
mization methods, which can be applied to find various types of optimal designs for a wide

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 766 2015-4-13

�

�

�

�

�

�

766 Handbook of Design and Analysis of Experiments

variety of models and design criteria. However, they may not be the best ways for find-
ing approximate designs (Yu 2011) because they can be quite slow and convergence is not
guaranteed. We elaborate on this a bit in Section 21.5.1.

Another class of methods that has recently gained popularity is mathematical program-
ming methods. Some of these methods were used as early as the 1970s but only more
recently have statisticians started investigating how such methods work for finding opti-
mal designs. Examples of such methods include semidefinite programming (SDP) that is
well discussed in Vandenberghe and Boyd (1996) and semi-infinite programming (SIP) that
is well discussed in Reemtsen and Ruckman (1998). In SDP, one optimizes a linear function
subject to linear constraints on positive semidefinite matrices. Depending on the design cri-
teria, this may not be an easy task. For example, it is relatively easy for A- or E-optimality,
where the optimization problem can be rewritten as an SDP and then solved using stan-
dard methods such as interior point methods. Atashgah and Seifi (2009) discussed SDP for
handling optimal design for multiresponse experiments. The examples provided by the
authors were quite illuminating, and the approach seemed more versatile and powerful
than the algorithm proposed by Chang (1997) for finding D-optimal designs for multiple
response surface models constructed from polynomials. See also Papp (2012) and Duarte
and Wong (2014a) who applied SDP to find optimal designs for rational polynomial mod-
els and several types of Bayesian optimal design problems, respectively. Filová et al. (2012)
also applied SDP to find another type of optimal designs under a nondifferentiable crite-
rion, namely, a design that maximizes the minimum of some measure of goodness in an
experiment. Duarte and Wong (2014b) applied SIP to find minimax optimal designs for
nonlinear models. Such mathematical programming tools have long been widely used in
the engineering field for various optimization purposes, and it is a curiosity why such
methods are not as popular in statistics as other optimization tools.

Another class of algorithms with a long history (explained in more detail in
Section 21.5.1) for finding optimal designs is the class of multiplicative algorithms. Early
work in this area was initiated by Titterington (1976, 1978). Recent theoretical advances
and new ways to increase the speed of such algorithms have resulted in its renewed inter-
est. In particular, Mandal and Torsney (2006) applied multiplicative algorithms to clusters
of design points for better efficiency. Harman and Pronzato (2007) proposed methods to
exclude nonoptimal design points so as to reduce the dimension of the problem. Dette
et al. (2008) modified the multiplicative algorithm to take larger steps at each iteration but
still maintain monotonic convergence. Yu (2011) combined the multiplicative algorithm, a
Fedorov exchange algorithm, and a nearest neighbor exchange (NNE) strategy to form the
cocktail algorithm, which appears to be much faster without sacrificing monotone conver-
gence; see Section 21.5.3 for further discussion. See also Torsney and Martin-Martin (2009)
who used multiplicative algorithms to search for optimal designs when responses are corre-
lated. Harman (2014) proposed easy-to-implement multiplicative methods for computing
D-optimal stratified designs. Here, stratified refers to allocating given proportions of tri-
als to selected nonoverlapping partitions of the design space. Harman (2014) proposed
two methods: one using a renormalization heuristic and the other using a barycentric
algorithm.

Recently, Yang, Biedermann and Tang (2013) proposed a new iterative algorithm for
computing approximate designs. At each iteration, a Newton-type algorithm is used to
find the optimal weights given the current set of support points; a new support point is
also added as in Fedorov’s exchange method to ensure that true support points are not
accidentally omitted. The method seems very promising (the authors reported computa-
tional speeds even better than the cocktail algorithm). Although the Newton steps make

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 767 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 767

the implementation more involved, their algorithm readily applies to various models and
design criteria.

The next few subsections describe a couple of special algorithms that seem to have gar-
nered increased interest of late. We provide some details, including their relationship to
exchange algorithms, and also demonstrate how to use them for a few specific applications
in the pharmaceutical arena.

21.5.1 Multiplicative Algorithms

Multiplicative algorithms are a class of simple procedures proposed by Titterington (1976,
1978) to find approximate designs in a discrete design space; see also Silvey et al. (1978).
Unlike Fedorov–Wynn type of algorithms, a multiplicative algorithm at each iteration
adjusts the whole vector w = (w1, . . . , wn) of design weights. Note that weights are com-
puted for all points in the design space. Each weight is adjusted by a multiplicative factor so
that relatively more weight is placed on design points whose increased weight may result
in a larger gain in the objective function. Mathematically, suppose ψ(w) is the objective
function (design criterion evaluated at the Fisher information matrix corresponding to the
weight allocation (w) and then each iteration of a general multiplicative algorithm can be
written as

w(t+1)

i ∝ w(t)
i

(
∂ψ(w(t))

∂wi

)ρ

, i = 1, . . . , n, (21.6)

where ρ > 0 and the ρth power of the derivative serves as the multiplicative factor (other
functions are also possible).

This simple and general algorithm has received considerable attention; see, for example,
Titterington (1976, 1978), Silvey et al. (1978), Pázman (1986), Fellman (1989), Pukelsheim
and Torsney (1991), Mandal and Torsney (2006), Harman and Pronzato (2007), Dette
et al. (2008), Yu (2010), and Yu (2011). On the theoretical side, Yu (2010) derived general
conditions under which the multiplicative algorithm monotonically increases the objec-
tive function, which yields stable convergence. One main advantage of multiplicative
algorithms is their simplicity, as illustrated by the following pseudocode.

Pseudocode for multiplicative algorithm (ρ > 0):

1. Choose starting weights w(0) = (w(0)

1 , w(0)

2 , . . . , w(0)
n) such that w(0)

j > 0 for all 1 ≤
j ≤ n.

2. At iteration t, suppose the current weights are w(t) = (w(t)
1 , w(t)

2 , . . . , w(t)
n). Compute

χj = ∂ψ(w)/∂wj at w = w(t), and form w(t+1)

j = w(t)
j χ

ρ
j /

∑
i w(t)

i χ
ρ
i , 1 ≤ j ≤ n.

3. Iterate steps 1 and 2 until convergence.

Despite their simplicity and (in certain cases) monotonic convergence, multiplicative
algorithms are often slow. In Section 21.5.3, we discuss some improvements and alterna-
tives. Some recent multiplicative algorithms are based on the Fedorov–Wynn algorithm
and its modifications.

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 768 2015-4-13

�

�

�

�

�

�

768 Handbook of Design and Analysis of Experiments

21.5.2 Application of Multiplicative Algorithm in Pharmacology

Let us consider the following compartmental model that is commonly used in pharmacoki-
netics. The mean of the response variable at time x is modeled as

η(x,θ) = θ3[exp(−θ2x) − exp(−θ1x)], x ≥ 0. (21.7)

Frequently, the mean response measures the movement of the drug concentration in the
target compartment in the body, say, in the liver. Common interests in such studies are to
estimate the time the drug spends inside the compartment, the peak concentration in the
compartment, and the time it takes for the compartment to receive the maximum concen-
tration. Our interest here is to select the optimal number of time points and the optimal
number of subjects from which responses will be taken at each of these time points.

Since this is a nonlinear model, the optimal design will depend on the parame-
ter θ= (θ1, θ2, θ3)

′. We compute the locally D-optimal design at the prior guess θ=
(4.29, 0.0589, 21.80)′ (see Atkinson et al. 2007, Example 17.4). The design space is the
interval [0, 20) (in minutes) discretized, specifically x ∈ {x1, x2, . . . , xn} where n = 200 and
xj = (j − 1)/10. The D-optimality criterion corresponds to

ψD(w) = log det M(w), M(w) =
n∑

i=1

wif (xi,θ)f ′(xi,θ), (21.8)

where the gradient vector f ′(x,θ) ≡ ∇θη(x,θ), often called the parameter sensitivity, is
of length m = 3. We note that here the information matrix depends only on the weights
since the whole space has been discretized, and the design problem reduces to just finding
the optimal weights at these points. The multiplicative algorithm (21.6) (using ρ = 1, a
common choice that has a convergence guarantee for the D criterion) takes a particularly
simple form:

w(t+1)

i = w(t)
i m−1f ′(xi,θ)M−1

(
w(t)

)
f (xi,θ), i = 1, . . . , n.

Table 21.1 displays the design points and their weights after 2,000, 10,000, and 50,000
iterations of this algorithm. Design weights less than 0.01 are omitted. Here, the optimal
design should have weights 1/3 at each of x = 0.2, 1.4 and 18.4. As one can readily see,
the convergence of the algorithm is slow. After a large number of iterations, there is still a
noticeable clustering of design weights around x = 18.4.

TABLE 21.1

Multiplicative Algorithm for D-Optimal Design for a Compartmental Model

x 0.2 1.3 1.4 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9

w(2,000) 0.33 0.01 0.32 0.02 0.03 0.04 0.04 0.05 0.04 0.04 0.03 0.02 0.01

w(10,000) 0.33 0.33 0.03 0.07 0.10 0.08 0.03
w(50,000) 0.33 0.33 0.04 0.23 0.07

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 769 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 769

21.5.3 Cocktail Algorithm

Several exchange strategies exist for finding approximate designs, similar to the case of
exact designs. To describe these exchange strategies, let us define the directional derivative
d(i, w) = ∂ψ((1 − δ)w + δei)/∂δ|δ=0+ where ei is the vector that assigns all the mass to the
ith design point, i = 1, . . . , n, and zero to all other design points. As before, ψ is the objec-
tive function, and w is the vector of design weights. We use the vertex direction method
(VDM) (Fedorov, 1972), which is a simple iterative method: given the current w(t), we
first select the index imax with the maximum directional derivative, that is, d

(
imax, w(t)) =

max1≤i≤n d
(
i, w(t)), and then set the next iteration w(t + 1) as the maximizer of ψ(w) along

the line segment w = (1 − δ)w(t) + δeimax , δ ∈ [0, 1]. This one-dimensional maximization
is usually not too difficult and can often be done in closed form. Plainly, each iteration
of VDM moves the vector of weights w(t) toward the vertex of maximum directional
derivative.

Similar to VDM, one can define a general exchange between two design points i and j as
follows. Given the current w(t), set the new vector w(t + 1) as the maximizer of ψ(w) along
the line segment w = w(t) + δ(ej − ei), δ ∈ [−wj, wi]. In other words, with the weights at
other design points unchanged, those between i and j are allocated so that the objective
function is maximized. Such exchanges can set the mass at a design point at zero in one
iteration, unlike the multiplicative algorithm. For example, if δ = wi, then all the mass on
i is transferred to j, and w(t+1)

i = 0. Exchanging between two design points forms the basis
of Bohning’s (1986) vertex exchange method (VEM), which uses a special choice of i and j at
each iteration. Specifically, at iteration t, VEM chooses imin and imax such that

d
(
imin, w(t)) = min

{
d
(
i, w(t)) : w(t)

i > 0
}

;

d
(
imax, w(t)) = max

{
d
(
i, w(t)) : 1 ≤ i ≤ n

}
.

In other words, we exchange mass between a design point with maximum directional
derivative and another point (among those that have positive mass) with minimum
directional derivative.

Another strategy, known as the NNE, is critical to the cocktail algorithm of Yu (2011). At
each iteration of NNE, we first determine an ordering on the set of support points (design
points with positive mass). An ideal ordering should place similar design points close to
each other. For example, suppose the design variable is a discretization of the interval [0, 1],
then an obvious choice is the natural ordering of the real numbers. (Note that design points
with zero mass are excluded.) In general, there is no definite rule for choosing an ordering.
In the context of D-optimal designs for regression problems, Yu (2011) advocates dynam-
ically choosing an ordering at each iteration based on the L1 distances between vectors of
explanatory variables that the design points represent. Once an ordering is chosen, one
performs pairwise exchanges between consecutive points on the list. For example, if the
design space has four points {x1, x2, x3, x4} and the current ordering is (x3, x1, x4) (design
point x2 has zero mass and is excluded), then we exchange mass between x3 and x1 and then
between x1 and x4. Each exchange involves a one-dimensional maximization that improves
the design.

The cocktail algorithm of Yu (2011) builds on both the multiplicative algorithm and
exchange strategies. Each iteration of the cocktail algorithm is a simple concatenation of
one iteration of VDM, one iteration of the multiplicative algorithm, and the full sequence

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 770 2015-4-13

�

�

�

�

�

�

770 Handbook of Design and Analysis of Experiments

of NNE described earlier. Heuristically, NNE uses local exchanges that might complement
the global nature of the multiplicative algorithm. NNE can also quickly eliminate design
points (i.e., setting their masses to zero) because of the many pairwise exchanges involved.
The VDM step ensures that a design point eliminated by NNE has a chance of ressurrection
if indeed it should receive positive mass in the optimal solution; this enables theoretical
proofs of convergence (to the global optimum). Empirical comparisons of the cocktail algo-
rithm with VEM as well as several off-the-shelf optimization methods (e.g., Nelder–Mead,
conjugate gradient, and quasi-Newton) show that the cocktail algorithm improves upon
traditional algorithms considerably in terms of computational speed, using effectively the
same stopping criterion.

21.5.4 Application of a Cocktail Algorithm in Pharmacology

As an example, let us consider the compartmental model (21.7) again. In addition to
D-optimality, we also consider c-optimality, which aims to minimize the variance of an
estimated scalar function of the vector of model parameters θ, say, g(θ). The optimality
criterion can be written as

ψc(w) = c′M−1(w)c,

where M is as in (21.8) and c′ ≡ ∇g(θ). Because c-optimal designs often result in singular
M matrices, a small positive quantity is added to the diagonals of M(w) to stabilize the
matrix inversion mentioned earlier. We emphasize that this is introduced merely to avoid
numerical difficulties and does not correspond to what is intended by the c criterion. Two
functions of interest (see Atkinson et al. 2007, Example 17.4) are the area under the curve
(AUC), which is defined as g1(θ) = θ3/θ2 − θ3/θ1, and the time to maximum concentra-
tion (TMC), which is defined as g2(θ) = (log θ1 − log θ2)/(θ1 − θ2). Table 21.2 displays the
D-optimal design as well as the c-optimal designs for g1 and g2 found by the cocktail algo-
rithm. These generally agree with Table 17.1 of Atkinson et al. (2007); slight discrepancies
exist because we discretize the design space. In this example, it takes the cocktail algorithm
only a few iterations to obtain the D-optimal design to the degree of accuracy as displayed

TABLE 21.2

Cocktail Algorithm for D- and c-Optimal Designs for a
Compartmental Model

Criterion x Weight Criterion Value

D-optimality 0.2 0.3333 7.3713
1.4 0.3333

18.4 0.3333

AUC 0.2 0.0137 2190.2
17.5 0.1459

17.6 0.8404
TMC 0.2 0.5916 0.028439

3.4 0.3025
3.5 0.1059

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 771 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 771

in Table 21.2. However, it takes considerably more iterations (hundreds or even thousands)
to find the c-optimal designs.

21.6 Metaheuristic Algorithms

Recently, evolutionary algorithms have become more popular in finding optimal designs
for industrial experiments. Here, we present some examples. Accelerated life testing has
been used to study the degradation of reliable components of materials with high risk,
such as nuclear reactors and aerospace vehicles. In order to set up a degradation testing
procedure, several objectives have to be considered. For example, in such experiments, we
want to have an adequate model for the degradation process to understand the relation-
ship between degradation and failure time and, at the same time, high-quality estimates
of model parameters. This leads to a highly nonlinear multiobjective optimization prob-
lem. Marseguerra et al. (2003) proposed using a GA for finding optimal designs and found
nondominated solutions with two objective functions for estimating the test parameters
efficiently. Similar algorithms are used for finding optimal designs in product assembly
line as well. Traditional fractional factorial and response surface type of designs cannot
be used when practical restrictions are imposed on factor-level combinations. Sexton et al.
(2006) considered exchange algorithms and GA to compare their performances on prod-
uct designs. In the two hydraulic gear pump examples and one electroacoustic transducer
example they considered, the exchange algorithm performed better than the GA, although
the authors noted that in the early stages of searching, GA performed better, and hence
they recommended a combination of two algorithms, with GA to be used at the early stages
before switching to the exchange algorithms.

GA are often used in obtaining robust parameter designs in the presence of control and
noise variables, where low prediction variances for the mean response are often desirable.
Goldfarb et al. (2005) used GA to obtain efficient designs for mixture processes. With the
examples of soap manufacturing and another tightly constrained mixture problem, they
obtained D-efficient designs. Rodriguez et al. (2009) used GA as well to construct optimal
designs using a desirability score function (Harrington 1965) to combine dual objectives of
minimizing the variances for the mean and slope into one objective function.

We focus on such algorithms inspired by nature, and so they are generally referred
to as nature-inspired metaheuristic algorithms. The genesis of such algorithms could be
based on a variety of observations from nature, for example, how ants colonize or how
fish swim in large schools when they perceive a threat or birds fly as a flock in search of
food. Generally, there is no mathematical proof that shows metaheuristic algorithms will
converge to the optimum; that is why they are called metaheuristic in the first place! How-
ever, repeated experiences from researchers in many fields report that they frequently do
find the optimum, and if they do not, these algorithms get to the proximity of the optimum
quickly.

There are many metaheuristic algorithms in the optimization literature, and it is a curios-
ity why statisticians do not seem to explore and use more of them in their work. The most
common examples in the statistical literature are simulated annealing (SA) and GA, dis-
cussed in the succeeding text. There are many newer ones, such as PSO, bat algorithm,
differential evolution algorithm, and cuckoo algorithm. For space consideration, we dis-
cuss in the succeeding text only PSO, which is just beginning to appear in the statistical

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 772 2015-4-13

�

�

�

�

�

�

772 Handbook of Design and Analysis of Experiments

literature. All are nature-inspired algorithms with different search techniques based on
metaheuristics. Yang (2010) has a brief but good discussion on the other algorithms.

21.6.1 Genetic Algorithms

GA are one of the evolutionary algorithms that are very popular for finding exact opti-
mal designs. Developed by John Holland and his colleagues at the University of Michigan
(Holland 1975), these algorithms mimic Darwin’s theory of evolution. The metaphors of
natural selection, crossbreeding, and mutation have been helpful in providing a frame-
work to explain how and why GA work. In our context, this translates to the heuristic that
from two “good” design points, one should sometimes be able to generate an even “bet-
ter” design point. The objective function to be optimized, denoted by ψ as in (21.5), can be
treated as a black box without the mathematical requirements of continuity, differentiability,
convexity, or other properties required by many traditional algorithms. Because of its sim-
plicity, this algorithm has also gained popularity in finding optimal designs for computer
experiments (see Bates et al. 2003; Liefvendahl and Stocki 2006; Crombecq and Dhaene
2010). It is an iterative algorithm that starts with a set of candidates and can explore very
large spaces of candidate solutions. Convergence is usually not guaranteed but GA often
yield satisfactory results.

In an attempt to understand how GA function as optimizers, Reeves and Wright (1999)
considered GA as a form of sequential experimental design. (For details of sequential
design algorithms, see Chapter 19.) Recently, GA have been used quite successfully in
solving statistical problems, particularly for finding near-optimal designs (Hamada et al.
2001; Heredia-Langner et al. 2003, 2004). In this chapter, we will occasionally deviate
from what is used in the optimization literature and present our algorithm in the context
of search for optimal designs. One of the simplest version of the algorithm process is as
follows:

1. Solution representation: For a single design point, a factor at a particular level is
called a gene. The factor combinations, that is, the entire design point or run, are
called a chromosome. Using the notation of Section 21.4.2, xi = (xi1, . . . , xip) is a
chromosome, whereas each xij is called a gene. Note that it is possible to define
the chromosome a little differently, as we will see in the Broudiscou et al. (1996)
example later. Initially a large population of random candidate solutions (design
points) is generated; these are then continually transformed following steps (2)
and (3).

2. Select the best and eliminate the worst design point on the basis of a fitness crite-
rion (e.g., the higher the better for a maximization problem) to generate the next
population of design points.

3. Reproduce to transform the population into another set of solutions by applying the
genetic operations of crossover and mutation. Different variants of crossover and
mutations are available in literature.
a. Crossover : A pair of design points (chromosomes) are split at a random position,

and the head of one is combined with the tail of other and vice versa.
b. Mutation : The state (i.e., level) of a randomly chosen factor is changed. This

helps the search avoid being trapped at local optima.
4. Repeat steps (2) and (3) until some convergence criterion is met (usually no

significant improvement for several iterations).

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 773 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 773

Note that in this sketched algorithm, it is more in the line of solving an optimization
problem than a design problem. For example, we inherently assumed that all the designs
we consider consist of only one run, which is not the case for most of our problems. But the
aforementioned algorithm can be modified very easily to solve the standard design prob-
lems (e.g., finding orthogonal arrays with fixed run size). Next, we illustrate the algorithm
stated earlier with an optimization problem, mainly for simplicity. After that, we will dis-
cuss common design problems where the entire design with multiple runs is taken as a
chromosome, and the collection of such designs represent the population.

Let us illustrate the algorithm sketched earlier with a black box function provided by Levy
and Montalvo (1985):

ψ(xi1, . . . , xip) = sin2
{
π

(
xi1 + 2

4

)}
+

p−1∑

k=1

(
xik − 2

4

)2 {
1 + 10 sin2

(
π

(
xik + 2

4

)
+ 1

)}

+
(

xip − 2
4

)2 {
1 + sin2 (

2π
(
xip − 1

)) }
. (21.9)

Here, p = 4 and only integer values of xik’s (0 ≤ xik ≤ 10) are considered. This corresponds
to an experiment with four factors each at 11 levels denoted by 0, 1, . . . , 10. Suppose we
start with a random population of size 10 given in Table 21.3. In this case, the ten runs
x1 = (2, 1, 4, 5)′, . . . , x10 = (0, 9, 8, 7)′ are the ten chromosomes that constitute the initial
population.

Suppose that the best two design points, namely, (10, 6, 7, 8)′ and (0, 9, 8, 7), are chosen
as parents to reproduce Then suppose crossover happens at location 2, so the new sets of
design points will be (10, 6, 8, 7)′ and (0, 9, 7, 8)′ (the first two factors of the first design point
are combined with the last two factors of the second design point and vice versa). Now
suppose for (10, 6, 8, 7)′ the mutation happens at location 3 (for factor C) and the level is
changed from 8 to 7. Then the resulting design point becomes (10, 6, 7, 7)′ with the value of
Levy–Montalvo function as 26.81. Note that this value is worse than (10, 6, 7, 8)′ and that
is not unexpected. What is expected is that, on average, when 10 new offsprings (design
points) are generated in this fashion, some of them will be “good.” Those new 10 offsprings

TABLE 21.3

Initial Population for Levy–Montalvo Example

A B C D ψ

2 1 4 5 1.63

3 4 1 7 3.13
1 1 8 8 11.66

10 6 7 8 26.81

9 5 5 9 5.20
7 8 2 8 11.57

2 3 5 3 1.54
6 5 4 6 2.80

5 9 5 8 8.02
0 9 8 7 15.83

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 774 2015-4-13

�

�

�

�

�

�

774 Handbook of Design and Analysis of Experiments

will constitute the second generation of the population, and the same process continues.
Usually hundreds or even thousands of generations are needed to obtain a near-optimal
design. Mandal et al. (2006) used an efficient modification of GA on this same example and
showed that it produced good results.

Broudiscou et al. (1996) used GA for constructing D-optimal designs, in the context of
an antigen/antibody test to diagnose an infection to a virus. There were six factors with a
total of 7 × 6 × 6 × 5 × 3 × 3 = 11, 340 combinations. In this example, the basic exchange
algorithms discussed in Section 21.4.2 are not very efficient. Consider a design with n =
28 points. In Fedorov’s exchange algorithm, during each iteration, a design point xi will
be replaced by the point x∗ that maximizes �(xi, x∗) of (21.4). Also, one has to evaluate
all the pairs (xi, x∗). Naturally, when the total number of candidate design points is high
(11,340 in this case), even with moderate run size (28 in this case), the algorithm will be slow
because finding the “best” combination, at each iteration, is time-consuming. Stochastic
search-based algorithms, such as GA, turn out to be very efficient in such situations. The
authors reported a D-optimal design in Table 5 of their paper, for a mixed-level factorial
main effects model. In this example, the model matrix X has 1 + 6 + 5 × 2 + 4 + 2 × 2 = 25
columns. The objective function is ψ(x1, . . . , xn) = det [f ′(X)f (X)], as mentioned before, and
our objective is to maximize ψ. In this case, the chromosomes are possible designs obtained
by juxtaposing the rows of the design matrix, such as (x′

1, x′
2, . . . , x′

28)
′. Each chromosome

has 6 × 28 = 168 genes.
Hamada et al. (2001) used GA to find near-optimal Bayesian designs for regression mod-

els. The objective function ψ in their case was the expected Shannon information gain of
the posterior distribution. It is equivalent to choosing designs that maximize the expected
Kullback–Leibler distance between the prior and posterior distributions (Chaloner and
Verdinelli 1995). The reader is referred to the pseudocode given in the appendix of their
paper. They also considered a design with p factors and n runs, and each factor level as a
gene such that each chromosome (where it is the design) had np genes.

Kao et al. (2009) used GA to construct optimal designs for event-related fMRI studies.
The authors considered multiple objectives, and ψ was defined to reflect all of them. In that
application, the chromosomes can be 300–600 genes long, each gene taking 5–13 different
values. See Chapter 25 for a detailed discussion of their approach.

Pseudocode for GA:

1. Generation 0: Generate M random designs, evaluate them by the objective function
ψ, and order them by their fitness (ψ-values).

2. For generations g = 1, . . . , G, the following apply:
a. With probability proportional to fitness, draw with replacement M/2 pairs of

designs to crossover—select a random cut point, and exchange the correspond-
ing fractions of genes in paired designs to generate M offspring designs.

b. Randomly select q% of the genes from the M offspring designs and perform
mutation to generate M new offspring designs.

c. Obtain the fitness scores of the new offsprings.
d. Repeat steps (a through c) until stopping criterion is met.

As mentioned before, there are several variants of GA. Being one of the metaheuristic
algorithms, although the performance of GA in finding optimal design is, in general, not
greatly affected by the functionality of the algorithm, in order to apply this algorithm, a
number of parameters need to be determined beforehand. These include the population

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 775 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 775

size (M), mutation rates (q), crossover, and mutation locations. Such details of implemen-
tation, however, are essential for anyone to reproduce the results of a search, even after
accounting for the randomness of the procedure. Lin et al. (2014) explored the merits of
GA in the context of design of experiments and discussed some elements that should be
considered for an effective implementation.

21.6.2 Simulated Annealing

While GA mimic Darwin’s theory of evolution, SA simulates the process called annealing
in metallurgy where some physical properties of a material are altered by heating to above
a critical temperature, followed by gradual cooling. It starts with a random design and
then moves forward by replacing the current solution by another solution with the hope of
finding near-optimal solutions. Introduced by Kirkpatrick et al. (1983), SA is a probabilistic
global optimization technique and has two basic features. The first one is motivated by the
Metropolis algorithm (Metropolis et al. 1953), in which designs that are worse than the cur-
rent one are sometimes accepted in order to better explore the design space. The other one is
the strategy for lowering the temperature (T), by which the probability of inclusion of new
“bad" solutions is controlled. In the traditional formulation for a minimization problem,
initially this time-varying parameter T is set at a high value in order to explore the search
space as much as possible. At each step, the value of the objective function is calculated and
compared with the best design at hand. In the context of optimal design search, designs
with higher values of the objective function will be accepted according to the Metropolis
algorithm if e−�D/T > U where �D is the change of the objective function, T is the current
temperature, and U is a uniform random number. Usually, the temperature is lowered at
some specified intervals at a geometric rate. The higher the temperature value, the more
unstable the system is, and the more frequently “worse” designs are accepted. This helps
explore the entire design space and jump out of local optimum values of the objective func-
tion. As the process continues, the temperature decreases and leads to a steady state. The
temperature T, however, should not be decreased too quickly in order to avoid getting
trapped at local optima. There are various annealing schedules for lowering the tempera-
ture. Similar to GA, the algorithm also usually stops when no significant improvements
are observed for several iterations.

Woods (2010) used SA to obtain optimal designs when the outcome is a binary vari-
able. The objective of the study is to maximize ψ(x1, . . . , xn) the log determinant of the
Fisher information matrix that depends on the unknown values of the parameters. As in
Section 21.4.2, here, xi represents a vector (xi1, . . . , xip) where xij represents the value of the
jth variable in the ith trial, with the constraint that −1 ≤ xij ≤ 1 (j = 1, . . . , p; i = 1, . . . , n).
In this case, xij has been perturbed to a new design point xnew

ij by

xnew
ij = min{1, max[−1, xij + udT]}

where u is a random number drawn from a uniform U[−1, 1] distribution and dT is the size
of the maximum allowed perturbation at temperature T. The new (perturbed) design is
compared with the original design via the calculation of the objective function ψ, and the
new design is accepted if its ψ value is greater than that of the original one. Otherwise, the

new design is accepted with probability min
{

1, exp
(
ψ(ξnew)−ψ(ξoriginal)

T

)}
. Here, ξoriginal and

ξnew are, respectively, the n-run designs supported at the original and new sets of points
(x1, . . . , xn). Both the temperature T and perturbation size dT are decreased geometrically.

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 776 2015-4-13

�

�

�

�

�

�

776 Handbook of Design and Analysis of Experiments

Bohachevsky et al. (1986) developed a generalized SA method for function optimiza-
tion and noted that this algorithm has “the ability to migrate through a sequence of local
extrema in search of the global solution and to recognize when the global extremum has
been located.” Meyer and Nachtsheim (1988) used SA (programmed in ANSI-77 standard
FORTRAN) for constructing exact D-optimal designs. They evaluated their methods for
both finite and continuous design spaces. Fang and Wiens (2000) used SA for obtaining
integer-valued designs. In their paper, they mentioned that, following Haines (1987), they
initially chose T in such a way that the acceptance rate is at least 50%. As discussed by
Press et al. (1992), they decreased T by a factor of 0.9 after every 100 iterations. Among oth-
ers, Zhou (2008) and Wilmut and Zhou (2011) used SA for obtaining D-optimal minimax
designs.

21.6.3 Particle Swarm Optimization

PSO was proposed about 18 years ago by Kennedy and Eberhart (1995), and it has slowly
but surely gained a lot of attention in the past 10 years. Researchers continue to report
their successes with the algorithm for solving large-scale, complex optimization problems
in several fields, including finance, engineering, biosciences, monitoring power systems,
social networking, and behavioral patterns. The rate of success and excitement generated
by PSO has led to at least one annual conference solely devoted to PSO for more than a
decade and usually sponsored by IEEE. There are several websites that provide in-depth
discussions of PSO with codes, tutorials, and both real and illustrative applications. An
example of such a website is http://www.swarmintelligence.org/index.php. Currently,
there are at least three journals devoted to publishing research and applications based on
swarm intelligence PSO methods.

The special features of the PSO techniques are that the method itself is remarkably sim-
ple to implement and flexible, requires no assumption on the function to be optimized, and
requires specification of only a few easy-to-use tuning parameters to values that work well
for a large class of problems. This is unlike other algorithms such as the genetic or SA algo-
rithms that can be sensitive to the choice of tuning parameters. For PSO, typically only two
parameters seem to matter—the number of particles and the number of iterations—with
the rest taking on the default values. A larger number of particles generate more starting
designs that more likely cover the search space more adequately and so usually produces a
higher quality solution. A probable downside is that it may take longer time to arrive at the
optimum because more communication time is required by the larger number of particles
to decide where the global optimum is. The user also has to specify the maximum number
of iterations allowed for the algorithm, but this usually is inconsequential for small dimen-
sional optimization problems. This is because the search time is typically very short, and
so one can try repeatedly and find the optimal design quickly for most problems. Each par-
ticle is a potential solution of the optimization problem, and at every iteration, each has a
fitness value determined by the design criterion.

There are two key equations in the PSO algorithm that define its search to optimize a
user-selected objective function ψ. At the t and t + 1 iterations, the movement of particle i
is governed by

vt+1
i = ωtvt

i + γ1β1 � (pi − xt
i) + γ2β2 � (pg − xt

i) (21.10)

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 777 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 777

and

xt+1
i = xt

i + vt+1
i . (21.11)

Here vt
i is the particle velocity at time t and xt

i is the current particle position at time t. The
inertia weight ωt adjusts the influence of the former velocity and can be a constant or a
decreasing function with values between 0 and 1. For example, Eberhart and Shi (2000)
used a linearly decreasing function over the specified time range with initial value 0.9 and
end value 0.4. Further, the vector pi is the personal best (optimal) position as encountered
by the ith particle, and the vector pg is the global best (optimal) position as encountered
by all particles, up to time t. This means that up to time t, the personal best for particle i
is pbesti = ψ(pi) and, for all particles, gbest = ψ(pg) is the optimal value. The two random
vectors in the PSO algorithm are β1 and β2, and their components are usually taken to be
independent random variables from U(0, 1). The constantγ1 is the cognitive learning factor,
and γ2 is the social learning factor. These two constants determine how each particle moves
toward its own personal best position and the overall global best position. The default
values for these two constants in the PSO codes are γ1 = γ2 = 2, and they seem to work
well in practice for nearly all problems that we have investigated so far. Note that in (21.10),
the product in the last two terms is the Hadamard product. The pseudocode for the PSO
procedure using q particles is given in the succeeding text.

Pseudocode for PSO algorithm is as follows:

1. Initialize particles.
a. Initiate positions xi and velocities vi for i = 1, . . . , q.
b. Calculate the fitness values ψ(xi) for i = 1, . . . , q.
c. Initialize the personal best positions pi = xi and the global best position pg.

2. Repeat until stopping criteria are satisfied.
a. Calculate particle velocity according to Equation (21.10).
b. Update particle position according to Equation (21.11).
c. Update the fitness values ψ(xi).
d. Update personal and global best positions pi and pg.

3. Output pg = arg minψ(pi) with gbest = ψ(pg).

We have set up mirror websites at http://optimal-design.biostat.ucla.edu/podpack/,
http://www.math.ntu.edu.tw/∼optdesign, and http://www.stat.ncku.edu.tw/optdesign,
where the reader can download our PSO P-codes, run them, and verify some of the results
in this chapter. Many of the PSO codes can be readily changed to find another type of opti-
mal design for the same model or for a different model. Typically, the only changes that are
required are in the information matrix and the design criterion.

The sites are new and are still under construction as improvements are made. We alert
the reader that some of the notation on these sites may be different from that used in this
chapter. The sites have instructions for downloading MATLAB� P-codes and running the
codes for finding various types of optimal designs. On the interface window, we provide
default values for two PSO parameters that had successfully found the optimal design
before, the number of particles, and the number of iterations; all other parameters are

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 778 2015-4-13

�

�

�

�

�

�

778 Handbook of Design and Analysis of Experiments

default values recommended by PSO and are not displayed. The interface window also
provides the swarm plot showing how the swarm of initial candidate designs converges
or not to the optimal location, along with a plot of the directional derivative of the design
criterion for the PSO-generated design to confirm its optimality or not. The ease of use
and flexibility of PSO are compelling compared with current methods of finding optimal
designs.

As examples, we refer the reader to the download webpage on one of the aforementioned
websites, where under the heading Part A, we have codes for finding minimax optimal
designs. The first example concerns finding a design to minimize the maximum variance
of the fitted response across the design space when errors have a known heteroscedastic
structure, and the second example concerns E-optimality where we seek a design that min-
imizes the maximum eigenvalue of the inverse of the information matrix (Ehrenfeld, 1955).
We invite the reader to try out the PSO codes on the website for generating various types
of optimal designs for the compartmental model discussed earlier in Section 21.5.1 and
compare results in Tables 21.1 and 21.2. Other sample applications of using PSO to design
real studies available from the website include finding different locally optimal designs for
the simple and quadratic logistic models, D-optimal designs for mixture models, locally
D-optimal designs for the four-parameter Hill model used in education and biomedical
studies, locally D-optimal designs for an exponential survival model with type I right cen-
soring, and locally D-optimal designs for a double-exponential model used in monitoring
tumor regrowth rate.

PSO techniques seem like a very under utilized tool in statistics to date. They seem ide-
ally suited for finding optimal experimental designs. This is because many applications
having a design close to the optimum (without knowing the optimum) may suffice for most
practical purposes. When we work with approximate designs, the convexity assumption
in the design criterion implies that the skeptic can also always check the quality of the
PSO-generated design using an equivalence theorem. Intuitively, PSO is attractive because
it uses many starting designs (particles) at the initial stage to cover the search space,
and so one can expect such an approach is preferable to methods that use only a single
starting design.

21.7 Summary

This chapter discusses algorithmic searches for an optimal design for a statistical model
described in (21.2). We reviewed a few algorithms commonly used to find an opti-
mal design for the problem and also newer algorithms, such as particle swarm–based
algorithms.

Our discussion has focused on a single-objective study. In practice, experiments may
have more than one goal or objective, and the implemented design should carefully incor-
porate all the objectives at the onset. In the past, the practice was to design the study
to satisfy the most important objective and hope that the same design also does well in
terms of other objectives in the study. Nowadays, multi objective optimization problems
can be handled by constructing a multiple-objective optimal design that directly accommo-
dates all experimental goals at the same time. These techniques require that the objectives
be first prioritized in order of their importance. By construction, the multiple-objective
optimal design captures the varying degrees of importance of the various objectives and

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 779 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 779

delivers user-specified efficiencies for the objectives according to their importance; see
details in Cook and Wong (1994), for example. In particular, it can be shown that many of
the algorithms for finding a single-objective optimal design can be directly applied to find
multiple-objective optimal designs as well (Cook and Wong 1994; Wong 1999). Chapter 25
constructs some specific multiple-objective optimal designs for event-related fMRI studies.

We have not made a clear distinction between finding optimal exact or approximate
designs but note that some algorithms are more flexible than others. There is no algo-
rithm that is universally best for solving all optimization problems. Each algorithm, by
construction, has its own unique strengths, weaknesses, and restrictions. For example,
both multiplicative algorithms and SDP-based methods require that the search space be
discretized, but PSO can work well either in a continuous or a discrete search space. Fur-
ther, the performance of some algorithms, such as the GA, can be highly dependent on
input values of the tuning parameters, while others, such as PSO-based algorithms, are
less so. It is therefore important to fully appreciate the properties of the algorithm before
implementing it to find the optimal design for the problem at hand. Frequently, for more
complicated optimization problems, a hybrid algorithm that combines two or more differ-
ent algorithms can prove effective because it incorporates the unique strengths from the
component algorithms.

We would be remiss not to mention that there are canned software packages in com-
mercial statistical software for finding optimal designs. For example, Atkinson et al. (2007)
provided SAS codes for finding a variety of optimal designs based on various types of
algorithms. Currently, algorithms are available for generating D-, c-, A-optimal designs and
optimal designs found under differentiable criteria. Other statistical packages also focus on
such types of optimal designs. Minimax optimal designs are notoriously difficult to find,
and we are not aware of any commercial package that handles them. GA and PSO that
do not require the objective function to be differentiable would seem more appropriate for
such problems. Examples of work in this area are Zhou (2008) and, most recently, Chen
et al. (2014) and Qiu et al. (2014).

In summary, algorithms are crucial for finding optimal designs to solve real problems
and will be more important as scientists increasingly use more realistic models to reflect the
complexities of the underlying process. Consequently, analytical descriptions of optimal
designs will be more difficult and most likely impossible to obtain. Numerical methods
are therefore necessary, and more effective algorithms should be developed and applied to
solve real-world design problems. It therefore behooves the design community to always
keep a constant eye of current and new optimization techniques used in the optimization
literature and investigate their suitability and efficiency for finding optimal designs for a
statistical problem.

Acknowledgments

The research of Dr. Mandal was in part supported by NSF grant DMS-09-05731 and NSA
grant H98230-13-1-025. Dr. Wong is especially thankful to his collaborators in Taiwan
for introducing him to PSO and their continuing research in this exciting topic. They
are Professor Weichung Wang from the Department of Mathematics at National Taiwan
University and Professor Ray-Bing Chen from the Department of Statistics at National
Cheng Kung University. Thanks also go to several students from National Taiwan

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 780 2015-4-13

�

�

�

�

�

�

780 Handbook of Design and Analysis of Experiments

University and UCLA, who all wrote and implemented MATLAB codes to find various
types of optimal designs using PSO on the website. The research of Wong reported in this
paper was partially supported by the National Institute of General Medical Sciences of the
National Institutes of Health under Award Number R01GM107639. The content is solely
the responsibility of the author and does not necessarily represent the official views of
the National Institutes of Health. Dr. Yu would like to thank Professor Holger Dette for
stimulating discussions concerning algorithms as well as minimax designs.

All authors are grateful to the editorial team for taking a lot of time to carefully read
earlier versions of this chapter and providing excellent feedback. We thank them very much
for their guidance throughout our preparation of this chapter. We also thank Guanghao Qi
from the Department of Mathematics at Fudan University for comments on this chapter.

References

Atashgah, A. B. and A. Seifi, Optimal design of multi-response experiments using semi-definite
programming, Optimization in Engineering, 10, 75–90, 2009.

Atkinson, A. C., A. N. Donev, and R. D. Tobias, Optimum Experimental Designs, with SAS, Oxford
University Press, Oxford, U.K. 2007.

Bates, S. J., J. Sienze, and D. S. Langley, Formulation of the AudzeEglais uniform Latin hypercube
design of experiments, Advances in Engineering Software, 34, 493–506, 2003.

Berger, M. P. F., J. King, and W. K. Wong, Minimax designs for item response theory models,
Psychometrika, 65, 377–390, 2000.

Bohachevsky, I. O., M. E. Johnson, and M. L. Stein, Generalized simulated annealing for function
optimization, Technometrics, 28, 209–217, 1986.

Böhning, D., A vertex-exchange-method in D-optimal design theory, Metrika, 33, 337–347, 1986.
Broudiscou, A., R. Leardi, and R. Phan-Tan-Luu, Genetic algorithm as a tool for selection of D-optimal

design, Chemometrics and Intelligent Laboratory Systems, 35, 105–116, 1996.
Brown, L. D. and W. K. Wong, An algorithmic construction of optimal minimax designs for

heteroscedastic linear models, Journal of Statistical Planning and Inference, 85, 103–114, 2000.
Chaloner, K. and K. Larntz, Optimal Bayesian design applied to logistic regression experiments,

Journal of Statistical Planning and Inference, 21, 191–208, 1989.
Chaloner, K. and I. Verdinelli, Bayesian experimental design: A review, Statistical Science, 10, 273–304,

1995.
Chang, S., An algorithm to generate near D-optimal designs for multiple response surface models,

IIE Transactions, 29, 1073–1081, 1997.
Chen, R. B., S. P. Chang, W. Wang, H. C. Tung, and W. K. Wong, Minimax optimal designs via particle

swarm optimization methods, Statistics and Computing, in press, 2014.
Chen, R. B., W. K. Wong, and K. Y. Li, Optimal minimax designs for estimating response sur-

face over a prespecified region in a heteroscedastic model, Statistics and Probability Letters, 78,
1914–1921, 2008.

Cook, R. D. and C. J. Nachtsheim, A comparison of algorithms for constructing exact D-optimal
designs, Technometrics, 22(3), 315–324, 1980.

Cook, R. D. and C. J. Nachtsheim, Model robust, linear-optimal designs, Technometrics, 24(1),
49–54, 1982.

Cook, R. D. and W. K. Wong, On the equivalence of constrained and compound optimal designs,
Journal of American Statistical Association, 89, 687–692, 1994.

Crombecq, K. and T. Dhaene, Generating sequential space-filling designs using genetic algorithms
and Monte Carlo methods, Lecture Notes in Computer Science, Vol. 6457. Springer-Verlag: Berlin,
Germany, pp. 80–88, 2010.

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 781 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 781

Dean, A. M. and S. M. Lewis (eds.) Screening: Methods for Experimentation in Industry, Drug
Discovery and Genetics, Springer-Verlag: New York, 2006.

Dette, H., A. Pepelyshev, and A. Zhigljavsky, Improving updating rules in multiplicative
algorithms for computing D-optimal designs, Computational Statistics & Data Analysis, 53,
312–320, 2008.

Dette, H. and W. J. Studden, The Theory of Canonical Moments with Applications in Statistics, Probability,
and Analysis, Wiley: New York, 1997.

Duarte, B. P. M. and W. K. Wong, Finding Bayesian optimal designs for nonlinear models: A
semidefinite programming based approach, International Statistical Review. In press, 2014a.

Duarte, B. P. M. and W. K. Wong, A semi-infinite programming based algorithm for finding minimax
D-optimal designs for nonlinear models, Statistics and Computing, 24, 1063–1080, 2014b.

Eberhart, R. C. and Y. Shi, Comparing inertia weights and constriction factors in particle swarm
optimization, Proceedings of the 2000 Congress on Evolutionary Computation, 1, 84–88, 2000.

Ehrenfeld, S., On the efficiencies of experimental designs, Annals of Mathematical Statistics, 26,
247–255, 1955.

Fang, Z. and D. P. Wiens, Integer-valued, minimax robust designs for estimation and extrapolation
in heteroscedastic, approximately linear models, Journal of American Statistical Association, 95,
807–818, 2000.

Fedorov, V. V., Theory of optimal experiments, Preprint 7 LSM, Izd-vo Moscow State University,
Moscow, Russia, 1969.

Fedorov, V. V., Theory of Optimal Experiments, translated by W. J. Studden and E. M. Klimko, Academic
Press: New York, 1972.

Fellman, J., An empirical study of a class of iterative searches for optimal designs, Journal of Statistical
Planning and Inference, 21, 85–92, 1989.

Filová, L., M. Trnovská, and R. Harman, Computing maximin efficient experimental designs using
the methods of semidefinite programming, Metrika, 75, 709–719, 2012.

Goldfarb, H. B., C. M. Borror, D. C. Montgomery, and C. M. Anderson-Cook, Using genetic algorithms
to generate mixture-process experimental designs involving control and noise variables, Journal
of Quality Technology, 37, 60–74, 2005.

Haines, L. M., The application of the annealing algorithm to construction of exact optimal designs
for linear regression models, Technometrics, 29, 439–447, 1987.

Hamada, M., H. D. Martz, C. S. Reese, and A. G. Wilson, Finding near-optimal Bayesian designs via
genetic algorithms, The American Statistician, 55, 175–181, 2001.

Harman, R., Multiplicative methods for computing D-optimal stratified designs of experiments,
Journal of Statistical Planning and Inference, 146, 82–94, 2014.

Harman, R. and L. Pronzato, Improvements on removing nonoptimal support points in D-optimum
design algorithms, Statistics and Probability Letters, 77, 90–94, 2007.

Harrington, E. C. Jr., The desirability function, Industrial Quality Control, 21, 494–498, 1965.
Heredia-Langner, A., W. M. Carlyle, D. C. Montgomery, C. M. Borror, and G. C. Runger,

Genetic algorithms for the construction of D-optimal designs, Journal of Quality Technology, 35,
28–46, 2003.

Heredia-Langner, A., D. C. Montgomery, W. M. Carlyle, and C. M. Borror, Model-robust optimal
designs: A genetic algorithm approach, Journal of Quality Technology, 36 (3), 263–279, 2004.

Holland, J. M. Adaptation in Natural and Artificial Systems, University of Michigan Press: Ann Arbor,
MI, 1975.

Johnson, M. E. and C. J. Nachtsheim, Some guidelines for constructing exact D-optimal designs on
convex design spaces, Technometrics, 25(3), 271–277, 1983.

Kao, M. H., A. Mandal, N. Lazar, and J. Stufken, Multi-objective optimal experimental designs for
event-related fMRI studies, NeuroImage, 44, 849–856, 2009.

Kennedy, J. and R. Eberhart, Particle swarm optimization, Proceedings of IEEE International Conference
on Neural Networks, IV, Perth, Australia, pp. 1942–1948, 1995.

Kiefer, J., General equivalence theory for optimum designs (approximate theory), Annals of Statistics,
2, 849–879, 1974.

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 782 2015-4-13

�

�

�

�

�

�

782 Handbook of Design and Analysis of Experiments

King, J. and W. K. Wong, Minimax D-optimal designs for the logistic model, Biometrics, 56, 1263–1267,
2000.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science, New
series, 220, 4598, 671–680, 1983.

Levy, A. V. and A. Montalvo, The tunnelling algorithm for the global minimization of functions, SIAM
Journal of Scientific and Statistical Computing, 6, 15–29, 1985.

Liefvendahl, M. and A. Stocki, A study on algorithms for optimization of Latin hypercubes, Journal
of Statistical Planning and Inference, 136, 3231–3247, 2006.

Lin, C. D., C. M. Anderson-Cook, M. S. Hamada, L. M. Moore, and R. R. Sitter, Using genetic algo-
rithms to design experiments: A review, Quality and Reliability Engineering International, 31,
153–339, 2015.

Mandal, A., Johnson, K., Wu, C. F. J., and Bornmeier, D., Identifying promising compounds in
drug discovery: Genetic algorithms and some new statistical techniques, Journal of Chemical
Information and Modeling, 47, 981–988, 2007.

Mandal, A., P. Ranjan, and C. F. J. Wu, G-SELC: Optimization by sequential elimination of level
combinations using genetic algorithms and Gaussian processes, Annals of Applied Statistics, 3,
398–421, 2009.

Mandal, A., C. F. J. Wu, and K. Johnson, SELC: Sequential elimination of level combinations by means
of modified genetic algorithms, Technometrics, 48, 273–283, 2006.

Mandal, S. and B. Torsney, Construction of optimal designs using a clustering approach, Journal of
Statistical Planning and Inference, 136, 1120–1134, 2006.

Marseguerra, M., E. Zio, and M. Cipollone, Designing optimal degradation tests via multi-objective
genetic algorithms, Reliability Engineering and System Safety, 79, 87–94, 2003.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state
calculations by fast computing machines, Journal of Chemical Physics, 21, 1087–1092, 1953.

Meyer, R. K. and C. J. Nachtsheim, Constructing exact D-optimal experimental designs by simulated
annealing, American Journal of Mathematical and Management Sciences, 8, 329–359, 1988.

Meyer, R. K. and C. J. Nachtsheim, The coordinate-exchange algorithm for constructing exact optimal
experimental designs, Technometrics, 37, 60–69, 1995.

Mitchell, T. J., An algorithm for the construction of D-optimal experimental designs, Technometrics,
20, 203–210, 1974.

Nguyen, N. K. and A. Miller, A review of exchange algorithms for constructing discrete D-optimal
designs, Computational Statistics and Data Analysis, 14, 489–498, 1992.

Papp, D., Optimal designs for rational function regression, Journal of the American Statistical Associa-
tion, 107, 400–411, 2012.

Pázman, A., Foundations of Optimum Experimental Design, Reidel: Dordrecht, the Netherlands,
1986.

Press, W. H., S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific
Computing, 2nd ed., Cambridge University Press, Cambridge, U.K., 1992.

Pukelsheim, F. and B. Torsney, Optimal weights for experimental designs on linearly independent
support points, Annals of Statistics, 19, 1614–1625, 1991.

Qiu, J., R. B. Chen, W. Wang, and W. K. Wong, Using animal instincts to design efficient biomedical
studies via particle swarm optimization, Swarm and Evolutionary Computation, 18, 1–10, 2014.

Ranjan, P., D. Bingham, and G. Michailidis, Sequential experiment design for contour estimation from
complex computer codes, Technometrics, 50 (4), 527–541, 2008.

Reemtsen, R. and J. J. Rückman, Semi-Infinite Programming, Kluwer Academic Publishers:
Dordrecht, the Netherlands, 1998.

Reeves, C. L. and C. C. Wright, Genetic algorithms and the design of experiments, In Davis, L. D.;
DeJong, K.; Vose, M. D., and Whitley, L. D. (eds.), Evolutionary Algorithms: IMA Volumes in
Mathematics and its Applications, Vol 111. Springer-Verlag: New York, pp. 207–226, 1999.

Rodriguez, M., B. Jones, C. M. Borror, and D. C. Mongomery, Generating and assessing exact
G-optimal designs, Journal of Quality Technology, 42, 3–20, 2010.

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 783 2015-4-13

�

�

�

�

�

�

Algorithmic Searches for Optimal Designs 783

Rodriguez, M., D. C. Montgomery, and C. M. Borror, Generating experimental designs involving con-
trol and noise variables using genetic algorithms, Quality and Reliability Engineering International,
25, 1045–1065, 2009.

Sexton, C. J., D. K. Anthony, S. M. Lewis, C. P. Please, and A. J. Keane, Design of experiment
algorithms for assembled products, Journal of Quality Technology, 38, 298–308, 2006.

Silvey, S. D., Optimal Design, Chapman & Hall: London, U.K., 1980.
Silvey, S. D., D. M. Titterington, and B. Torsney, An algorithm for optimal designs on a finite design

space, Communications in Statistics–Theory and Methods, 14, 1379–1389, 1978.
Smith, K., On the standard deviations of adjusted and interpolated values of an observed polynomial

function and its constants and the guidance they give towards a proper choice of the distribution
of observations, Biometrika, 12, 1–85, 1918.

Syed, M. N., I. Kotsireas, and P. M. Pardalos, D-optimal designs: A mathematical programming
approach using cyclotomic cosets, Informatica, 22, 577–587, 2011.

Titterington, D. M., Algorithms for computing D-optimal design on finite design spaces, in Pro-
ceedings of the 1976 Conference on Information Science and Systems, John Hopkins University:
Baltimore, MD, Vol. 3, pp. 213–216, 1976.

Titterington, D. M., Estimation of correlation coefficients by ellipsoidal trimming, Applied Statistics,
27, 227–234, 1978.

Torsney, B. and R. Martin-Martin, Multiplicative algorithms for computing optimum designs, Journal
of Statistical Planning and Inference, 139, 3947–3961, 2009.

Vandenberghe, L. and S. Boyd, Semidefinite programming, SIAM Review, 38, 49–95, 1996.
Welch, W. J., Branch and bound search for experimental designs based on D-optimality and other

criteria, Technometrics, 24(1), 41–48, 1982.
Wilmut, M. and J. Zhou, D-optimal minimax design criterion for two-level fractional factorial designs,

Journal of Statistical Planning and Inference, 141, 576–587, 2011.
Wong, W. K., A unified approach to the construction of mini-max Designs, Biometrika, 79, 611–620,

1992.
Wong, W. K. and R. D. Cook, Heteroscedastic G-optimal designs, Journal of Royal Statistical Society,

Series B, 55, 871–880, 1993.
Wong, W. K., Recent advances in constrained optimal design strategies, Statistical Neerlandica,

(Invited paper) 53, 257–276, 1999.
Woods, D. C., Robust designs for binary data: Applications of simulated annealing, Journal of

Statistical Computation and Simulation, 80, 29–41, 2010.
Wynn, H. P., Results in the theory and construction of D-optimum experimental designs, Journal of

Royal Statistical Society, Series B, 34, 133–147, 1972.
Yang, X. S., Nature-Inspired Metaheuristic Algorithms, Luniver Press: Frome, U.K., 2008.
Yang, X. S., Nature-Inspired Metaheuristic Algorithms, 2nd ed., Luniver Press, U.K., 2010.
Yang, M., S. Biedermann, and E. Tang, On optimal designs for nonlinear models: A general and

efficient algorithm, Journal of the American Statistical Association, 108, 1411–1420, 2013.
Yang, J., A. Mandal, and D. Majumdar, Optimal designs for 2k factorial experiments with binary

response, submitted for publication, available at http://arxiv.org/abs/1109.5320, 2015.
Yu, Y., Monotonic convergence of a general algorithm for computing optimal designs, Annals of

Statistics, 38, 1593–1606, 2010.
Yu, Y., D-optimal designs via a cocktail algorithm, Statistics and Computing, 21, 475–481, 2011.
Zhou, J., D-optimal minimax regression designs on discrete design space, Journal of Statistical Planning

and Inference, 138, 4081–4092, 2008.

�

�

Dean/Handbook of Design and Analysis of Experiments K14518_C021 Revises Page 784 2015-4-13

�

�

�

�

�

�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

