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Abstract

Genetic algorithms (GAs) are a popular technology to search for an optimum in a large
search space. Using new concepts of forbidden array and weighted mutation, Mandal,
Wu, and Johnson (2006) used elements of GAs to introduce a new global optimization
technique called sequential elimination of level combinations (SELC), that efficiently finds
optimums. A SAS macro, and MATLAB and R functions are developed to implement the
SELC algorithm.
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1. Introduction

Locating optimal values in a large search space is a primary goal for many scientific problems.
In the pharmaceutical industry, for example, work has primarily focused on synthesizing new
compounds that are effective against a particular disease or condition. Historically, chemists
have used scientific knowledge to build new compounds that have promising properties for
alleviating a condition or disease. While compounds may be designed to be theoretically
effective, often their interactions with other parts of the body (e.g., liver, kidney, intestine,
etc.) render them ineffective or toxic (Welling 1997). Hence, physically creating one compound
at a time has become a less effective drug discovery approach.

As robotic technology has improved, chemists have been able to synthesize and explore a large
number of new compounds. This technology, known as combinatorial chemistry, has been
widely applied in the pharmaceutical industry and is gaining interest in other areas of chemical
manufacturing (Leach and Gillet 2003; Gasteiger and Engel 2003). In short, combinatorial
chemistry uses robotics to combine sets of monomers to create thousands of new compounds
at a time. This technology has been used to enhance the diversity of compound libraries, to
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explore specific regions of chemical space (i.e., focused library design), and to optimize one or
more pharmaceutical endpoints such as target efficacy or ADMET (absorption, distribution,
metabolism, excretion, toxicology) properties (Rouhi 2003).

In a typical combinatorial chemistry problem, a core molecule is identified to which monomers
are attached at multiple locations. Each attachment location may have tens or hundreds of
potential monomers. Clearly, the full combinatorial library can become dauntingly large for
a core molecule with just a few attachment points. Constrained by resources, most com-
binatorial libraries cannot be fully created. Instead, chemists use their scientific knowledge
to identify the most promising monomer combinations and the monomer combinations to
avoid. By construction, the SELC is an ideal method for searching for optimal molecules in
combinatorial chemistry (Mandal et al. 2006).

The SELC method is also useful in computer experiments. Much research which in the past
decades could only be conducted by performing physical experiments, can now be done by
computer experiments instead. In a computer experiment, a response, y(x), is calculated for
each set of input variables, x, using numerical methods implemented by (complex) computer
code (Santner, Williams, and Notz 2003). In such cases, the complex numerical method can
be thought of as a “black box”, and the SELC method can be used to select the optima
efficiently.

We can consider such real-life scenarios as large-dimensional design-of-experiment problems
where the main challenge is to identify the optimal design settings. In scientific and engi-
neering research, statistical design and analysis of experiments is an effective and commonly
used tool to understand and/or improve a system. Identifying important factors and choos-
ing factor levels are among the first and most fundamental issues for an experimenter. But
when there are a large number of important factors, designing an experiment can be diffi-
cult. Classical experimental design relies heavily on algebraic properties such as orthogonality
(Hedayat, Sloane, and Stufken 1999). However, orthogonality does not allow the flexibility
to accommodate all kinds of promising follow-up runs, which, in turn makes finding suitable
designs for large-scale problems difficult, particularly when the factors have more than two
levels.

The use of high-fidelity computer simulations of physical phenomena (Bates, Buck, Ricco-
magno, and Wynn 1996) has stimulated new research into ways in which experimental design
can be applied to such problems. Greedy algorithms are popular choices for these types of
problems (Cormen, Leiserson, Rivest, and Stein 2001). In short, a greedy algorithm identifies
the direction of an optimum at each stage and searches toward it. But for a complex response
surface, the identified direction of the optima may not be the direction of the global optimal.
However assuming some kind of regularity, the global maximum will not be in the vicinity
of the local minimum and vice versa. One technique, motivated by design of experiments,
was introduced by Wu, Mao, and Ma (1990), and is known as sequential elimination of levels
(SEL). The idea of SEL is opposite to that of greedy algorithms; instead of focusing on factor
levels that improve the response, SEL focuses on those levels that worsen the response. Based
on this idea, SEL eliminates one level of each factor in each sequence of the experiment. When
all factors are independent and the response surface is smooth, SEL can accurately locate op-
timal design points. However, when factors interact or the response surface contains local
optimums, SEL does not accurately identify optimal design points. In these more realistic
situations, SELC, the modified version of SEL using ideas from GAs, has been shown to be
able to be a more effective optimization technique.
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GAs have most often been viewed from a biological perspective. The metaphors of nat-
ural selection, cross breeding, and mutation have been helpful in providing a structure to
explain how and why GAs work. Thus, most practical applications of GAs are rooted in
the context where optimization is the primary goal. In order to understand how GAs func-
tion as optimizers, Reeves and Wright (1999) considered GAs to be a form of sequential
experimental design. Recently, GAs have been successfully applied in solving statistical prob-
lems, particularly for searching for near-optimal designs (Hamada, Martz, Reese, and Wilson
2001; Heredia-Langner, Carlyle, Montgomery, Borror, and Runger 2003; Heredia-Langner,
Montgomery, Carlyle, and Borror 2004). Because of the desire to explore increasing large
experimental spaces in the pharmaceutical and engineering industries, there is an imminent
need for software that implements new methodology (Willis 2007).
In this work we develop software across three widely used platforms: SAS (SAS Institute Inc.
2003), R (R Development Core Team 2008), and MATLAB (The MathWorks, Inc. 2007). Each
implementation is straightforward and simple to use, and only requires the base platform of
each software. Each function is freely available along with this paper at http://jstatsoft.
org/v25/i06/. The article is organized as follows: Firstly, we review the GAs and the SELC
method in Section 2. In Section 3, we provide the implementation of the algorithm in SAS,
MATLAB, and R, and illustrate the algorithm using all three implementations. Finally, we
conclude this work in Section 4.

2. Methodology review

2.1. Genetic algorithms

Genetic algorithms (GAs) are a stochastic optimization tool that were inspired by Darwin’s
theory of evolution (Holland 1975, 1992). The basic idea of GAs is to solve optimization
problems via an evolutionary process which results in better solutions based on good solutions.
The basic steps of a GA are as follows:

1. Solution representation: Each observation must be represented by a chromosome that
defines its characteristics.

2. Selection: Identify the best chromosomes based on a fitness criterion (e.g., the larger
the response, the better the fitness for a maximization problem).

3. Reproduction: Two chromosomes are randomly chosen, weighted by their fitness values,
and the following operations are performed.

(a) Crossover: Split the pair of chromosomes at a same random location, and combine
the head part of one with the tail of the other and vice versa.

(b) Mutation: Change the level of randomly chosen factor(s) for the newly created
offspring.

4. Repeat steps 2 and 3 until some convergence or stopping criterion is met.

To illustrate how a GA works, consider optimizing the function,

f(x) = sin2
(

x

18

)
+ cos

(
x

18

)
,
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over the range of integers x = 0, 1, . . . , 31. Solving this problem first requires that the range
of solutions be represented by a chromosome. Consider the following binary representation
for the integers:

0 = 0 0 0 0 0
1 = 0 0 0 0 1
2 = 0 0 0 1 0

...
31 = 1 1 1 1 1

For this example, suppose x values of 6, 10, 20, 26, and 29 are selected and evaluated:

f(6) = f(00110) = 1.052
f(10) = f(01010) = 1.128
f(20) = f(10100) = 1.247
f(26) = f(11010) = 1.110
f(29) = f(11101) = 0.958

Based on their fitness scores, x values of 10 and 20 have the highest probability of being
selected, and without loss of generality, suppose that these two chromosomes are selected. If
the randomly selected crossover location is between the second and third gene from the left,
then the new offspring would be:

0 1 1 0 0
1 0 0 1 0

Finally, each gene has a positive probability of mutation to another value. After mutation,
these new offspring become

0 1 1 0 1
1 0 1 1 0

Evaluating the new offspring yields f(01101) = f(13) = 1.187 and f(10110) = f(22) = 1.225.

2.2. SELC algorithm

As mentioned in the Introduction, the SELC was proposed as an alternative to the SEL when
seeking optimums in a high dimensional space where factors interact or where local optimums
exist. The unique features of the SELC that allow it to find optimums in these settings are
the forbidden array and weighted mutation scheme and these concepts are summarized below.

Forbidden array

The forbidden array is defined by its strength and order and contains design points that have
demonstrated poor fitness values or are a priori known to produce undesirable fitness values.
The strength of the array defines the number of design points placed into the array at each
iteration of the algorithm. More specifically, a forbidden array with strength s consists of the
s worst runs of the experiment at each iteration of the algorithm. The order of the forbidden
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array defines the factor combinations to be prevented from being constructed in subsequent
iterations of the algorithm. A forbidden array with order k, for example, indicates that any
combination of k or more levels from any design point in the forbidden array be prevented
from being constructed in subsequent iterations of the algorithm. Thus, strength and order
define the size of the forbidden array: as strength increases and order decreases, the number
of forbidden design points increases.
We shall use an example from combinatorial chemistry to illustrate the construction of the
forbidden array. On a core molecule, suppose that three monomers (denoted by 1, 2, and
3) can be added to each of three locations (denoted by A, B, and C). Note that in this
example the monomers act as genes and form the chromosomes, which are the compounds to
be evaluated. Suppose that 9 of the possible 27 compounds are created and analyzed (y is
the fitness criterion):

A B C y

1 1 1 10.1
1 2 2 53.6
1 3 3 43.8
2 1 2 13.4
2 2 3 46.9
2 3 1 55.1
3 1 3 5.7
3 2 1 43.6
3 3 2 47.0

In this case, the objective is to find compounds that maximize y. Therefore, the forbidden
array will consist of compounds that have the lowest values of y. If the forbidden array has
strength = 2 and order = 2, then it is constructed using the compounds

A B C
1 1 1
3 1 3

and is defined as

A B C
1 1 *
1 * 1
* 1 1
3 1 *
3 * 3
* 1 3

where * is the wildcard which represents any admissible value.

Weighted mutation

The second feature that makes the SELC algorithm unique is its weighted mutation scheme.
In a traditional GA, genes at each loci mutate at random with small positive probability.
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This approach is unbiased toward any level of any factor in the experiment. However, upon
collecting data we begin to gain insight about the effect of each factor or factor combinations
on the fitness criterion. This information can then be used to allow the algorithm to focus
on factors and levels of factors that improve the fitness criterion. In the weighted mutation
scheme of the SELC algorithm, we use linear regression to determine significant main effects
and pairwise interactions. (Because of the effect hierarchy principal (Wu and Hamada 2000),
we do not explore beyond pairwise interactions.) If a factor, Fj , has a significant main effect
and no significant pairwise interactions, then the mutation probability for each level, l, of the
factor is proportional to the average fitness of that level for the data collected thus far in the
experiment

pjl
∝ ȳ(Fj = l), for j = 1, 2, . . . , J, and l = 1, 2, . . . , L.

If two factors, Fj and Fk, have a significant interaction, then the probability of mutation is
joint on Fj and Fk. When either factor is chosen, then the mutation will be weighted jointly
with probability

pjlkm ∝ ȳ(Fj = l, Fk = m), for j, k = 1, 2, . . . , J, and l,m = 1, 2, . . . , L.

If the selected factor does not have a significant main effect or interaction, then its value will
be changed to any possible level with equal probability.

The SELC algorithm

The SELC algorithm combines orthogonal arrays, genetic algorithms, forbidden arrays, and
weighted mutations as follows:

1. Begin with an initial design. Given no prior information about the design space, the
SELC should be initiated with an orthogonal array, which helps to estimate a large
number of factor effects efficiently. If there is prior knowledge about the design space
or about design points that should initially be included in the forbidden array, then the
algorithm should begin at step 3.

2. Create the selected design points; stop if the stopping criterion is achieved (see below).

3. Construct the forbidden array and calculate the weighted mutation probabilities.

4. Determine the new offspring using a genetic algorithm with weighted mutation proba-
bilities.

5. Check offspring eligibility. An offspring is eligible if it is not prohibited by the forbidden
array and has not been previously created. If an offspring is not eligible, then discard
it and return to step 4.

6. Repeat steps 4 and 5 until the number of desired new offspring are achieved.

7. Return to step 2.
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The stopping rule is subjective and depends on the progression of the algorithm and exper-
imental constraints. As runs are added, the experimenter can monitor the progress towards
optimization of the fitness criterion. Once a satisfactory level of fitness has been achieved the
algorithm can be stopped. Alternatively, resources may limit the number of iterations of the
algorithm.

3. Code description

To make the SELC algorithm available to a wide range of users, we have implemented it
in SAS, R, and MATLAB. These are available along with this paper. Each implementation
requires a data set that contains the initial design points and measured response. In addition,
for all three implementations, the user can specify an a priori forbidden array.

3.1. SAS implementation

For the SELC macro, the factors in the initial design data set must have the variable names
X1, X2, . . ., Xn, and the response must be named Y. Similarly, the factors in the forbidden
array data set must have the variable names X1, X2, . . ., Xn.

Prior to calling the SELC macro, the user must first initialize a sequence of global macro
variables that define the number of levels of each factor. For example, if an experiment has
four factors, each with ten levels, then the user must specify the following code:

%let L1 = 10;

%let L2 = 10;

%let L3 = 10;

%let L4 = 10;

%global L1 L2 L3 L4;

The user can the call the SELC macro, which has the form:

%SELC( DFILE =,

FFILE =,

FARRAY =,

NUMOFF =,

STRENGTH =,

ORDER =,

NUMFACT =,

DIR =,

SEED =);

Macro arguments are defined as:



8 Software for the Sequential Elimination of Level Combinations Algorithm

DFILE = Dataset of the initial design.
FFILE = Dataset of the forbidden array (if available).
FARRAY = Name of the output data set that will contain the forbidden array plus

the design points specified by STRENGTH.
NUMOFF = Number of desired offspring.
STRENGTH = Strength of the forbidden array.
ORDER = Order of the forbidden array.
NUMFACT = Total number of factors in the experiment.
DIR = Direction of desired response: 1 if maximum response is desired, 0 if

minimum response is desired.
SEED = Seed value for random operations. Must be a non-negative integer.

Default value is clock time.
When the macro is called, it generates a data set named NEXT_GEN that contains the design
points to be performed in the next experiment.

3.2. R and MATLAB implementation

For both the R and MATLAB code, the initial design can be provided in a text file. The file
should not have a header; instead, the column position indicates the factors X1, X2, . . . , Xn,
and the last column should contain the response, y. For R and MATLAB, the user can also
specify forbidden array data set, where the column position corresponds to each factor.
The call to the R and MATLAB functions have the same form:

SELC(initialdesign, forbiddenarray, strength, order, level_true,

direction, number_of_offspring, seed)

The arguments to these functions are defined similarly as in the SAS macro.

3.3. Example

An example from a combinatorial chemistry problem is used to illustrate how the SELC soft-
ware works. Onto a core molecule, monomers can be added to two positions (Figure 1). Five
monomers are selected for the core, 34 for location A, and 241 for location B; the objective
is to find combination(s) of monomers that produce highly active compounds. In this exper-
iment, we start with an initial design and a priori forbidden array. The initial design and
forbidden arrays for this example are available electronically along with this paper.

A

core

B

Figure 1: Hypothetical example from combinatorial chemistry.
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SAS example

To generate the next set of five design points using the SELC SAS macro, we must specify the
following code:

%LET L1=5;

%LET L2=34;

%LET L3=241;

%GLOBAL L1 L2 L3;

%SELC(dfile = initialdesign,

ffile = forbiddenarray,

farray = currentforbiddenarray,

numoff = 5,

strength = 2,

order = 2,

numfact = 3,

dir = 1,

seed = 1);

Upon submitting this code, SAS creates the NEXT_GEN data set that contains 5 new offspring:

Obs x1 x2 x3
1 4 13 40
2 3 19 14
3 3 6 223
4 1 28 30
5 2 9 13

And the updated forbidden array, CURRENTFORBIDDENARRAY, contains the following design
points:

x1 x2 x3
3 10 3
1 13 9
1 23 10

.

.

.
5 20 182

Often no information will be available for the forbidden array. If this is the case, simply create
a forbidden array data set that contains the names of the factors, but does not contain any
design points. For example:

data forbiddenarray;
input x1-x3;

cards;
run;
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R example

We use the same data set to illustrate the R code. First, we define all of the arguments:

R> initialdesign <- as.matrix(read.table("initialdesign.txt"))

R> forbiddenarray <- as.matrix(read.table("forbiddenarray.txt"))

R> strength <- 2

R> order <- 2

R> level_true <- c(5, 34, 241)

R> direction <- 1

R> number_of_offspring <- 5

R> seed <- 1

The call to the function is:

R> next_gen <- SELC(initialdesign, forbiddenarray, strength, order,

level_true, direction, number_of_offspring, seed)

The object, next gen, consists of the new designs points to be performed in the next generation
as well as the updated forbidden array:

next_gen
$newruns

V1 V2 V3
p1new 2 4 49
p2new 3 24 228
p1new 1 22 1
p2new 3 23 93
p1new 4 4 92

$currentforbiddenarray
V1 V2 V3

1 1 23 10
2 1 23 23
3 1 25 10

.

.

.

If no information exists for the forbidden array, then define an array that does not include
levels that exist in the original design. For this example, the following forbidden array is
sufficient:

R> forbiddenarray <- cbind(0, 0, 0)

MATLAB example

Finally, we illustrate the code for MATLAB. Similarly to R, we define the arguments to the
function.
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>> load -ascii initialdesign.txt

>> load -ascii forbiddenarray.txt

>> strength = 2

>> order = 2

>> level_true = [5,34,241]

>> direction = 1

>> number_of_offspring = 5

>> seed=0

Then, the SELC function will generate offspring as follows:

>> [nextgen,currentforbiddenarry] = SELC(initialdesign,forbiddenarray, ...

strength,order,level_true, direction,number_of_offspring,seed)

nextgen =
1 6 226
2 18 30
2 6 6
1 32 28
3 6 127

Similar to SAS and R, the updated forbidden array is contained in currentforbiddenarray. If
no forbidden array information exists, then define:

>> forbiddenarray = [];

4. Summary and concluding remarks

Because experimental design spaces are becoming increasingly large, there is an imminent
need for methods to efficiently explore these spaces and for software to implement these
methods. Indeed, selecting an optimal design in an extremely large search space is not an
easy or straightforward task. For these types of problems, the SELC algorithm has been shown
to efficiently and effectively identify optimums. To make the implementation of this method
widely available, we have introduced software for implementing the SELC algorithm across
three commonly used platforms in both academics and industry: SAS, R, and MATLAB. Each
implementation is straightforward and easy to use, requiring only that data sets be prepared
in the same format for input to each piece of software.

It is important to note that the software implementations provided in this work have been
optimized for large design spaces consisting of a relatively small number of factors each con-
taining a large number of levels. In addition, SELC is not designed to optimize a specific
objective function. Instead, it is designed to identify new, promising, feasible design points
for follow-up. Lastly, because each software package use different random number genera-
tors, the next generation of suggested design points will differ among SAS, R, and MATLAB.
However, each implementation will identify key level combinations that are important for
predicting the response.
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