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Abstract: A criterion of design efficiency, under model uncertainty, is studied with

reference to possibly nonregular fractions of general factorials. The criterion is

expressed in terms of the departure of the design from being an orthogonal array of

strength three or four. A Kronecker calculus for factorial arrangements facilitates

the derivation. The results are followed by a numerical study and the findings are

compared with those based on other design criteria.
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1. Introduction

Recently, Cheng, Deng and Tang (2002), hereafter abbreviated CDT, re-

ported results on design efficiency, under model uncertainty, for nonregular frac-

tions of two-level factorials. Their criterion concerns models that include the

general mean, all main effects and a selection of two-factor interactions (2fi’s)

and, in the absence of prior knowledge on which 2fi’s are active, it considers the

average performance of a design over all possible models with the same number

of 2fi’s. As discussed by these authors, this approach is in the spirit of the cri-

terion of estimation capacity introduced by Sun (1993), and studied by Cheng,

Steinberg and Sun (1999), Cheng and Mukerjee (1998, 2001) and Mukerjee, Chan

and Fang (2000) for regular fractions.

The present article aims at extending the work of CDT on design efficiency

to general factorials including the asymmetrical ones. This calls for a substantial

modification of their mathematical techniques since, unlike in the two-level case,

each factorial effect may no longer be represented by a single treatment contrast.

A Kronecker calculus for factorial arrangements facilitates the formulation of the

model matrices as well as the derivation of the key results. The main results are

presented in Section 2 where we also indicate the connection with the departure

of the design from being an orthogonal array of various strengths. This, in turn,

entails a link with the generalized minimum aberration (GMA) criterion (Tang
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and Deng (1999) and Xu and Wu (2001)). In Section 3, the present criterion is

applied to 18-run nonregular fractions of 2×33 and 2×34 factorials. The findings

are seen to be in agreement with those according to the GMA criterion and the

minimum moment aberration (MMA) criterion (Xu (2003)). Proofs appear in

the appendix.

2. Main Results

Suppose there are m factors F1, . . . , Fm at s1, . . . , sm(≥ 2) levels respec-

tively. For 1 ≤ j ≤ m, the levels of Fj are coded as 0, . . . , sj − 1. Consider a

possibly nonregular fraction or design consisting of the treatment combinations

ai1ai2 · · · aim, 1 ≤ i ≤ N , where aij ∈ {0, . . . , sj − 1} for every i, j. Throughout,

N is fixed and it is supposed that these N treatment combinations, when written

as rows, form an orthogonal array (OA) of strength two.

We assume the absence of interactions involving three or more factors. Note

that altogether there are W (= m(m − 1)/2) 2fi’s. For 1 ≤ w ≤ W , let H(w) be

the collection of all sets of w 2fi’s. For any h ∈ H(w), let M(h) be the model

consisting of only the general mean, all main effects and the w 2fi’s in h, and

X(h) be the model matrix under M(h). The matrix X(h) consists of blocks of

columns that correspond to the general mean and the factorial effects in M(h).

The blocks of columns associated with the 2fi’s are related to those associated

with the main effects via Kronecker products. A detailed expression for X(h)

appears in (A.2) in the Appendix. As usual, it is assumed that the observational

errors are homoscedastic and uncorrelated.

Under M(h), the D-criterion aims at maximizing det{X(h)TX(h)}. If one

wishes to include w 2fi’s in the model, but has no prior knowledge on which w

should be included, then it makes sense to consider the average of det{X(h)TX(h)}

over all h ∈ H(w). This is the Dw-criterion of CDT. However, it is diffi-

cult to handle this criterion algebraically. On the other hand, minimization of

tr[{X(h)T X(h)}2] is a good surrogate for the maximization of det{X(h)T X(h)}.

This happens because tr {X(h)T X(h)} is the same for all designs under con-

sideration; cf., (A.2), (A.4) and (A.13) in the appendix. Consequently, a large

det{X(h)T X(h)} is typically accompanied by a small tr[{X(h)T X(h)}
2
] since

both occur when the eigenvalues of X(h)T X(h) are close to one another (the

same argument shows that minimization of tr[{X(h)T X(h)}
2
] would be a good

surrogate also if one worked with the A- or E-criteria). Hence following CDT,

we consider the design criterion

Ew =

(

W

w

)−1
∑

h∈H(w)

tr[{X(h)T X(h)}2], (2.1)
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and aim at studying designs that keep Ew small for every w, especially for smaller

values of w which are more relevant under effect sparsity.

Lemma 2.1, presented below and proved in the appendix, gives an expression

for Ew which is useful both algebraically and numerically. Some more notation

will help. For any distinct j, k, l (1 ≤ j, k, l ≤ m), let njkl
αβγ be the number of

times the factors Fj , Fk and Fl appear at levels α, β and γ respectively among

the N treatment combinations in the design, and define

φ(jkl) = sjsksl

∑∑∑

(

njkl
αβγ

)2
, (2.2)

where the triple sum is over 0 ≤ α ≤ sj − 1, 0 ≤ β ≤ sk − 1, 0 ≤ γ ≤ sl − 1.

Similarly, for any distinct j, k, l, u (1 ≤ j, k, l, u ≤ m), define the quantities njklu
αβγρ,

and hence φ(jklu), exactly along the lines of (2.2). Let ∆(3) be the set of all

ordered triplets jkl, where 1 ≤ j < k < l ≤ m, and ∆(4) be the set of all ordered

four-tuples jklu, where 1 ≤ j < k < l < u ≤ m. Finally, in (2.4) below and

the rest of this paper, a “constant” may depend on w,N,m, s1, . . . , sm but is the

same for all designs.

Lemma 2.1. For 1 ≤ w ≤ W , with

E∗
w =

∑

jkl∈∆(3)

(

6 +
2(w − 1)

W − 1
(sj + sk + sl − 3m + 3)

)

φ(jkl)

+
6(w − 1)

W − 1

∑

jklu∈∆(4)

φ(jklu), (2.3)

Ew = constant + (w/W )E∗
w, 1 ≤ w ≤ W. (2.4)

In view of (2.4), hereafter we consider the quantities E∗
w. By (2.3), for

3 ≤ w ≤ W ,

E∗
w = E∗

1 + (w − 1)(E∗
2 − E∗

1), (2.5)

a fact which is useful for computational purposes. Lemma 2.1 also helps in

expressing E∗
w, and hence Ew, in terms of measures of the departure of the

design from being represented by an OA of strength three or four. To that effect,

some more notation is introduced.

For 1 ≤ j ≤ m, let

Vj(0) = s−1
j 1j1

T
j , Vj(1) = Ij − s−1

j 1j1
T
j , (2.6)

where 1j is the sj × 1 vector with all elements unity and Ij is the identity matrix

of order sj. For any binary m-tuple x = x1 · · · xm, define the matrix

V (x) = V1(x1) ⊗ V2(x2) ⊗ · · · ⊗ Vm(xm), (2.7)
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where ⊗ denotes the Kronecker product. Let ν =
∏m

j=1 sj, and n be the ν ×

1 vector whose elements represent the replication numbers of the ν treatment

combinations in the design, arranged in the lexicographic order. For 1 ≤ g ≤ m,

let

Bg =
∑

x∈Ω(g)

nT V (x)n, (2.8)

where Ω(g) is the set of binary m-tuples with exactly g 1’s.

Clearly, Bg ≥ 0 for every g, as the matrices V (x) are nonnegative definite.

Since the treatment combinations in the design form an OA of strength two, by

(2.6)−(2.8), B1 = B2 = 0. Similarly, it can be seen that the design is represented

by an OA of strength three if and only if B3 = 0, and an OA of strength four if

and only if, in addition, B4 = 0. Hence, as argued by Fang, Ma and Mukerjee

(2002) (see also Tang (2001)), B3 is a natural measure of the departure of the

design from being represented by an OA of strength three, whereas B4 measures

the additional departure of the design from an OA of strength four. It can also

be seen that

Bg = ν−1N2Ag, 1 ≤ g ≤ m, (2.9)

where (A1, . . . , Am) is the generalized wordlength pattern (GWP) of the design

(Tang and Deng (1999) and Xu and Wu (2001)). Theorem 2.1 below expresses

E∗
w in terms of B3, B4 and the related quantities B(jkl), where for jkl ∈ ∆(3),

B(jkl) = nT V (x(jkl))n, with x(jkl) being the binary m-tuple that has 1 in

the jth, kth and lth positions and 0 elsewhere. Again, B(jkl) is nonnegative

and equals zero if and only if the projection of the design onto the three factors

Fj , Fk and Fl is an OA of strength three. The proof of Theorem 2.1 appears in

the appendix.

Theorem 2.1. For 1 ≤ w ≤ W ,

E∗
w = constant

+6ν
[

B3 +
w − 1

W − 1

(

B4 − 2B3 +
1

3

∑

jkl∈∆(3)

(sj + sk + sl)B(jkl)
)]

. (2.10)

Remark 2.1. By (2.8),

B3 =
∑

jkl∈∆(3)

B(jkl). (2.11)

Hence if s1 = · · · = sm(= s, say) then (2.10) simplifies to

E∗
w = constant + 6ν

[(

1 +
w − 1

W − 1
(s − 2)

)

B3 +
w − 1

W − 1
B4

]

. (2.12)
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The coefficient of B3 in (2.12) is much larger than that of B4, especially for rela-

tively smaller values of w. Hence a design that sequentially minimizes B3, B4, . . .

(recall that B1 = B2 = 0 for any design considered) should perform well under

the criterion considered here. Therefore, strengthening the findings of CDT, from

(2.9) it follows that for general symmetrical factorials a GMA design should have

an edge over others under the present criterion as well.

Remark 2.2. For two-level factorials, by (2.9) and (2.12), E∗
w = constant +

6N2[A3 +{(w−1)/(W −1)}A4] which, in conjunction with (2.4), is in agreement

with CDT.

Remark 2.3. For asymmetrical factorials, by (2.9) and (2.10), E∗
1 = constant +

6N2A3. While the link between E∗
w, w ≥ 2, and the GWP is less obvious, the

numerical study in Section 3 suggests that the GMA criterion tends to be in

agreement with the present one.

Remark 2.4. Interestingly, B(jkl) actually occurs in (2.10) only for w ≥ 2 and

not for w = 1. If two or more 2fi’s are included in the model, then any two of

them can potentially involve a common factor. Such common factors contribute

to the term involving B(jkl) in (2.10). The same happens with the coefficient of

φ(jkl) in (2.3). Equation (A.15) in the appendix and the discussion preceding it

make this explicit.

3. A Numerical Study

Table 7C.2 of Wu and Hamada (2000) shows an OA(18,2137) of strength two,

with 18 rows and 8 columns, where the first column has two symbols and the

remaining columns have three symbols each. Consideration of the first column

together with any three other columns of this array yields a nonregular fraction

of a 2×33 factorial in 18 treatment combinations. Any such design, given by the

first, jth, kth and lth columns, is denoted by 1jkl (2 ≤ j < k < l ≤ 8). For any

of the 35 possible designs so obtained, a simple counting of degrees of freedom

reveals that X(h)T X(h) is singular whenever the model involves five or more

2fi’s. Hence, we consider E∗
w only for 1 ≤ w ≤ 4. It is seen that the collection

of these 35 designs can be partitioned into six classes, as shown in Table 3.1,

such that all designs in the same class have the same E∗
w for every w and also

the same GWP. Table 3.2 shows E∗
w, 1 ≤ w ≤ 4, and the GWP against these six

classes. Equations (2.3) and (2.4) facilitate these computations. From Table 3.2,

it is clear that, for every w, the ranking of designs according to E∗
w is precisely

the same as that according to the GMA criterion. In fact, it can be seen that this

ranking is also the same as that under the MMA criterion, with natural weights,

as based on the first five moments.
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The phenomenon of identical ranking of designs according to the E∗
w and the

criteria of GMA and MMA continues to hold if one instead considers designs for

a 2× 34 factorial that arise in a similar manner from the OA(18,2137) mentioned

above. The details are omitted here. This suggests that even for asymmetrical

factorials the latter two criteria are good surrogates for the present criterion

which has a direct statistical meaning.

Table 3.1. Equivalent classes of designs for a 2× 33 factorial arising from an
OA(18,2137).

Class Designs

1 1248, 1258, 1367, 1458

2 1236, 1237, 1267

3 1234, 1235, 1246, 1247, 1256, 1257
4 1238, 1268, 1278

5 1345, 1346, 1347, 1348, 1356, 1357, 1358, 1368, 1378,

1456, 1457, 1467, 1468, 1478, 1567, 1568, 1578, 1678

6 1245

Table 3.2. Values of E∗

w
and GWP for the six classes of designs.

Class E∗

1 E∗

2 E∗

3 E∗

4 GWP

1 8748.0 9525.6 10303.2 11080.8 (0, 0, 1/2, 3/2)
2 9720.0 10497.6 11275.2 12052.8 (0, 0, 1, 1)

3 10044.0 10735.2 11426.4 12117.6 (0, 0, 7/6, 5/6)

4 11016.0 11707.2 12398.4 13089.6 (0, 0, 5/3, 1/3)

5 11340.0 11944.8 12549.6 13154.4 (0, 0, 11/6, 1/6)

6 11664.0 12441.6 13219.2 13996.8 (0, 0, 2, 0)
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Appendix

Proof of Lemma 2.1. For 1 ≤ j ≤ m, let 1j be the sj×1 vector with all elements

unity, I∗j be the identity matrix of order sj − 1, and Pj = [pj(0), . . . , pj(sj − 1)]
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be a matrix, of order (sj − 1) × sj, satisfying

PjP
T
j = sjI

∗
j , Pj1j = 0. (A.1)

Also, let Zj be the N × (sj − 1) matrix with rows pj(aij)
T , 1 ≤ i ≤ N . Further-

more, for 1 ≤ j < k ≤ m, let Zjk be the N ×{(sj − 1)(sk − 1)} matrix with rows

{pj(aij) ⊗ pk(aik)}
T , 1 ≤ i ≤ N . Then following Mukerjee (1999) (see also Xu

and Wu (2001) and Cheng and Ye (2004)),

X(h) = [1(N), Z1, . . . , Zm, . . . , Zjk, . . .], (A.2)

where 1(N) is the N × 1 vector with all elements unity, and any Zjk is included

in X(h) if and only if the 2fi FjFk belongs to h. In (A.2), 1(N) corresponds

to the general mean, any Zj corresponds to the main effect of Fj and any Zjk

corresponds to the 2fi FjFk. With all factors at two levels, one can take Pj =

[−1 1] in view of (A.1), and then (A.2) agrees with CDT. For general factorials,

the specific choice of the matrices Pj , subject to (A.1), does not affect our results.

Since the treatment combinations in the design form an OA of strength two,

the following hold as a consequence of (A.1) and the definitions of Zj and Zjk:

ZT
j 1(N) = 0 (1 ≤ j ≤ m), ZT

jk1(N) = 0 (1 ≤ j < k ≤ m), (A.3)

ZT
j Zj = NI∗j (1 ≤ j ≤ m), ZT

j Zk = 0 (1 ≤ j 6= k ≤ m). (A.4)

Hence by (A.2),

tr[{X(h)T X(h)}2] = N2
[

1 +
m
∑

j=1

(sj − 1)
]

+ 2
m
∑

j=1

∑

kl∈h

tr(ZT
j ZklZ

T
klZj)

+
∑

jk∈h

∑

lu∈h

tr(ZT
jkZluZT

luZjk), (A.5)

where
∑

kl∈h denotes sum over all kl (k < l) such that FkFl ∈ h,
∑

jk∈h and
∑

lu∈h are similarly defined.

Let ∆(2) be the set of all ordered pairs kl, where 1 ≤ k < l ≤ m, and for

any kl ∈ ∆(2), define H(w; kl) as the collection of all sets of w 2fi’s that contain

FkFl. Clearly, H(w; kl) has cardinality
(W−1

w−1

)

. Hence

∑

h∈H(w)

m
∑

j=1

∑

kl∈h

tr(ZT
j ZklZ

T
klZj) =

m
∑

j=1

∑

kl∈∆(2)

∑

h∈H(w;kl)

tr(ZT
j ZklZ

T
klZj)

=

(

W − 1

w − 1

)

m
∑

j=1

∑

kl∈∆(2)

tr(ZT
j ZklZ

T
klZj), (A.6)
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via a change in the order of summation. Since the treatment combinations in the
design form an OA of strength two, by (A.1) and the definitions of Zj and Zkl,
it can be seen that

ZT
j Zkl = 0, if j = k or j = l. (A.7)

On the other hand, if j, k, l are distinct then recalling the definitions of Zj, Zkl

and the njkl
αβγ , ZT

j Zkl =
∑∑∑

njkl
αβγpj(α){pk(β)⊗ pl(γ)}T , where the triple sum

is over 0 ≤ α ≤ sj − 1, 0 ≤ β ≤ sk − 1, 0 ≤ γ ≤ sl − 1. Hence, in this case, after
some algebra using a property of the Kronecker product, one gets

tr(ZT
j ZklZ

T
klZj) =

∑∑∑∑∑∑

njkl
αβγnjkl

α∗β∗γ∗ [pj(α)T pj(α
∗)]

×[pk(β)T pk(β
∗)][pl(γ)T pl(γ

∗)], (A.8)

the six fold sum being over 0 ≤ α, α∗ ≤ sj−1, 0 ≤ β, β∗ ≤ sk−1, 0 ≤ γ, γ∗ ≤ sl−1.
By (A.1), P T

j Pj = sjIj − 1j1
T
j , where Ij is the identity matrix of order sj as in

Section 2. Hence [pj(α)T pj(α
∗)] = sjδ(α, α∗) − 1, where δ(α, α∗) is Kronecker

delta. Using similar expressions for the other terms in the right hand side of
(A.8), it follows that

tr(ZT
j ZklZ

T
klZj) = constant + φ(jkl), (A.9)

when j, k, l are distinct. The algebra underlying the passage from (A.8) to (A.9)
uses (2.2) and the fact that the design is represented by an OA of strength two.
By (A.7) and (A.9),

m
∑

j=1

∑

kl∈∆(2)

tr(ZT
j ZklZ

T
klZj) = constant +

∑∑∑

φ(jkl), (A.10)

where the triple sum is over j, k, l such that 1 ≤ j ≤ m, kl ∈ ∆(2) and j, k, l are
distinct. Recalling the definition of ∆(3), it is not hard to see that this triple
sum equals 3

∑

jkl∈∆(3) φ(jkl). Hence from (A.6) and (A.10), one gets

∑

h∈H(w)

m
∑

j=1

∑

kl∈h

tr(ZT
j ZklZ

T
klZj) = constant + 3

(

W − 1

w − 1

)

∑

jkl∈∆(3)

φ(jkl). (A.11)

We next consider the sum of the last term in (A.5) over h ∈ H(w). Analo-
gously to (A.6),

∑

h∈H(w)

∑

jk∈h

∑

lu∈h

tr(ZT
jkZluZT

luZjk)

=

(

W − 1

w − 1

)

∑

jk∈∆(2)

tr(ZT
jkZjkZ

T
jkZjk)

+

(

W − 2

w − 2

)

∑

jk∈∆(2)

∑

lu(6=jk)∈∆(2)

tr(ZT
jkZluZT

luZjk). (A.12)
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Since the treatment combinations in the design form an OA of strength two, by

(A.1) and the definition of Zjk,

ZT
jkZjk = NI∗jk, (A.13)

for every jk ∈ ∆(2), where I∗jk is the identity matrix of order (sj − 1)(sk − 1).

Turning to the second term in the right hand side of (A.12), observe that any

two distinct members jk and lu of ∆(2) have either exactly one or no symbol in

common. Hence, recalling the definitions of ∆(3) and ∆(4), after some algebra

one gets
∑

jk∈∆(2)

∑

lu(6=jk)∈∆(2)

tr(ZT
jkZluZT

luZjk)

= 2
∑

jkl∈∆(3)

[tr(ZT
jkZklZ

T
klZjk) + tr(ZT

jkZjlZ
T
jlZjk) + tr(ZT

jlZklZ
T
klZjl)]

+ 2
∑

jklu∈∆(4)

[tr(ZT
jkZluZT

luZjk) + tr(ZT
jlZkuZT

kuZjl) + tr(ZT
juZklZ

T
klZju)].

(A.14)

Steps similar to but more elaborate than those in the derivation of (A.9) yield

tr(ZT
jkZklZ

T
klZjk) = constant + (sk − 2)φ(jkl), (A.15)

for jkl ∈ ∆(3), and

tr(ZT
jkZluZT

luZjk) = constant + φ(jklu)

−[φ(jkl) + φ(jku) + φ(jlu) + φ(klu)], (A.16)

for jklu ∈ ∆(4). Since
∑

jklu∈∆(4)

[φ(jkl) + φ(jku) + φ(jlu) + φ(klu)] = (m − 3)
∑

jkl∈∆(3)

φ(jkl), (A.17)

by (A.15), (A.16), and similar expressions for other terms in the right hand side

of (A.14),
∑

jk∈∆(2)

∑

lu(6=jk)∈∆(2)

tr(ZT
jkZluZT

luZjk)

= constant + 2
∑

jkl∈∆(3)

(sj + sk + sl − 3m + 3) φ(jkl) + 6
∑

jklu∈∆(4)

φ(jklu).

(A.18)

From (A.5), (A.11)−(A.13), (A.18) and (2.1), the truth of (2.4), with E∗
w as in

(2.3), follows.
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Proof of Theorem 2.1. For any jkl ∈ ∆(3), let n(jkl) be a vector, of order

sjsksl, with elements njkl
αβγ(0 ≤ α ≤ sj − 1, 0 ≤ β ≤ sk − 1, 0 ≤ γ ≤ sl − 1),

arranged lexicographically. Then by (2.6), (2.7) and the definition of B(jkl),

standard operations with Kronecker product show that

B(jkl) = ν−1n(jkl)T
[

(sjIj − 1j1
T
j ) ⊗ (skIk − 1k1

T
k ) ⊗ (slIl − 1l1

T
l )
]

n(jkl).

Since the treatment combinations in the design form an OA of strength two,

recalling (2.2) one gets

B(jkl) = constant + ν−1φ(jkl). (A.19)

Hence (2.11) yields

B3 = constant + ν−1
∑

jkl∈∆(3)

φ(jkl). (A.20)

In a similar manner,

B4 = constant + ν−1
∑

jklu∈∆(4)

[φ(jklu) − {φ(jkl) + φ(jku) + φ(jlu) + φ(klu)}]

= constant + ν−1
(

∑

jklu∈∆(4)

φ(jklu) − (m − 3)
∑

jkl∈∆(3)

φ(jkl)
)

, (A.21)

using (A.17). From (2.3) and (A.19)−(A.21), the truth of (2.10) follows.
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