


STATISTICAL THEORY AND RELATED FIELDS
2021, VOL. 5, NO. 2, 122–133
https://doi.org/10.1080/24754269.2021.1902687

Robust sequential design for piecewise-stationary multi-armed bandit
problem in the presence of outliers

Yaping Wang a, Zhicheng Penga,b, Riquan Zhanga and Qian Xiao c

aKLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, People’s Republic of China; bAnt Group, Hangzhou, People’s
Republic of China; cDepartment of Statistics, University of Georgia, Athens, GA, USA

ABSTRACT
The multi-armed bandit (MAB) problem studies the sequential decision making in the presence
of uncertainty and partial feedback on rewards. Its name comes from imagining a gambler at a
rowof slotmachineswhoneeds to decide the best strategy on the number of times aswell as the
orders to play eachmachine. It is a classic reinforcement learning problemwhich is fundamental
tomanyonline learningproblems. Inmanypractical applicationsof theMAB, the rewarddistribu-
tions may change at unknown time steps and the outliers (extreme rewards) often exist. Current
sequential design strategies may struggle in such cases, as they tend to infer additional change
points to fit the outliers. In this paper, we propose a robust change-detection upper confidence
bound (RCD-UCB) algorithm which can distinguish the real change points from the outliers in
piecewise-stationary MAB settings. We show that the proposed RCD-UCB algorithm can achieve
a nearly optimal regret bound on the order of O(

√
SKT log T), where T is the number of time

steps, K is the number of arms and S is the number of stationary segments. We demonstrate its
superior performance compared to some state-of-the-art algorithms in both simulation experi-
ments and real data analysis. (See https://github.com/woaishufenke/MAB_STRF.git for the codes
used in this paper.)
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1. Introduction

The multi-armed bandit (MAB) problem, originally
introduced by Thompson (1933), studies how a
decision-maker adaptively selects one from a series of
alternative arms based on the historical observations of
each arm and receives a reward accordingly (Lai &Rob-
bins, 1985). The MAB is a fundamental problem to
many online learning applications, such as the online
recommendation system (Li et al., 2016), the dynamic
spectrum access in communication system (Alaya-Feki
et al., 2008) and the computational advertisement (Buc-
capatnam et al., 2017). A common goal of the sequential
designs, i.e. the bandit algorithms, is to minimise the
regret of the decision maker, where the regret refers
to the expectation of the difference between the total
rewards collected by playing the arm with the highest
expected rewards and the total rewards obtained by the
algorithms (Auer, 2002). To achieve this goal, decision-
makers need to make a trade-off between exploring
the environment to find the most profitable arms and
exploiting the current empirically best arms as often as
possible.

There is a rich literature studying classic MAB prob-
lems (Lattimore & Szepesvári, 2020), including the
stochastic bandit models (Lai & Robbins, 1985) and
the adversarial banditmodels (Auer, Cesa-Bianchi, Fre-
und et al., 2002). The former assumes that the reward

distributions of all arms are time-invariant, and the lat-
ter assumes that the reward distributions of all arms
change adversarially at all time steps. Yet, neither of
these two assumptions may be realistic in many real-
world applications, where the reward distributions do
vary with time but much less frequently compared to
what the adversarial bandit model assumes (Alaya-Feki
et al., 2008); Yu&Mannor, 2009). In this paper, we focus
on such piecewise-stationaryMAB problems where the
reward distributions are piecewise-constant and may
shift at some unknown time steps called the change
points; that is, we focus on MAB problems with mean
changes.

In the current literature, two major approaches are
proposed for the piecewise-stationary bandit problems:
the passively adaptive policies and the actively adaptive
policies (Liu et al., 2018). The passively adaptive poli-
cies adapt to the changes via adjusting the weights on
the rewards. Specifically, the discounted upper confi-
dence bound (D-UCB) algorithmdiscounts theweights
on the old rewards and thus allocates larger weights
on the recent ones when computing the UCB index
of each arm (Kocsis & Szepesvári, 2006). The D-UCB
algorithm achieves a regret bound on the order of
O(K

√
ST logT), where T is the number of time steps,

K is the number of arms and S is the number of sta-
tionary segments (Garivier & Moulines, 2011). Based
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on the D-UCB, the Sliding-Window UCB (SW-UCB)
algorithm chooses only the most recent τ rewards in
computing the UCB index, which achieves a regret
O(K

√
ST logT) (Garivier & Moulines, 2011). Other

passively adaptive policies include the EXP3.S (Auer,
Cesa-Bianchi, Freund et al., 2002), the SHIFTBAND
(Auer, 2002) and the Rexp3 (Besbes et al., 2014) algo-
rithms.

The actively adaptive policies monitor the reward
distributions by a change-detection (CD) algorithm.
Their bandit algorithms will be reset once a change
point is detected. The actively adaptive policies often
have better performance compared to the passively
adaptive policies in practice (Cao et al., 2019). For
detecting the change points, the CUSUM-UCB
algorithm (Liu et al., 2018) adopts the CUSUM
method, and the Adapt-EvE algorithm (Hartland
et al., 2007) and the adaptive SW-UCL algorithm (Sri-
vastava et al., 2014) employ the Page-Hinkley Test
(Hinkley, 1971). Some other available actively adap-
tive policies include the Bayesian CD algorithm (Mel-
lor & Shapiro, 2013), the windowed mean-shift detec-
tion algorithm (Yu & Mannor, 2009) and the EXP3.R
algorithm (Allesiardo & Féraud, 2015). To our best
knowledge, the Monitored-UCB (M-UCB) algorithm
by Cao et al. (2019) is the currently most efficient
method. The M-UCB achieves a nearly optimal regret
bound on the order of O(

√
SKT logT) without strong

parametric assumptions, and performs very well in
practical applications. In this paper, we use the M-UCB
as the benchmark method.

Unexpected data changesmay significantly affect the
data quality, which can invalidate the classicMAB algo-
rithms (Cao et al., 2019). Such data offsets may come
from the trend changes or the outliers. Here an out-
lier means a data point with an unusually large or
small value. In the current literature, most methods on
non-stationary MAB problems only consider the for-
mer but ignore the latter (Allesiardo & Féraud, 2015).
In many state-of-the-art algorithms on piecewise-
stationary MAB problems (Cao et al., 2019; Kaufmann
et al., 2012; Liu et al., 2018), once their CD algorithms
identify a change point, the embedded bandit algo-
rithms will reset the current optimal arms and try to
learn new ones. Since they often cannot distinguish the
real trend changes from large outliers, their CD algo-
rithms tend to infer additional change points to fit the
outliers. When there are many scattered outliers, the
reset strategy adopted in these algorithms will greatly
reduce their efficiency and increase the computational
complexity. Specifically, the M-UCB algorithm (Cao
et al., 2019) relies on comparing the statistical distances
between data segments and the thresholds to test the
significance of the trend offsets in the local data, which
can be very sensitive to the outliers.

In this paper, we propose a robust change-detection
upper confidence bound (RCD-UCB) algorithm which

can distinguish the real change points from the out-
liers for non-stationary MAB problems. The proposed
RCD-UCB algorithm includes a new trend offset detec-
tion using truncated loss functions to eliminate the
impacts of outliers. We show that the RCD-UCB
algorithm can achieve a nearly optimal regret bound on
the order of O(

√
SKT logT) for piecewise-stationary

MAB problems, which is of the same order as the
bound in Cao et al. (2019). We demonstrate the supe-
rior performance of the RCD-UCB via three simulation
studies and a real data analysis on metalwork factory
machining, where the proposed algorithm can signifi-
cantly reduce the cumulative regrets compared to some
currently popular methods.

The remainder of this paper is organised as follows.
In Section 2, we first formulate the piecewise-stationary
MAB problems, then introduce the proposed RCD-
UCB algorithm, and finally discuss its theoretical regret
bound. In Section 3, we demonstrate the superior per-
formance of the RCD-UCB via three simulation studies
and a real data example. Section 4 concludes this work
and discusses some future works. A brief description of
the classic UCB1 algorithm (Auer, Cesa-Bianchi, Fre-
und et al., 2002) and all proofs are relegated to the
Appendix.

2. The RCD-UCB algorithm for

piecewise-stationary MAB problems in the

presence of outliers

2.1. Problem formulation

In an MAB problem, denote K = {1, . . . ,K} as the
set of swing arms and T = {1, . . . ,T} as the set of
time slots. At each time slot t ∈ T , the learning agent
chooses an arm At ∈ K and gets a reward XAt ,t ∈ [0, 1]
which can be generalised to any bounded interval. The
reward sequence {Xk,t}t=1,...,T for the arm k ∈ K can
be seen as a series of independent random variables
from potentially different distributions. Let E(Xk,t) be
the expectation of reward Xk,t at the time slot t. Let k∗

t
be the selector having the maximum expected reward
at time t, i.e. E(Xk∗

t ,t) = maxk∈K E(Xk,t), t ∈ T . The
learning agent wants to make a series of right decisions
about the playing arms {At , t ∈ T } to maximise the
expected cumulative reward, i.e. max E(

∑T
t=1 XAt ,t),

for the entire T time periods (Srivastava et al., 2014).
Equivalently, it is to minimise the T-step cumulative
regret (Cao et al., 2019):

R(T) =
T∑
t=1

max
k∈K

E
(
Xk,t

) − E

( T∑
t=1

XAt ,t

)
, (1)

i.e., the expected total loss of playing arms {At , t ∈ T }.
For the piecewise-stationary MAB scenario, define

Ft(k) as the reward distribution of the kth selected arm
at time t. The reward Xk,t is independently sampled
from Ft(k), both across arms and across time slots.
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Here, the Ft(k) can have various types, such as uniform,
Bernoulli and exponential distributions. When outliers
exist, unusually small or large rewards are encountered,
which may come from the reward distributions with
extreme probabilities or simply from collection errors.

Let S be the number of piecewise-stationary seg-
ments in the reward sequence:

S = 1 +
T−1∑
t=1

× I{E(Xk,t) �= E(Xk+1,t) for at least one k ∈ K},

where I{·} represents the indicator function. Here, we
have S−1 change points represented by p1, p2, . . . , pS−1,
which are defined to be the time slots that the changes
occur. For notation consistency, we set p0 = 0 and pS =
T. Within the same segments, the rewards follow the
same distributions, but among different segments, the
reward distributions can be different. Similar to Liu
et al. (2018) and Cao et al. (2019), we consider using the
means to describe the trends in the non-stationary data.
Let μ

(j)
k = E(Xk,pj−1+1) = · · · = E(Xk,pj) be the mean

response for the kth arm in the jth data segment where
k ∈ K and j = 1, . . . , S. We consider the cases where
there exists at least one arm k ∈ K such that μ

(j)
k �=

μ
(j+1)
k (j = 1, . . . , S − 1) and |μ(j)

k − μ
(j+1)
k | is not very

small (see Assumption 2.1(b)) for detectability, which
excludes infinitesimal mean shift and is a reasonable
assumption in practice (Liu et al., 2018). There is no
requirement on the shape of the reward distribution.
Note that, if we set S = 1 in our framework, it becomes
the classic stochastic bandit model (Besbes et al., 2014);
if we set S = T, it becomes the classic adversarial bandit
model (Garivier & Moulines, 2011).

2.2. The RCD-UCB algorithm

In this part, we propose a novel algorithm framework
for piecewise-stationaryMABproblems in the presence
of outliers. It improves the current change-detection
UCB framework by incorporating a data-driven tail
truncation strategy that can distinguish the real change
points from the outliers. Current popular tail trunca-
tion methods to restrict unexpected changes caused by
extreme values include:

(1) Huber loss:

L(μj,μj′) =
{
(μj − μj′)

2 if |μj − μj′ | < a
2a|μj − μj′ | − a2 otherwise,

(2) the biweight loss:

L(μj,μj′) =
{
(μj − μj′)

2 if |μj − μj′ | < a
a2 otherwise,

and (3) if interest lies in changes in the uth quantile for
0<u<1:

L(μj,μj′) =
{
2u(μj − μj′) if μj > μj′
2(1 − u)(μj′ − μj) otherwise.

In particular, if u = 0.5, the loss function (3) reduces
to |μj − μj′ |. The proposed algorithm framework can
incorporate various tail truncation methods. Yet, we do
not recommend to use the loss function (3) since the
mean changes are of interest here. Compared to the
Huber loss, our proposed algorithm with the biweight
loss generally have better performance by some sim-
ulation explorations. Thus, in this paper, we focus on
using the biweight loss in the change point detection,
where the parameter a is determined via a data-driven
approach.

In Algorithm 1, we show our robust change detec-
tion (RCD)method using the biweight loss. It considers
a change point detection strategy based on comparing
running samplemeans over a sliding window. Here, the
window width w and the statistical distance threshold
b are tuning parameters, which can be chosen empiri-
cally or based on the theoretical results in Section 2.3.
The selectedwmust be even since the means of the first
and second halves of the running samples (Y1, . . . ,Yw)
are compared. The biweight loss function bounds the
absolute differences of sample means at most a, where
parameter a is updated through historical data and
controlled by the tuning parameter α in Algorithm 2.
This simple RCD algorithm has minimum parameter
specification and thus is computationally efficient.

Next, we show the proposed RCD-UCB algorithm in
Algorithm 2 whose parameters mainly include the total
number of time slots T, the number of arms K, the pol-
icy rotation parameter γ , the delay parameterD and the
outlier truncation probability α. The tuning parameter
γ controls the fraction of the uniform sampling used for

Algorithm 1 Robust change detection
RCD(w, a, b,Y1, . . . ,Yw)
Require: An even numberw; observations Y1, . . . ,Yw;

a truncated threshold a ≥ 0; a prescribed threshold
b > 0.

1: S1 = ∑w/2
i=1 Yi,

2: S2 = ∑w
i=w/2+1 Yi.

3: if |S2 − S1| < a then
4: d = (S2 − S1)2.
5: else
6: d = a2.
7: end if
8: if d > b2 then
9: Return True.
10: else
11: Return False.
12: end if
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Algorithm 2 RCD-UCB with biweight loss function
Require: Input parameters: T ∈ N+, K ∈ N+
Require: Change detection parameters: w (a positive

even number), b > 0
Require: Algorithm parameters: truncation probabil-

ity α ∈ (0, 1), exploration probability γ ∈ (0, 1)
1: Initialisation: τ ← 0, nk ← 0, ak ← 0 andLk ←

∅ ∀k ∈ K.
2: for all t = 1, 2, . . . ,T do
3: if (t − τ) mod �K/γ � ∈ K = {1, . . . ,K} then
4: At ← (t − τ) mod �K/γ �.
5: else
6: At ← argmaxk∈KUCBk,
7: where UCBk ← n−1

k
∑nk

n=1 Zk,n +√
2 log(t − τ)/nk is the upper confidence

bound for the kth arm.
8: end if
9: Play arm At and receive the reward XAt ,t .
10: nAt ← nAt + 1;ZAt ,nAt ← XAt ,t .
11: if nAt ≥ w then
12: if RCD(w, aAt , b,ZAt ,nAt−w+1, . . . ,ZAt ,nAt ) =

True then
13: τ ← t, nk ← 0, ak = 0 and Lk = ∅, ∀k ∈

K.
14: else
15: Append LAt with

∣∣ ∑nAt
i=nAt−w/2+1 ZAt ,i −∑nAt−w/2

i=nAt−w+1 ZAt ,i
∣∣.

16: if Length(LAt ) > D then
17: aAt ← quantile(LAt , 1 − α).
18: end if
19: end if
20: end if
21: end for

feeding the RCD algorithm (line 4), which can be deter-
mined based on the theoretical results in Section 2.3.
For the kth arm, let ak denote the upper bound for
calculating the truncation distance in the biweight loss
function (line 3 in Algorithm 1) and Lk be the list used
to record the offset distances (line 15) when each detec-
tion is not significant. The tuning parameter α ∈ (0, 1)
controls the values of ak which are updated by the upper
α quantiles of Lk. We set the tuning parameter D to
guarantee that Lk have at least D elements before cal-
culating the quantiles. Let τ indicate the latest moment
when the change point was detected. Denote nk as the
number of observations of the kth arm after time τ .

Here, we briefly introduce thework flow of the RCD-
UCB in Algorithm 2. At each time t, the RCD-UCB
decides whether to do a uniform sampling exploration
(line 4) or a UCB1 exploration (line 6), such that the
fraction of time slots used for the uniform sampling is
roughly γ . Note that the arms A1, . . . ,AK are played
sequentially in the first K time slots. When calculating

the UCB1 index (Auer, Cesa-Bianchi et al., 2002; Latti-
more & Szepesvári, 2020), only the observations since
the last detection time τ (Zk,1, . . . ,Zk,nk for the kth arm)
are used (line 7). Refer to the Appendix A for some
details on the UCB1 algorithm and index. Next, when
the cumulative data volume nAt is greater than the data
window width w, we adaptively perform the RCD in
Algorithm 1 (line 12). If a change point is detected, the
exploration will be reset (line 13); otherwise, the explo-
ration continues and the offset distance is recorded
in the list Lk (line 15). When Lk includes at least D
historical non-significant offset distances, the current
value of aAt will be updated by the (1 − α) × 100%
quantiles (line 17). Based on the empirical results, the
tuning parameterα can be chosen from [0.01, 0.1]. Asα
increases, the RCD-UCB becomes more robust against
possibly many outliers but less sensitive for identifying
change points. Our simulation experiments in Section 3
show that α = 0.025 (or 0.05) often gives satisfactory
results.

Same as Cao et al. (2019) and Liu et al. (2018),
we assume that the initial w-length data are stable
(i.e., no change occurs) and there are reasonably many
observations between the two real change points. The
parameter ak is used to truncate the offset distances
and is updated through historical data. If the current
value of aAt is zero or smaller than the tuning param-
eter b, the RCD algorithm will always return to False.
This situation occurs at the beginning of each explo-
ration. As the exploration continues, we can expect
aAt gradually increases until finding the next change
point.

2.3. Theoretical results on performance analysis

In this part, we analyse the regret upper bound of
the proposed RCD-UCB algorithm and specify its tun-
ing parameters. We show the RCD-UCB can achieve
a nearly optimal regret bound with the same order as
the M-UCB by Cao et al. (2019). Note that the M-UCB
assumes no outliers.

For the kth arm on the ith piecewise-stationary data
segment, we define the sub-optimal gap �

(i)
k as the dif-

ference in expected returns between the optimal arm in
K and the selected arm:

�
(i)
k = max

k′∈K
μ

(i)
k′ − μ

(i)
k , 1 ≤ i ≤ S, k ∈ K.

The sub-optimal gaps can be used to characterise the
regret. Let a(i)

k be the final truncated threshold for the
kth arm at the ith change point. Define the amplitude
of the change for the kth arm at the ith change point as

δ
(i)
k = min

{
|μ(i+1)

k − μ
(i)
k |, a(i)

k

}
,

1 ≤ i ≤ S − 1, k ∈ K.
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Assumption 2.1: The learning agent can choosew and
γ such that (a) S < �T/L� and pi+1 − pi > L, ∀0 ≤
i ≤ S − 1, where L = (w + 2D)�K/γ �, and (b) ∀1 ≤
i ≤ S − 1, ∃k ∈ K such that δ

(i)
k ≥ 2

√
log(2KT2)/w +

2
√
log(2T)/w.

Assumption 2.1 is standard in the existing litera-
ture (Cao et al., 2019; Liu et al., 2018). Intuitively,
Assumption 2.1(a) guarantees that we have reasonably
many observations (larger than L) between two consec-
utive change points, where Algorithm 2 can select at
least w+D samples from every arm to feed the RCD
in Algorithm 1. Assumption 2.1(b) guarantees that at
least one arm has a large enough change amplitude at
each change point such that the RCD algorithm is able
to detect the change quickly with limited information
without affecting the false-positive rate and detection
delay. We would like to remark that Assumption 2.1
is necessary for proving the theoretical results, but the
RCD-UCB algorithm can still perform well in practice
(though the theoretical results are not proved) when
Assumption 2.1 is not satisfied. Similarly, parameter S is
assumed to be known for proving the theoretical results,
but the RCD-UCB can performwell with unknown S in
practice.

Theorem 2.2: Let the lower bound δ = mini=1,...,S−1
maxk∈K δ

(i)
k and assume δ > 0. Under the piecewise-

stationary scenario, if we run Algorithm 2 with fixed w
and D, b = [w log(2KT2)/2]1/2, and γ =√

(S − 1)K · min(w/2, �b/δ� + 3
√
w)/(2T), the upper

bound for the regretR(T) is O(
√
SKT logT), where T is

the number of time steps, K is the number of arms and S
is the number of stationary segments.

The regret upper bound inTheorem2.2 has the same
order as the one in Cao et al. (2019) and thus it is a
nearly optimal one. Theorem 2.2 also provides guid-
ance on the tuning parameters. Here, we set the value
of w ≈ (4/δ2) ∗ [(log(2KT2))1/2 + (log(2T))1/2]2 to
meet Assumption 2.1(b), and choose b and γ to sim-
plify the regret upper bound in Theorem 2.2. Detailed
proofs are relegated to the Appendix.

3. Experimental results

In this section, we apply the proposed RCD-UCB
algorithm to three simulation experiments and a
real case study where outliers may exist. We choose
the currently most popular piecewise-stationary MAB
method: the M-UCB algorithm (Cao et al., 2019) as
the benchmark method. We also list the performance
from other existing approaches, including the UCB1
(Auer, Cesa-Bianchi et al., 2002), the D-UCB (Koc-
sis & Szepesvári, 2006) and the SW-UCB (Garivier
& Moulines, 2011) algorithms.

3.1. Simulation experiment 1

We first consider a piecewise-stationary MAB problem
with K = 3 arms, T = 10000 time periods and S = 5
stationary segments (i.e. S−1 = 4 change points). We
assume the change points are located evenly over the
time horizon, i.e. a change occurs every 2000 time peri-
ods. The reward distributions of all arms are assumed
to be normal, piecewise-stationary with μ

(i)
k randomly

selected from {0.05, 0.1, 0.15, . . . , 0.7} (i = 1, . . . , S and
k = 1, . . . ,K) and having the same standard deviation
σ = 0.1. Figure 1 shows the expected rewards for each
arm over the time horizon. At each time step t (t =
1, . . . ,T), there exists a Bernoulli trial Zt ∈ {0, 1} with
the probability P(Zt = 1) = 0.025 to decide whether
to use an outlier Yt ∼ N(2, σ 2) to replace the original
reward data at the currentmoment. That is, the rewards
received by the learning agent in this MAB problem are

Xk,t = I{Zt = 0} · X̃k,t + I{Zt = 1} · Yt , (2)

where X̃k,t ∼ N(μ
(i)
k , σ 2) for pi−1 + 1 ≤ t ≤ pi.

We first compare the proposed RCD-UCB with
the benchmark method: the M-UCB algorithm (Cao
et al., 2019). In the RCD-UCB, we set the tuning param-
eter D = 200 and consider four different settings for
α: 0.01, 0.025, 0.05 and 0.1. According to Theorem 2.2
in this paper and Remark 1 in Cao et al. (2019), we
set other tuning parameters as w = 100, b = 15 and
γ = 0.19 for both the RCD-UCB and theM-UCB algo-
rithms. We replicate the simulation experiments 100
times for all algorithms and show the average results.
In Figure 2, we display the expected cumulative regrets
for theM-UCB and the four RCD-UCB policies (RCD-
UCB.S1 to RCD-UCB.S4 using α = 0.01, 0.025, 0.05
and 0.1, respectively). It is seen that all the four RCD-
UCB policies receive much smaller regrets than the
M-UCB algorithm. These four policies perform sim-
ilarly, where the RCD-UCB.S2 and RCD-UCB.S3 are
slightly better in terms of the regret at the end time T
.

In Table 1, we list the average number of detected
change points and its standard deviation for each
algorithm among the 100 replications. The M-UCB
declares about 7 change points, much larger than its
true value of 4. When α = 0.025 and α = 0.05, the
average numbers of change points detected by theRCD-
UCB are close to 4, which explains the superior perfor-
mance of the RCD-UCB.S2 and RCD-UCB.S3 policies.
In the RCD-UCB algorithm, the number of detected
change points decreases as α increases. As discussed
in Section 2.2, there is a trade-off when choosing the
tuning parameter α. Larger α (i.e. larger truncation
probability) makes the RCD-UCBmore robust towards
possibly many outliers, but at the same time makes
the algorithmmore conservative for identifying change
points.



STATISTICAL THEORY AND RELATED FIELDS 127

Figure 1. Expected rewards for arms in the simulation experiment 1.

Figure 2. Expected cumulative regrets for the M-UCB and RCD-UCB with different α values in the simulation experiment 1.

Table 1. Average number (AVE) and standard deviation (SD) of
detected change points by each algorithm in the simulation
experiment 1.

RCD-UCB

M-UCB α = 0.01 α = 0.025 α = 0.05 α = 0.1

AVE 6.61 4.82 3.62 3.36 2.98
SD 1.54 1.27 1.02 0.77 0.67

In addition, we compare the RCD-UCB.S2 (α =
0.025) with the UCB1, the D-UCB and the SW-
UCB algorithms. In Table 2, we show the aver-
age cumulative regrets at time T and their standard
deviations over 100 replications for different algo-
rithms. According to Garivier and Moulines (2011),
we set γ = 1 − 0.25

√
(S − 1)/T in the D-UCB and

τ = 2
√
2T log(T)/(S − 1) in the SW-UCB here. From

Table 2, we can see that the RCD-UCB gives much
smaller (roughly less than a half) T-step cumulative
regrets compared to the UCB1, the D-UCB and the
SW-UCB algorithms. In addition, we report the average
computational time (in seconds) for each algorithm in
Table 2. All codeswere run in R on a laptopwith an Intel

Table 2. Average cumulative regrets R(T) (AVE), standard
deviations (SD) and computational time in seconds (TIME) for
different algorithms in the simulation experiment 1.

UCB1 D-UCB SW-UCB M-UCB RCD-UCB

Average 1005.26 614.17 764.99 599.17 346.14
SD 53.06 30.52 34.43 62.57 80.80
TIME 0.37 0.39 0.69 0.51 1.91

1.60GHz I5CPU.We can see that all algorithms are very
fast for running anMABproblemwithT = 10000 time
periods. The RCD-UCB algorithm spends a bit more
time than the other algorithms, but is still fast enough.

3.2. Simulation experiment 2

Next, we consider an MAB problem whose reward dis-
tributions of all arms are assumed to be Bernoulli,
where there are K = 4 arms, T = 10000 time periods
and S = 9 stationary segments (i.e. 8 change points).
The mean rewards of all arms μ

(i)
k are randomly

selected from {0.05, 0.1, 0.15, . . . , 0.95} (i = 1, . . . , S
and k = 1, . . . ,K). Figure 3 shows the expected rewards
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Figure 3. Expected rewards for arms in simulation experiment 2.

for each arm over the time horizon. At each time step t
(t = 1, . . . ,T), there exists a Bernoulli trial Zt ∈ {0, 1}
with probability P(Zt = 1) = 0.025 to decide whether
we will use an outlier Yt ∼ Bernoulli(0.99) to replace
the original reward data at the current moment. Thus,
the rewards received by the learning agent in this MAB
problem are

Xi,t = I{Zt = 0} · X̃i,t + I{Zt = 1} · Yt ,

where X̃k,t ∼ Bernoulli(μ(i)
k ) for pi−1 + 1 ≤ t ≤ pi.

We first compare the proposed RCD-UCB with the
benchmarkM-UCB. In the RCD-UCB, we setD = 200
and and consider four different settings for α: 0.01,
0.025, 0.05 and 0.1 which are denoted as the RCD-
UCB.S1 to RCD-UCB.S4 policies, respectively. Based
on Theorem 2.2 in this paper and Remark 1 in Cao
et al. (2019), we use w = 100, b = 12 and γ = 0.15
for both the RCD-UCB and the M-UCB algorithms.
In Figure 4, we display the expected cumulative regrets
for the M-UCB and the four RCD-UCB policies. From

Figure 4, it is clear that all the RCD-UCB policies give
smaller regrets compared to the M-UCB algorithm.
Here, the RCD-UCB.S1 (α = 0.01) and the RCD-
UCB.S2 (α = 0.025) provide the best performance. We
list the average number of detected change points and
its standard deviation for each algorithm over the 100
replications in Table 3. Note that the true number of
change points here is S−1 = 8. Due to the existence of
outliers, the M-UCB declares about 15 change points,
which is much larger than the truth. As a comparison,
the RCD-UCB.S1 (α = 0.01) and the RCD-UCB.S2

Table 3. Average number (AVE) and standard deviation (SD) of
detected change points by each algorithm in the simulation
experiment 2.

RCD-UCB

M-UCB α = 0.01 α = 0.025 α = 0.05 α = 0.1

AVE 14.59 8.76 7.90 3.81 2.92
SD 1.69 1.41 1.35 1.40 1.08

Figure 4. Expected cumulative regrets for M-UCB and RCD-UCB with different α values in the simulation experiment 2.
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Table 4. Average cumulative regrets R(T) (AVE), standard
deviations (SD) and average computational time in seconds
(TIME) for different algorithms in the simulation experiment 2.

UCB1 D-UCB SW-UCB M-UCB RCD-UCB

AVE 1533.16 1260.24 1192.15 1117.43 603.26
SD 59.74 23.43 27.04 30.9 48.52
TIME 0.36 0.36 0.67 0.46 1.79

(α = 0.025) identify 8.76 and 7.90 change points on
average, respectively, which are very close to the truth.

In addition, we compare the RCD-UCB.S2 (α =
0.025) with the UCB1, the D-UCB and the SW-
UCB algorithms in Table 4 which shows the average
cumulative regrets at time T, their standard devia-
tions and the average computational time (in seconds)
for different algorithms over 100 replications. Here
we set γ = 1 − 0.25

√
(S − 1)/T for the D-UCB and

τ = 2
√
2T log(T)/(S − 1) for the SW-UCB according

to Garivier and Moulines (2011). From Table 4, it is
clear that the RCD-UCB gives much smaller (nearly
one half) T-step cumulative regrets compared to the
other methods. The computational efficiency of each
algorithmhere is similar to that in the simulation exper-
iment 1.

3.3. Simulation experiment 3

In this simulation study, we aim to show the proposed
RCD-UCB algorithm can still perform well when there
are no outliers. Here we consider the same MAB prob-
lem in the simulation experiment 1 except that there
are no outliers (Zt = 0 in Equation (2)). We run the
RCD-UCB (α = 0.01, α = 0.025, α = 0.05, α = 0.1),
M-UCB, UCB1, D-UCB and SW-UCB algorithms with
the same settings of tuning parameters as those in the
simulation experiment 1.

We list the average number of detected change points
and its standard deviation for each of the four RCD-
UCB algorithms and the M-UCB algorithm over 100
replications in Table 5. It is seen that the numbers of
detected change points for all the five algorithms are
close to the true value 4. In addition, Table 6 shows

Table 5. Average number (AVE) and standard deviation (SD) of
detected change points by each algorithm in the simulation
experiment 3.

RCD-UCB

M-UCB α = 0.01 α = 0.025 α = 0.05 α = 0.1

AVE 3.93 4.27 3.89 3.83 3.81
SD 0.26 0.77 0.31 0.50 0.37

the average cumulative regrets at time T and their
standard deviations over 100 replications for all the
eight algorithms. From Table 6, we can see that the M-
UCB algorithm outperforms the UCB1, D-UCB and
SW-UCB algorithms. The four RCD-UCB algorithms
give similar T-step cumulative regrets as the M-UCB
algorithm; while, their standard deviations are slightly
larger. This meets our expectation that the proposed
RCD-UCB algorithm can also provide desirable per-
formances for cases with no outliers, though they are
designed for the cases having outliers.

3.4. A real data analysis

We consider a real data example from a metalwork fac-
tory in China, which had a task for machining a type
of cold-rolled alloy products. There are several paral-
lel production lines machining the same products. The
cold-rolled alloys will be annealed, reduced, strength-
ened and reshaped through the production lines. The
elongation rate is one of the key indexes for evaluating
the quality of cold-rolled alloy products. Itmeasures the
rate of elongation at breaking under themaximum load
on the alloy. Larger elongation rate is preferred. In this
case study, the original data set includes the elongation
rates of the cold-rolled alloys produced byK = 6 paral-
lel production lines over a long time period T = 42842.
At each time t (t = 1, . . . ,T), six cold-rolled alloys of
the same type from the six production lines are avail-
able, and we want to adaptively select one from the six
to use. The aim is to maximise the overall elongation
rate for the selected products. If we view the elongation
rates as rewards, this is an MAB problem with K = 6
arms.

Based on the original data, we group the elonga-
tion values of every 1000 successive times for each arm.
Figure 5 shows the average rewards for each arm over
the time horizon, which ranges from 18.68 to 49.98.
All the six arms have non-stationary rewards and there
are possibly many change points. Here, unexpected
events (e.g. recording errors) may happen which will
cause the rewards to be zero. Such outliers can signifi-
cantly bias the detection of change points in the existing
piecewise-stationary algorithms.

For analysing this real data, we run the proposed
RCD-UCB, the benchmark M-UCB, the UCB1, the D-
UCB and the SW-UCB algorithms. Specifically, we set
the tuning parameters w = 200, b = 80 and γ = 0.01
for the RCD-UCB and the M-UCB algorithms. Based
on the simulation experiments in Sections 3.1 and 3.2,

Table 6. Average cumulative regretsR(T) (AVE) and standard deviations (SD) by each algorithm in the simulation experiment 3.

RCD-UCB

UCB1 D-UCB SW-UCB M-UCB α = 0.01 α = 0.025 α = 0.05 α = 0.1

AVE 1012.20 363.48 338.03 292.89 317.38 295.82 286.93 294.28
SD 5.17 5.13 8.99 8.80 23.83 13.44 18.36 12.36
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Figure 5. Average rewards for arms in the elongation data analysis.

Table 7. Cumulative regrets R(T) for different algorithms in
the elongation data analysis.

UCB1 D-UCB SW-UCB M-UCB RCD-UCB

251800.60 64408.95 65417.44 55658.80 38674.90

we can seeα = 0.025 is a good choice.We setα = 0.025
and D = 100 in the RCD-UCB. According to Gariv-
ier and Moulines (2011), we set the tuning parameters
γ = 0.99 and τ = 1000 for the D-UCB and SW-UCB,
respectively.

Table 7 lists the values of T-step cumulative regrets
R(T) for all algorithms. It is seen that the proposed
RCD-UCB method performs the best among all algo-
rithms and it achieves a nearly 50% reduction in
cumulative regrets compared to theM-UCB algorithm.
The M-UCB performs slightly better than the D-UCB
and SW-UCB algorithms. The UCB1 policy yields the
largest regret and is much worse than the others. This
is because the UCB1 does not take the non-stationary
scenario into consideration. Figure 6 further plots the
cumulative regrets for theD-UCB, the SW-UCB, theM-
UCB and the RCD-UCB algorithms. From Figure 6, we
can also see that the RCD-UCB outperforms all other
methods.

4. Conclusion

In this paper, we consider a general setting of piecewise-
stationary MAB problems and propose a RCD-UCB
algorithm that is robust to outliers. The RCD-UCB has
a simple formulation and is computationally efficient in
practice. It can achieve a nearly optimal regret bound
on the order of O(

√
SKT logT) under some common

assumptions.Most tuning parameters in the RCD-UCB
can be specified based on the theoretical results. Yet,
if some prior information on the MAB (e.g. the num-
ber of piecewise-stationary segments S and the lower
bound δ) is unknown in practice, the tuning param-
eters, including the window width w, the statistical
distance threshold b, the exploration probability γ , the
truncation probability α and the delay D, need to be
chosen based on the practitioner’s experience, which is
typical in the existing literature (Cao et al., 2019; Liu
et al., 2018). Specifically, larger parameter α will make
the RCD-UCB more robust towards outliers, but at the
same timemore likely to miss real change points. Based
on the simulation studies in this paper, a choice of α =
0.025 or 0.05 may be appropriate. Larger parameter D
will lead to more stable initial estimates of truncated
thresholds, butmay also result in longer detection delay.

Figure 6. Cumulative regrets for different algorithms in the real data analysis.



STATISTICAL THEORY AND RELATED FIELDS 131

As D is often much smaller than the number of obser-
vations between consecutive change points, its impact
is usually small in practice. In the current works on the
piecewise-stationary MAB problems (Cao et al., 2019;
Liu et al., 2018), there lacks a systematic and automatic
way to handle tuning parameters when no prior infor-
mation is available, and it will be an interesting topic for
the future research.
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Appendices

Appendix 1. The UCB1 Algorithm

Auer, Cesa-Bianchi, Freund et al. (2002) proposed an upper
confidence bound algorithm, denoted as the UCB1 policy,
which becomes a step stone for MAB problems. Following
the notations in Section 2.1, we describe the UCB1 policy in
Algorithm 3. To balance the exploitation and exploration, the
UCB1 algorithmfirst tries all arms once and then sequentially
select the arms with the highest upper bound on its confi-
dence interval, i.e. the UCB1 index (line 7 in Algorithm 3).

Here we briefly summarise its mathematical back-
ground. IfX1, . . . ,Xn are independent and 1-subgaussian, we
have

P
(∑n

t=1 Xt

n
� ε

)
� exp(−nε2/2).

Let the right-hand side of this equation be δ and we solve for
ε. Then, we have

P

(∑n
t=1 Xt

n
�

√
2
n
log(

1
δ
)

)
� δ.

Following the notations in this paper, when the learner is
deciding its action in the time slot t, a good candidate for the
largest plausible estimate of the mean for the arm k is

1
nk

nk∑
n=1

Zk,n +
√

2
nk

log
(
1
δ

)
.

According to Auer, Cesa-Bianchi, Freund et al. (2002), a good
choice for the time dependent δ is 1

t . Thus, we have the
UCB1 index for the kth arm as UCBk = n−1

k
∑nk

n=1 Zk,n +√
2 log(t)/nk. Please refer to Auer, Cesa-Bianchi, Freund

et al. (2002) for more details on the UCB1 algorithm.

Algorithm 3 UCB1
Require: Input parameters: T ∈ N+, K ∈ N+
1: Initialisation: nk ← 0 ∀k ∈ K.
2: for all t = 1, 2, . . . ,T do
3: if t ∈ K = {1, . . . ,K} then
4: At ← t.
5: else
6: At ← argmaxk∈KUCBk,
7: where UCBk ← n−1

k
∑nk

n=1 Zk,n +√
2 log(t)/nk is the upper confidence bound

for the kth arm and Zk,n is defined in line 10.
8: end if
9: Play arm At and receive the reward XAt ,t .
10: nAt ← nAt + 1;ZAt ,nAt ← XAt ,t .
11: end for

Appendix 2. Proof of Theorem 2.2

The basic idea of this proof follows the same line of that for
classic change detectionMAB algorithms. The following lem-
mas fromCao et al. (2019) are needed and rephrasedwith our
notations.

Lemma A.1 (Regret bound in stationary scenarios): Con-
sider a stationary scenario with S = 1, p0 = 0 and p1 = T.
Then under Algorithm 2 with parameter w, b and γ , we have
that

R(T) ≤ T · P(τ1 ≤ T) + C̃ + γT,
where τ1 is the first detection time and

C̃ = 8
∑

�
(1)
k >0

logT/�
(1)
k + (

1 + π2/3 + K
) K∑
k=1

�
(1)
k .

Note that the RCD-UCB inAlgorithm2 is stricter than the
M-UCB algorithm by Cao et al. (2019) for detecting change
points. The probability of raising false alarms in the station-
ary scenario for the RCD-UCB cannot exceed that for the
M-UCB. Thus, the following Lemma A.2 (Lemma 2 of Cao
et al. (2019)) holds for the RCD-UCB.

Lemma A.2 (Probability of raising false alarms in the
stationary scenario): Consider a stationary scenario with
S = 1. Then under Algorithm 2 with parameter w<T, b and
γ , we have that

P(τ1 ≤ T) < wK
(
1 − [1 − 2 exp(−2b2/w)]�T/w�

)
,

where τ1 is the first detection time.

When L = w+ 2D, the uniformity sampling scheme (line
4 of Algorithm 2) guarantees that each arm is sampled at least
w/2 + D times in any time. Thus, the following Lemma A.3
(Lemma 3 of Cao et al. (2019)) holds, which ensures the
detection delay is no more than L/2 with a large probability.

Lemma A.3 (Probability of achieving a successful detec-
tion with S = 2): Consider a stationary scenario withM = 2
and L = (w + 2D)�K/γ �. Assume that p2 − p1 > L/2. For
any (μ

(1)
1 ,μ(1)

2 , . . . ,μ(1)
K ) and (μ

(2)
1 ,μ(2)

2 , . . . ,μ(2)
K ) ∈ [0, 1]K

satisfying δ
(1)
k ≥ 2b/w + c for some k ∈ K and c> 0, under

Algorithm 2, we have that

P(p1 < τ1 ≤ p1 + L/2 | p1 > p2) ≥ 1 − 2 exp(−wc2/4).

Lemma A.4 (Expected detection delay): Consider a
piecewise-stationary scenario with M = 2 and L = (w +
2D)�K/γ �. Assume that p2 − p1 > L/2. For any (μ

(1)
1 ,μ(1)

2 ,
. . . ,μ(1)

K ) and (μ
(2)
1 ,μ(2)

2 , . . . ,μ(2)
K ) ∈ [0, 1]K satisfying δ

(1)
k ≥

2b/w + c for some k ∈ K and c> 0, under Algorithm 2, we
have that

E(τ1 − p1 | p1 < τ1 ≤ p1 + L/2)

≤ min
{
L/2, �b/δ(1)

k + 3
√
w · �K/γ ��

}
/

× [1 − 2 exp(−wc2/4)].

Based on Lemmas A.1–A.4 and Theorem 1 in Cao
et al. (2019), it holds that

R(T) ≤
S∑

i=1

⎡
⎢⎣8

∑
�

(i)
k >0

log(pi − pi−1)/�
(i)
k
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× + (
1 + π2/3 + K

) K∑
k=1

�
(i)
k

]

+ γT + γ −1
S−1∑
i=1

×
(
2K · min{w/2, �b/max

k∈K
δ
(i)
k � + 3

√
w}

)
+ 3S.

For each i = 1, . . . , S, (8
∑

�
(i)
k >0 log(pi − pi−1)/�

(i)
k + (1 +

π2/3 + K)
∑K

k=1 �
(i)
k ) is a classic regret bound for the UCB1

algorithm with time length pi − pi−1. The
term

∑S
i=1[8

∑
�

(i)
k >0 log(pi − pi−1)/�

(i)
k + (1 + π2/3+K)∑K

k=1 �
(i)
k ] is of order O(

√
SKT logT) (Cao et al., 2019).

The term γT cannot exceed O(

√
SKT

√
logT + logK) =

o(SKT logT). The term γ −1 ∑S−1
i=1 (2K · min{w/2, �b/

maxk∈K δ
(i)
k � + 3

√
w}) cannot exceed O(

√
SKT) = o(SKT

logT) and the term 3S is of orderO(S) = o(SKT logT). Thus
the result follows.


