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Abstract

Computer experiments are widely used in modern science and industrial applica-

tions that require space-filling designs. Uniform projection designs (UPDs) have re-

cently been proposed to address designs’ space-filling properties for low-dimensional

projections. UPDs are desirable for experiments in which only portions of factors

are active. The construction of UPDs with flexible sizes is challenging, especially

for large ones. In this paper, we systematically study the construction methods of

UPDs via level permutation and/or level expansion. For each approach, we estab-

lish theoretical results connecting the uniform projection properties of the generated

designs with the properties of the corresponding initial designs. Based on the es-

tablished theoretical results, efficient algorithms are developed to construct UPDs

with flexible sizes, which leads to many practically useful designs.
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1 Introduction

Computer experiments are widely used to emulate complex physical systems

(Santner et al., 2003; Fang et al., 2006; Garud et al., 2017; Gramacy, 2020; Lukemire

et al., 2021). Space-filling designs whose points are allocated evenly in the experimen-

tal regions are recommended for computer experiments (Fang et al., 2006; Gramacy,

2020). Space-filling Latin hypercube designs (LHDs) and fractional factorial designs

(FFDs) are popular (Joseph, 2016; Lin and Tang, 2015; Xiao and Xu, 2018; Xiao

et al., 2019). An LHD is an n×k matrix whose columns are permutations of numbers

1 to n (McKay et al., 1979). LHDs have unique point projections, thus having no

replication, on each dimension.

In the current literature, the maximin distance criterion (Johnson et al., 1990) and

the discrepancy criteria (Hickernell, 1998) are two popular space-filling measures.

The former seeks to maximize the minimum inter-site distances among the design

points (Lin and Tang, 2015; Sun and Tang, 2017a,b; Wang et al., 2018; Xiao and Xu,

2017, 2018; Li et al., 2020). The latter aims to minimize some discrepancy criteria,

including the centered L2-discrepancy (CD), the wrap-around L2-discrepancy (WD)

and the mixture discrepancy (MD) (Zhou et al., 2013). Optimal designs under either

criterion focus on the space-filling properties over the entire design spaces, but they

may have poor projection uniformity in low dimensions (Joseph et al., 2015).

In many computer experiments, only a few out of the numerous factors are active

(Kleijnen, 2017; Moon et al., 2012; Woods and Lewis, 2016). Thus, an appropriate

design should be space-filling not only in the full-dimensional space but also over all

low-dimensional projections. Under this consideration, Joseph et al. (2015) proposed

the maximum projection (Maxpro) design, and Sun et al. (2019) proposed the uni-

form projection design (UPD), where the former considers a distance metric and the

latter relies on a discrepancy measure. Maxpro designs assume that all sub-spaces

are equally important, while UPDs focus more on lower-dimensional projections.

UPDs have the smallest average CD values of all two-dimensional projections and

are shown to have good space-filling properties over all sub-spaces in terms of the

distance, uniformity and orthogonality (Sun et al., 2019; Wang et al., 2020).

To find an n-run, k-factor and s-level UPD, the entire search space includes
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as many as (n!/((n/s)!)s)k candidate designs (including isomorphism). Clearly, for

UPDs of large sizes, a direct search over the entire space can be inefficient. In the

current literature, the procedures of level permutation and level expansion are widely

used to restrict the search space for identifying optimal designs (Tang, 1993; Leary

et al., 2003; Tang et al., 2012; Zhou and Xu, 2014; Jiang and Ai, 2017; Xiao and

Xu, 2018). A key problem in such methods is to identify appropriate initial designs

which will determine the properties of sub-spaces for searching.

In this paper, we propose to construct UPDs via level permutation (LP), level ex-

pansion (LE), both level permutation and expansion (BLPE), and step-by-step level

permutation and expansion (SLPE) according to the required design sizes. Theoret-

ical results are established to identify the “average-best” sub-spaces for searching.

Specifically, for all these four construction methods, we connect the average uniform

projection properties of the generated designs with the uniform projection proper-

ties, distance structures and generalized word-length patterns of their corresponding

initial designs. Initial designs with small A2 values and small ϕ values should be used

justified by both theoretical and empirical results. A tailored threshold accepting

global optimization algorithm is developed for searching UPDs. Guidelines on when

to apply these four constructions are discussed in details. For moderate or large

UPDs, SLPE is generally recommended as illustrated in Section 4.

The rest of this paper is organized as follows. Section 2 introduces the notation and

preliminaries. Section 3 shows the theoretical results for the proposed constructions.

Section 4 discusses the construction guidelines and show some numerical studies.

Section 5 concludes and discusses some future work. All proofs and technical details

are given in the Appendix.

2 Notation and preliminaries

Denote an n-run, k-factor and s-level (labelled as 1, 2, . . . , s) design as (n, sk).

A design is an orthogonal array (OA) of strength t, denoted as OA(n, k, s, t), if

all possible level combinations appear the same number of times in its every n × t

sub-matrix (Hedayat et al., 1999). In practice, researchers often focus on OAs of

strength t = 2. A design is balanced if every level appears the same number of times
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in its every column. Specifically, a Latin hypercube design, denoted as LHD(n, k),

is a balanced (n, nk) design. Throughout this paper, we focus on balanced designs.

To evaluate designs’ aliasing structures, Xu and Wu (2001) introduced the gener-

alized word length pattern (GWLP). For a design D(n, sk), consider the full ANOVA

model Y = X0α0+X1α1+ · · ·+Xnαn+ ϵ, where Y is the response vector, α0 is the

intercept, X0 is an n× 1 vector of all 1’s, αj is an (s− 1)j
(
k
j

)
× 1 vector including

all jth-order factorial effects, Xj is an n× (s−1)j
(
k
j

)
matrix consisting of jth factor

contrast coefficients (j = 1, . . . , k), and ϵ ∼ N(0, σ2) is a random error. Xu and Wu

(2001) defined Aj(D) = n−2|XT
0 Xj|2 to measure the overall aliasing between the in-

tercept and all jth-order factorial effects, where |X|2 = tr(XTX) and j = 0, . . . , k.

It is straightforward to show that all balanced designs D satisfy A0(D) = 1. The

GWLP of design D is the vector (A1(D), . . ., Ak(D)). Xu and Wu (2001) proposed

to sequentially minimize designs’ GWLPs. A design D is an OA of strength t if and

only if A1(D) = . . . = At(D) = 0.

For an (n, sk) design D = (xil)n×k, let xi = (xi1, . . . , xik) and xj = (xj1, . . . , xjk)

be its ith and jth rows, respectively. Denote the Hamming distance between rows xi

and xj as hi,j, which is the number of positions at which the two rows are different.

Let dp (xi, xj) =
(∑k

l=1 |xil − xjl|p
)1/p

be the Lp-distance between two rows xi and

xj. Let dp(D) = min{dp(xi, xj), 1 ≤ i < j ≤ n} be the Lp-distance of design D. The

maximin Lp-distance design maximizes the value of dp(D) among all designs of the

same size. In this paper, we focus on the L1-distance measure (a.k.a., Manhattan

distance); that is, we use di,j =
∑k

l=1 dil,jl where dil,jl = |xil − xjl|.
The centered L2-discrepancy (CD) proposed by Hickernell (1998) is a widely used

criterion for measuring designs’ space-filling properties. It has a clear geometric

interpretation that the number of points in any chosen rectangular space should be

proportional to the volume of the chosen space if the design points are space-filling in

the whole space or sub-spaces. Based on the CD metric, Sun et al. (2019) proposed

the uniform projection criterion which is defined as

ϕ(D) =
2

k(k − 1)

∑

|u|=2

CD(Du),

where u is a subset of {1, 2, . . . , k}, |u| is the cardinality of u, andDu is the projection

4
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of D onto the dimensions indexed by the elements in u. A uniform projection design

(UPD) minimizes the value of ϕ(D) among all possible designs of the same size. Sun

et al. (2019) showed that

ϕ(D) =
g(D)

4k(k − 1)n2s2
+ C(k, s), (1)

where g(D) =
∑n

i=1

∑n
j=1 d

2
i,j − 2

∑n
i=1(

∑n
j=1 di,j)

2/n, and the constant C(k, s) =

(4(5k−2)s4+30(3k−5)s2+15k+33)/(720(k−1)s4)+(1+(−1)s)/(64s4). Equation (1)

provides a fast way to compute the ϕ(D) values via calculating the pairwise L1-

distances in D.

Sun et al. (2019) gave a lower bound of ϕ(D), and Wang et al. (2020) gave an

improved lower bound and a new upper bound. We summarize their findings in the

following lemma.

Lemma 1. For any balanced (n, sk) design D, we have max{ϕLB1, ϕLB2} ⩽ ϕ(D) ⩽
ϕUB, where

ϕLB1 =
5k(4s4+2(13n−17)s2−n+5)−(n−1)(8s4+150s2−33)

720(n− 1)(k − 1)s4
+

1 + (−1)s

64s4
,

ϕLB2 =
26s2 − 1

144s4
+

1 + (−1)s

64s4
,

ϕUB =
(10k − 8)s4 + (140k − 150)s2 − 25k + 33

720(k − 1)s4
+

1 + (−1)s

64s4
.

The lower bound ϕLB1 is achieved if and only if D is an L1-equidistant design. The

lower bound ϕLB2 is achieved if and only if D is an OA.

Wang et al. (2020) defined the relative ϕ-efficiency of a design D as

ϕRE(D) =
ϕUB − ϕ(D)

ϕUB − ϕLB

, (2)

where ϕLB = max{ϕLB1, ϕLB2} and ϕUB are given in Lemma 1. Clearly, we have

0 ⩽ ϕRE(D) ⩽ 1, and larger ϕRE(D) values indicate better projection uniformity of

designs.

Next, we define the procedures of level permutation (LP) and level expansion

(LE). Starting from an (n, sk) initial design D, we can randomly permute the s

levels in its one or more factors to generate a new design D′ of the same size, which

is called the LP procedure. From any initial design D, we have (s!)k possible D′’s

5
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generated via LP. In addition, starting from a low-level initial design D(n, sk), we

can generate high-level designs D′(n, (ms)k) via LE; that is, for each column in D,

we replace the n/s entries of level l (l = 1, 2, . . . , s) with n/(ms) replicates of random

permutations of {(l − 1)m + 1, (l − 1)m + 2, . . . , (l − 1)m + m}, where n, k, s and

m are all integers larger than 1 and n is divisible by ms. Specifically, the D′’s are

LHDs if m = n/s. From any initial design D, we have ((n/s)!/(r!)m)sk possible D′’s

generated via LE, where r = n/(ms).

In the procedure of both level permutation and expansion (BLPE), we first per-

form LP to an initial design D(n, sk), and then for each generated design via LP we

perform LE to obtain the generated designs D′
(
n, (ms)k

)
. Clearly, from any initial

design D, there are in total (s!)k ((n/s)!/(r!)m)sk possible D′’s via BLPE. Note that

this number is much smaller than the total number of possible designs with n runs, k

factors and ms levels which is (n!/((n/ms)!)ms)k. Obviously, the LP, LE and BLPE

procedures restrict the whole search space to some much smaller sub-spaces. The

initial designs D determine which sub-spaces to search over, and we want to choose

the best D that will lead to the “average-best” performances of all the generated

designs.

Example 1. To illustrate the LP procedure, we consider replacing the levels (1, 2, 3, 4)

in both columns of an initial design D0(8, 4
2) with a random permutation (1, 3, 2, 4)

to generate a new design D, where

D0 =



1 1 3 3 2 2 4 4

1 2 3 4 1 2 3 4




T

, D =



1 1 2 2 3 3 4 4

1 3 2 4 1 3 2 4




T

.

Design D0 has a uniform projection value of ϕ(D0) = 0.02 and a relative ϕ-efficiency

of ϕRE(D0) = 47%, while design D has ϕ(D) = 0.01 and ϕRE(D) = 94%. Clearly,

we can improve the design’s projection uniformity by choosing the best out of the 576

possible generated designs D via LP.

To illustrate the LE procedure, we consider generating an LHD D′ from the above

D after LP. For each column in D, we replace all entries of 1 (2, 3 or 4) with a

random permutation of numbers: (1, 2) ((3, 4), (5, 6) or (7, 8)). Here are two possible

generated LHDs:

6
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D
′
2 =



1 2 3 4 5 6 7 8

1 5 3 7 2 6 4 8




T

, D
′
3 =



2 1 3 4 5 6 8 7

2 6 4 8 1 5 3 7




T

.

We have ϕ(D
′
2) = 0.007 (ϕRE(D

′
2) = 77%) and ϕ(D

′
3) = 0.004 (ϕRE(D

′
3) = 90%).

Clearly, we can improve the design’s projection uniformity by choosing the best out

of the 256 possible generated designs D′ via LE.

In addition, to illustrate the impacts of the initial designs on the generated designs

in LP or LE, we compare pairs of initial designs having the same design sizes but

different ϕ values. In Table 1, we list the minimum and average ϕ values (defined

in (1)) and the corresponding ϕ-efficiency ϕRE (defined in (2)) of the generated

designs searched in the same time, where we separate the results from the pair of

initial designs using a slash. We can observe that initial designs with smaller ϕ

values tend to generated designs with smaller ϕ values.

Table 1
The ϕ-values (multiplied by 104) and ϕ-efficiencies (%) of designs generated from pairs of
initial designs via either LP or LE.

ϕ(D′)(ϕRE)

(n, sk) ϕ(D) ϕmin(ϕRE min) ϕ̄(ϕRE ave)

LP
(27, 35) 199.76/308.13 199.76(100)/304.01(32.45) 199.76(100)/304.13(32.37)

(50, 55) 72.11/131.63 72.11(100)/121.71(66.84) 72.11(100)/124.12(65.23)

LE
(27, 275) 199.76/308.13 5.02(98.26)/56.43(63.04) 5.78(97.73)/56.97(62.67)

(50, 505) 72.11/131.63 1.59(99.41)/39.77(73.23) 1.87(99.21)/39.92(73.13)

In next section, we will give theoretical results on how to choose initial designs to

improve the overall searching efficiency.

3 Theoretical results

In this section, we systematically study the theoretical properties for constructing

UPDs under three scenarios: level permutation (LP), level expansion (LE) and both

level permutation and expansion (BLPE). Numerical examples are given to illustrate

the theoretical results.

7
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3.1 Designs generated via LP

For an (n, sk) initial design D, let P(D) be the collection of all designs D′ gener-

ated by permuting the levels of D. Let ϕP (D′) be the average ϕ values of all designs

in P(D).

Theorem 1. For any balanced (n, sk) design D, when all possible level permutations

of D are considered, we have

ϕP (D′) =
1

nP

∑

D′∈P(D)

ϕ(D′) =
(s+ 1)2

18k(k − 1)s4
A2(D) + ϕLB2,

where the constant nP = (s!)k and ϕLB2 is defined in Lemma 1.

Theorem 1 shows that the average ϕ values of all designs in P(D) are a linear

function of the initial design D’s A2 (in GWLP) value. Thus, initial designs with

small A2 values (e.g., OAs) are preferred in LP, which will lead to the average-best

(smallest average ϕ values) sub-spaces for searching. As LP will not change the ϕ

value of any two-level design, we can prove the following corollary.

Corollary 1. For a balanced (n, 2k) design D, ϕ(D) = 1
32k(k−1)

A2(D) + 215
4608

.

By Corollary 1, it is seen that minimizing ϕ(D) is equivalent to minimizing its A2

value for two-level designs.

Example 2. Consider five 210−3 and five 37−2 fractional factorial designs with dif-

ferent GWLPs, from which we enumerate all possible 1024 and 279936 generated

designs D′ via LP respectively. We show their minimum (“Min” column) and aver-

age (“Ave” column) ϕ values in Tables 2 and 3, respectively. Additionally, we show

the true average (“True.Ave” column) ϕ values of all possible generated designs in

P(D) by Theorem 1. We use bold font to show the best results throughout the paper.

From Table 2, it is seen that an OA(n, 2k) (A2 = 0) is a UPD with ϕ(D) =

215/4068, which illustrates Corollary 1.

From Tables 2 and 3, it is not difficult to find that the average ϕ values calcu-

lated based on Theorem 1 is equal to the average ϕ values for all generated designs

enumerated, which verifies Theorem 1. We can see that the ϕ values of generated de-

signs are different when using different initial designs which have different GWLPs.

Specifically, an initial design having a smaller A2 value will lead to a better search

8
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Table 2
The ϕ-values (multiplied by 104) of designs generated from five 210−3 initial designs via
LP.

(A1, A2, A3, A4) ϕ(D)
ϕ(D′)

Min Ave True.Ave

(0,0,0,3) 466.58 466.58 466.58 466.58

(0,0,1,2) 466.58 466.58 466.58 466.58

(0,1,0,2) 470.05 470.05 470.05 470.05

(0,2,0,1) 473.52 473.52 473.52 473.52

(0,3,0,3) 477.00 477.00 477.00 477.00

Table 3
The ϕ-values (multiplied by 104) of designs generated from five 37−2 initial designs via LP.

(A1, A2, A3, A4) ϕ(D)
ϕ(D′)

Min Ave True.Ave

(0,0,2,6) 199.76 199.76 199.76 199.76

(0,0,4,2) 199.76 199.76 199.76 199.76

(0,0,8,0) 199.76 199.76 199.76 199.76

(0,2,0,4) 206.29 204.33 204.99 204.99

(0,4,0,4) 212.82 208.90 210.21 210.21

space of generated designs in terms of the average uniform projection properties,

which illustrates Theorem 1. Note that initial designs D with A2 = 0 will have the

same ϕ(D) value which achieves a lower bound as described by Lemma 1.

3.2 Designs generated via LE

Starting from a low-level design D(n, sk), let E(D) be the collection of all high-

level generated designs D′(n, (ms)k) via LE, where n, k, s and m are all integers

larger than 1 and n is divisible by ms. Let ϕE (D
′) be the average ϕ values of all

designs in E(D).

Theorem 2. For a balanced (n, sk) design D, when all possible level expansions of

D are considered, we have

ϕE (D
′) =

1

nE

∑

D′∈E(D)

ϕ(D′) = ϕ(D)− m2 − 1

6k(k − 1)m2s2n(n− s)

n∑

i=1

n∑

j=1

hi,jdi,j

+
n2 (m2 − 1)

2

18k(k − 1)m4s4(n− s)2
A2(D) + C1, (3)

9



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

where the constant nE = ((n/s)!/(r!)m)sk, r = n/(ms), m = n/s and

C1 =
(m2 − 1) [−(4kn− 3)s3 + 2(2kn− 3)ns2 + (2k + 3n+ 2)ns− 4kn2]

72(k − 1)m2s3(n− s)2

+
n (m2−1) (s2 + n (m2 − 1))

36m4s4(n− s)2
− 1+(−1)s

64s4
− (m2−1) (2m2s2 −m2 − 1)

288m4s4

− (m2 − 1) (2(11k − 9)m2s2 − 3(k − 1)m2 − 3k + 3)

96(k − 1)m4s4
+
1 + (−1)ms

64m4s4
.

Theorem 2 connects the generated designs’ average uniform projection properties

with the initial design’s uniform projection property, distance structure and A2 value

(in GWLP). Next, we identify the dominant term of ϕE (D
′).

Lemma 2. For a balanced design D(n, sk), the ϕ criterion defined in (1) is equiva-

lent to

ϕ(D) =
1

4k(k − 1)n2s2

n∑

i=1

n∑

j=1

d2i,j

− 1

k(k − 1)ns4

n∑

i=1

∑

1⩽p<q⩽k

(xip − s0)
2 (xiq − s0)

2 + C2, (4)

where C2 = C(k, s) − (s2 − 1) ((25k + 3)s2 − 25k − 7) /480(k − 1)s4 is a constant

with C(k, s) defined in (1) and s0 = (s+ 1) /2.

Remark 1. The first term of ϕ(D) in (4) is always greater than the absolute value

of its second term; that is,

1

4k(k − 1)n2s2

n∑

i=1

n∑

j=1

d2i,j >
1

k(k − 1)ns4

n∑

i=1

∑

1⩽p<q⩽k

(xip − s0)
2 (xiq − s0)

2 .

By Lemma 2 and Remark 1, it is seen that the ϕ value of a design D is dominated

by
∑n

i=1

∑n
j=1 d

2
i,j/ [4k(k − 1)n2s2]. Thus, we have the following Remark 2 which

reveals the dominated term in Theorem 2.

Remark 2. Denote the dominated term of ϕ(D) as T1 =
1

4k(k−1)n2s2

n∑
i=1

n∑
j=1

d2i,j. De-

note the absolute values of the second and the third terms in (3) as T2=
m2−1

6k(k−1)m2s2n(n−s)
n∑

i=1

n∑
j=1

hi,jdi,j and T3 =
n2(m2−1)2

18k(k−1)m4s4(n−s)2
A2(D), respectively. In Theorem 2, we have:

(1) T1 is no less than T2, where T1/T2 ⩾ 1 + (s−2)(s−1)
2k(s+1)

;

(2) T2 is no less than T3, when A2(D) ⩽ 4k.

By Remark 2, the average uniform projection property of all generated designs

10



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

ϕE (D
′) in Theorem 2 is dominated by the initial design’s uniform projection property

ϕ(D). Note that the difference between the terms T1 and T2 increases quickly as s

increases; see the numerical results in Table 4 for illustration. Intuitively, this is

mainly because the difference between hi,j and di,j becomes larger for higher levels.

For clarity, denote the absolute value of the second term in (4) as

T4 =
n∑

i=1

∑

1⩽p<q⩽k

(xip − s0)
2 (xiq − s0)

2 /k(k − 1)ns4.

In Table 4, it is seen that the difference between the terms T1 and T4 also increases

quickly as s increases. In addition, since A2(D) ⩽ 4k clearly holds in most practical

cases, T2 is no less than T3 by Remark 2; see Table 5 for an illustration. In Table 5,

the ratio T2/T3 increases quickly as s increases, which can be justified theoretically;

see the proof of Remark 2. Overall speaking, we should choose a UPD as the initial

design in the LE procedure which will lead to a better search space. By Lemma 1,

OAs reach the lower bound ϕLB2 for ϕ values and satisfy A2 = 0. As T3 ⩾ 0, if the

corresponding OAs are available, we should choose them as the initial designs.

Since the L1-distance is equivalent to the Hamming distance in two-level designs,

we can prove the following Corollary 2. It suggests that when starting from two-level

initial designs, we should choose initial designs with small A2 values in LE.

Corollary 2. For any balanced (n, 2k) design D, when all possible level expansions

are considered, we have

(1) ϕE (D
′) = ((2m2+1)n−6m2)2

288k(k−1)m4(n−2)2
A2(D) + C3, where C3 is a constant;

(2) specifically, when D′ is an LHD(n, k) (m = n/s), ϕE (D
′)= (n−1)2

72k(k−1)n2A2(D) +

C4, where C4 is a constant.

Example 3. Consider the same 210−3 and 37−2 designs in Example 2, from which

we randomly generate 105 LHDs via LE. We show their minimum (“Min” column)

and sample average (“Sam.Ave” column) ϕ values in Tables 6 and 7, respectively.

We also give the true average (“True.Ave” column) ϕ values of all possible generated

designs in E(D) by Theorem 2.

From Tables 6 and 7, it is seen that the minimum and average ϕ values of the

generated designs depend on the properties of the initial designs. Specifically, initial

designs with smaller ϕ values will lead to better generated designs with smaller

11
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Table 4
Comparisons between the absolute values of the first two terms in Lemma 2 and the second
term in Theorem 2.

s Initial Design m T1 T2 T4 T1/T2 T1/(T2 + T4)

2

(4, 23) 2 0.03125 0.03125

0.00195

1.00 0.94

(8, 25) 4 0.02344 0.01953 1.20 1.09

(128, 210)1
64

0.01944 0.01317 1.48 1.29

(128, 210)2 0.01979 0.01340 1.48 1.29

3

(9, 34) 3 0.03429 0.02195

0.00274

1.56 1.39

(27, 313)
3

0.02503
0.01235 2.03 1.66

9 0.01372 1.83 1.52

(243, 37)1
81

0.02884 0.01415 0.00281 2.04 1.70

(243, 37)2 0.02956 0.01442 0.00287 2.05 1.71

5 (25, 56) 5 0.03360 0.01280 0.00320 2.63 2.10

7 (49, 78) 7 0.05702 0.01737 0.00333 3.28 2.66

9 (81, 910)
3

0.03167
0.00610

0.00339
5.19 3.34

9 0.00677 4.68 3.12

Note: (128, 210)1 refers to the 210−3 design with (A1, A2, A3, A4) = (0, 1, 0, 2); (128, 210)2
refers to the 210−3 design with (0, 2, 0, 1); (243, 37)1 refers to the 37−2 design with
(0, 2, 0, 4); (243, 37)2 refers to the 37−2 design with (0, 4, 0, 4); and other designs are OAs
with t = 2.

Table 5
Comparisons between the absolute values of the second and third terms in Theorem 2.

(A1, A2, A3, A4) s m 4k T2 T3 T2/T3

(0,1,0,2)

2 64 40

0.01317 0.00004 330.83

(0,2,0,1) 0.01340 0.00008 168.37

(0,3,0,3) 0.01364 0.00012 114.22

(0,2,0,4)
3 81 28

0.01415 0.00002 422.78

(0,4,0,4) 0.01442 0.00007 215.34

average (and minimum) ϕ values via LE, which illustrates Theorem 2. As a special

case, two-level designs with smaller A2 values will have smaller ϕ values, which

illustrates Corollary 2. In addition, it is seen that the sample average is close to the

true average in this example. Note that the true average ϕ values of all generated

designs are calculated by Theorem 2, and since it would be impossible to enumerate

the nE candidate designs for each case in Tables 6 and 7, we take 105 samples as an

explanation.
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Table 6
The ϕ-values (multiplied by 104) of designs generated from five 210−3 initial designs via
LE.

(A1, A2, A3, A4) ϕ(D)
ϕ(D′)

Min Sam.Ave True.Ave

(0,0,0,3) 466.58 1.40 1.76 1.76

(0,0,1,2) 466.58 1.41 1.76 1.76

(0,1,0,2) 470.05 2.82 3.28 3.28

(0,2,0,1) 473.52 4.24 4.80 4.80

(0,3,0,3) 477.00 5.67 6.32 6.32

Table 7
The ϕ-values (multiplied by 104) of designs generated from five 37−2 initial designs via
LE.

(A1, A2, A3, A4) ϕ(D)
ϕ(D′)

Min Sam.Ave True.Ave

(0,0,2,6) 199.76 0.53 0.67 0.67

(0,0,4,2) 199.76 0.51 0.67 0.67

(0,0,8,0) 199.76 0.47 0.67 0.67

(0,2,0,4) 206.29 4.58 4.89 4.89

(0,4,0,4) 212.82 8.70 9.12 9.12

3.3 Designs generated via BLPE

From an initial low-level design D(n, sk), we can perform both level permutation

and expansion (BLPE) to generate high-level designs D′(n, (ms)k). Let Θ(D) rep-

resent the set of all designs generated via BLPE. Let ϕΘ (D′) be the average ϕ value

of all designs in Θ(D).

Theorem 3. From a balanced (n, sk) initial design D, when all possible level per-

mutations and expansions of D are considered, we have

ϕΘ (D′) =
1

nΘ

∑

D′∈Θ(D)

ϕ(D′) =
(m2s2 − (n− 1)m2s− n)

2

18k(k − 1)m4s4(n− s)2
A2(D) + C5,

13
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Table 8
The ϕ-values (multiplied by 104) of designs generated from five 210−3 initial designs via
BLPE.

(A1, A2, A3, A4) ϕ(D)
ϕ(D′)

Min Sam.Ave True.Ave

(0,0,0,3) 466.58 1.43 1.76 1.76

(0,0,1,2) 466.58 1.39 1.76 1.76

(0,1,0,2) 470.05 2.85 3.28 3.28

(0,2,0,1) 473.52 4.27 4.80 4.80

(0,3,0,3) 477.00 5.70 6.32 6.32

where the constant nΘ = (s!)k ((n/s)!/(r!)m)sk, r = n/(ms), m = n/s,

C5 = C1 + C(k, s)− (s2 − 1) ((25k + 3)s2 − 25k − 7)

480(k − 1)s4
− (s2 − 1)

2

288s4

− (s2 − 1) [(2k + 1)m2s3 − (2k + 1)nm2s2 − 4kns]

72(k − 1)m2s4(n− s)

+
(s2 − 1) [2(k − 1)n(m2 − 2)− 2(2kn− k + 1)m2s]

72(k − 1)m2s4(n− s)
,

C1 and C(k, s) are defined in (3) and (1), respectively.

By Theorem 3, it is clear that from an initial design D with a smaller A2 value, the

designs generated via BLPE will have better average uniform projection property.

Clearly, ϕΘ (D′) reaches the minimum when the initial design is an OA (A2(D) = 0),

which will lead to the best search space Θ(D).

Example 4. Consider the same 210−3 and 37−2 designs in Example 2, from which

we randomly generate 105 LHDs via BLPE. We show their minimum and sample

average ϕ values in Tables 8 and 9, respectively. We also give the true average ϕ

values of all generated designs in Θ(D) by Theorem 3.

From Tables 8 and 9, it is clear that the minimum and average ϕ values of the

generated designs depend on the properties of the initial designs. Specifically, the

initial designs with smaller A2 values will lead to better generated designs (i.e.,

smaller ϕ values) on average via BLPE, which illustrates Theorem 3.

14
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Table 9
The ϕ-values (multiplied by 104) of designs generated from five 37−2 initial designs via
BLPE.

(A1, A2, A3, A4) ϕ(D)
ϕ(D′)

Min Sam.Ave True.Ave

(0,0,2,6) 199.76 0.53 0.67 0.67

(0,0,4,2) 199.76 0.51 0.67 0.67

(0,0,8,0) 199.76 0.50 0.67 0.67

(0,2,0,4) 206.29 2.77 3.59 3.59

(0,4,0,4) 212.82 5.01 6.50 6.50

3.4 Choices of OAs as initial designs

Based on the theoretical results in previous subsections, OAs (A2 = 0) are good

choices for initial designs if they are available. When LE is applied, various OAs may

be available. For example, to generate a 16-run, 2-factor LHD, there are various 2-

level and 4-level OAs that can be selected as initial designs in LE. In this subsection,

we further detail the choices of OAs.

Given the run and factor sizes, different initial designs OA(n, k, s, t) are char-

acterized by the level sizes (s) and strengths (t). Note that an OA of strength t

satisfies A1 = . . . = At = 0. Since only the A2 value matters in Theorem 2, any

strength t ⩾ 2 does not make a difference. Next, we study the influence of s on the

average uniform projection properties of the generated LHDs in the LE procedure.

By Theorem 2 and the properties of OAs, we can prove the following corollary.

Corollary 3. For all possible LHDs D′(n, k) generated from an OA(n, k, s, t) via

LE (m = n/s), we have

ϕE (D
′) =

(34n2 − 4n− 5)s2 + 8(n− 1)n2s− 4n3 + 4n2

144n4s2
+

1 + (−1)n

64n4
. (5)

Taking the derivative of ϕE (D
′) in (5) with respect to s, we have

d
(
ϕE (D

′)
)

ds
=

(n− 1) (−s2 + s)

18n2s4
< 0 for s ⩾ 2.

Thus, ϕE (D
′) decreases monotonically with respect to s. Given n and k, we should

choose an OA with a large s so that the LHDs generated via LE will have better

average uniform projection properties.
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Table 10
The average ϕ-values (multiplied by 104) and ϕ-efficiencies (%) of LHDs generated from
OAs with different levels.

lower levels higher levels

n k D1 ϕ(D′
1) ϕRE D2 ϕ(D′

2) ϕRE

16 5 OA(16,5,2,2) 21.34 90.23 OA(16,5,4,2) 16.28 93.70

32 5 OA(32,5,2,2) 8.61 95.31 OA(32,5,4,2) 5.98 97.11

64 6 OA(64,6,2,3) 3.78 97.69 OA(64,6,4,3) 2.44 98.61

81 6 OA(81,6,3,2) 2.24 98.64 OA(81,6,9,2) 1.07 99.45

256 6 OA(256,6,4,2) 0.51 99.67 OA(256,6,16,2) 0.17 99.90

Example 5. Consider initial lower-level OAs D1 and higher-level OAs D2, from

which we randomly generate 105 LHDs via LE. We show their average ϕ-values and

ϕ-efficiencies in Table 10. It is seen that higher-level OAs D2 will lead to better

generated designs compared to lower-level OAs D1 in terms of the average uniform

projection properties.

4 Construction methods and numerical results

4.1 Construction guidelines

Based on the theoretical results in Section 3, we propose four construction meth-

ods for UPDs: (1) level permutation (LP), (2) level expansion (LE), (3) both level

permutation and expansion (BLPE) and (4) step-by-step level permutation and ex-

pansion (SLPE). In this part, we first discuss how to choose the most appropriate

method according to the required design sizes, and then illustrate the three-step

procedure of the SLPE method.

Case 1: LP should be used when the required UPDs have prime numbers of levels

s (s > 2). In such cases, if OAs are available, we can use them as UPDs according to

Lemma 1. When OAs are not available, according to Theorem 1, we can select near

OAs (Lu et al., 2006; Wang and Wu, 1992; Xu, 2002) or some random designs with

small A2 values as initial designs, and then perform LP to improve their uniform

projection properties. Such initial designs will lead to the “average-best” search

space having (s!)k generated designs. Note that LE can not generate designs with

prime numbers of levels, and thus BLPE and SLPE are equivalent to LP in this

case.
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Case 2: LE should be used when practitioners require high-level UPDs that can

be generated from some low-level OAs. OAs are the desirable initial designs in

LE, since they reach the lower bounds ϕLB2 (for ϕ values) and satisfy A2 = 0 by

Lemma 1. According to Theorem 2 and Remarks 1 and 2, initial designs with small

ϕ and A2 values are preferred. In addition, by Corollary 3, an initial OA having as

high the level s as possible should be chosen. Such an initial design will lead to the

“average-best” search space with ((n/s)!/(r!)m)sk generated designs.

Case 3: BLPE should be used when the required UPDs are small with non-prime

numbers of levels and they will be generated from non-OA initial designs. BLPE

combines LP and LE, and will generally lead to better results compared to LE

only. However, its search space includes as many as (s!)k ((n/s)!/(r!)m)sk candidate

designs, which can be very large for constructing large UPDs. By Theorem 3, we

should select initial designs with small A2 values (e.g. near OAs), which will lead to

the “average-best” search space.

Case 4: SLPE should be used when the required UPDs have moderate or large

sizes and non-prime numbers of levels. It has the following three steps.

(1) Given the required run size n and factor size k, choose an initial design with as

small A2 value as possible. Denote it by D(n, sk).

(2) If D is not an OA, perform LP on D and identify the best generated design

with the smallest ϕ value. Denote it by Dp(n, s
k).

(3) Starting fromDp(n, s
k), perform LE to find the best generated UPDD′(n, (ms)k)

with the smallest ϕ value.

SLPE combines LP and LE in a more efficient way compared to BLPE. The search

space of SLPE includes (s!)k + ((n/s)!/(r!)m)sk designs, which is much smaller than

that of BLPE. Thus, for moderate and large designs, SLPE will generally lead to

better results compared to LE and BLPE. The efficiency of SLPE’s first and second

steps is proven by Theorem 1. The efficiency of SLPE’s third step is proven by

Theorem 2 and Remarks 1 and 2, where the average uniform projection property of

all generated designs ϕE (D
′) is dominated by the initial design’s uniform projection

property ϕ(D). Note that when OAs are available to be the initial designs in the

first step, the second step of SLPE will be skipped and it reduces to the LE method.
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In all of the above four cases, we aim to find the best search space of UPDs.

Standard global optimization algorithms can be used to perform the search (Dueck

and Scheuer, 1990; Morris and Mitchell, 1995; Kennedy and Eberhart, 1995; Holland,

1992). In this paper, we adopt the threshold accepting (TA) algorithm (Dueck and

Scheuer, 1990; Xiao and Xu, 2018), which can be implemented with the R package

“NMOF” (Schumann, 2021). We tailored this TA algorithm for LP, LE, BLPE,

SLPE as well as searching for near OAs. Its pseudo code (Algorithm 1) and additional

details are reported in the Appendix.

4.2 Numerical results

The design space for UPD grows exponentially fast as the design size increases, and

a direct search over the entire space can become time-consuming and inefficient. The

key idea in using level permutation and/or level expansion is to select efficient sub-

spaces for searching. In this section, we compare our proposed methods to a direct

search method via numerical studies. Additionally, we also compare the proposed

SLPE to the LE and BLPE methods to justify the guidelines in Section 4.1.

In the current literature, researchers have adopted a direct search over the entire

design space to identify UPDs (Sun et al., 2019). Here, we compare the proposed

SLPE to the direct search method for generating uniform projection LHDs with

various design sizes. In Table 11, we report the minimum, average and decrement

rate of the generated LHDs’ ϕ values. Here, the SLPE method starts from OAs or

near OAs (marked with asterisks) and runs in less than five minutes for all cases. For

the direct search method, we evaluate the ϕ values of randomly drawn LHDs, which

takes longer computing time compared to the SLPE in every case. In Table 11, the

decrement rate is a metric to evaluate the relative difference between the ϕ values of

two designs. Specifically, for two designs D1 and D2 (ϕ(D2) ⩽ ϕ(D1)), the decrement

rate is ϕDR = (ϕ(D1)− ϕ(D2)) /ϕ(D1)×100%. Clearly, 0 ≤ ϕDR < 1, and large ϕDR

means design D2 is much better than design D1 in terms of the uniform projection

criterion.

From Table 11, it is seen that the SLPE is superior compared to the direct search

in terms of both the minimum and average ϕ values in all cases. In addition, as the
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Table 11
Comparison of uniform projection LHDs constructed by the direct search and SLPE meth-
ods.

Direct search SLPE Decrement rate

Initial Design ϕmin ϕ̄ ϕmin ϕ̄ Min (%) Ave (%)

(15, 33)∗ 16.25 27.69 14.12 15.25 13.11 44.93

(21, 34)∗ 11.11 17.92 7.79 8.76 29.84 51.13

(25, 55) 9.12 14.43 5.80 6.08 36.43 57.83

(27, 33) 6.62 13.14 4.60 5.33 30.47 59.47

(30, 55)∗ 7.32 11.56 4.20 5.02 42.62 56.60

(40, 24) 4.39 8.24 2.37 3.33 45.93 59.52

(49, 73) 3.15 6.52 1.49 1.70 52.81 73.97

(50, 55) 3.73 6.40 1.58 1.86 57.49 70.96

(64, 84) 2.57 4.85 0.95 1.09 63.12 77.62

(64, 420) 4.28 4.84 1.62 1.80 62.24 62.92

(75, 55)∗ 2.52 4.06 0.80 1.00 68.24 75.38

(81, 98) 2.79 3.75 0.71 0.78 74.55 79.12

(128, 812) 1.84 2.30 0.38 0.43 79.52 81.12

design size increases, the decrement rate of the ϕ values of the SLPE relative to the

direct search increases rapidly, thus the advantage of SLPE becomes more obvious.

Next, we compare the SLPE method to the BLPE method. As discussed in the

guidelines, the search space of BLPE also grows fast as the design size increases, and

the SLPE chooses an efficient sub-space of it. In Table 12, we report the minimum,

average and decrement rate of the ϕ values for the generated LHDs from both

methods. For the initial designs, we consider two 37−2 designs with different GWLPs

(the first two cases in Table 12) and several near OAs with small A2 values. For all

cases, we let the BLPE run for longer time than the SLPE, which takes several

seconds to several minutes (varying by cases). From Table 12, it is seen that the

SLPE outperforms the BLPE for moderate and large design sizes. Note that the

BLPE method is superior to the direct search method. As the design size increases,

the advantage of SLPE becomes more obvious since the decrement rate increases.

Finally, we compare the SLPE method to the LE method. As illustrated in Sec-

tion 4.1, the LE is the third step of the SLPE. When OAs are available as the initial

designs, they are essentially the same, since the first two steps of the SLPE should

be skipped. Here, we consider some cases where OAs are not available. In Table 13,
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Table 12
Comparison of the BLPE and the SLPE methods.

BLPE SLPE Decrement rate

Initial Design ϕmin ϕ̄ ϕmin ϕ̄ Min (%) Ave (%)

(243, 37)1 2.79 3.59 2.34 2.46 16.13 31.48

(243, 37)2 5.02 6.49 4.49 4.61 10.56 28.97

(15, 33)∗ 16.03 22.16 14.12 15.25 11.94 31.19

(21, 34)∗ 10.14 13.47 7.79 8.76 23.12 34.97

(35, 77)∗ 5.39 6.73 3.53 3.71 34.53 44.90

(45, 95)∗ 3.48 5.06 2.13 2.26 38.78 55.23

(70, 107)∗ 2.10 2.75 1.05 1.15 50.10 58.29

(75, 155)∗ 1.98 3.30 0.92 0.98 53.39 70.39

Note: (243, 37)1 refers to the 37−2 design with (A1, A2, A3, A4) = (0, 2, 0, 4), and (243, 37)2
refers to the 37−2 design with (0, 4, 0, 4).

Table 13
Comparisons of the LE and the SLPE methods.

LE SLPE Decrement rate

Initial Design ϕmin ϕ̄ ϕmin ϕ̄ Min (%) Ave (%)

(243, 37)1 4.63 4.89 2.34 2.46 49.46 49.69

(243, 37)2 8.76 9.12 4.49 4.61 48.74 49.45

(30, 63)∗ 4.89 6.66 3.85 4.16 21.19 37.45

(35, 77)∗ 5.89 6.64 3.53 3.71 40.07 44.12

(45, 95)∗ 3.77 4.37 2.13 2.26 43.61 48.20

(70, 107)∗ 2.26 2.52 1.05 1.15 53.62 54.51

(75, 155)∗ 3.21 3.50 0.92 0.98 71.26 72.13

Note: (243, 37)1 refers to the 37−2 design with (A1, A2, A3, A4) = (0, 2, 0, 4), and (243, 37)2
refers to the 37−2 design with (0, 4, 0, 4).

we report the minimum, average and decrement rate of the ϕ values for the LHDs

generated by the LE and the SLPE methods. In all cases, we let the LE run for

longer time than SLPE, which takes several seconds to several minutes (varying by

cases). From Table 13, it is seen that the SLPE is superior to the LE for all cases

where OAs are not available as initial designs.

5 Discussion

When only portions of the input factors are active in computer experiments,

the low-dimensional projection uniformity of designs is important. UPDs focus on
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the uniformity over two-dimensional projections and also have good space-filling

properties over all projections. In this paper, we propose to construct UPDs with

flexible sizes via (1) level permutation (LP), (2) level expansion (LE), (3) both

level permutation and expansion (BLPE), and (4) step-by-step level permutation

and expansion (SLPE). Theoretical results are developed to connect the uniform

projection properties of the generated designs to the properties of the initial designs

in the proposed methods, and they will guide the search algorithm focusing on

efficient sub-spaces of solutions. Guidelines are provided for choosing appropriate

construction methods according to the required design sizes, and numerical results

are presented to illustrate the efficiency of the proposed methods.

Although the SLPE can effectively generate uniform projection designs with flex-

ible sizes, its LE step may be further improved when starting from OAs (A2 = 0).

We find that the optimal UPD is often a mirror-symmetric design (Tang and Xu,

2014). Thus, certain structural level expansion may lead to OA-based LHDs with

good uniform projection properties. This can be an interesting topic for future re-

search. Moreover, Sun et al. (2019) established a link between the uniform projection

criterion and the L1-distance of a design, and Wang et al. (2020) established the

relationship between the orthogonality criterion and the L2-distance of a design.

Their corresponding formulations are very similar, but the ranges of variation of the

ϕ value and the orthogonality metric value are not the same (which depend on the

design sizes). From this consideration, we can propose a new criterion that can be

used to evaluate designs’ uniform projection properties and orthogonality in a more

comprehensive way as a future research.
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Appendix

A Technical details on TA optimization

The threshold accepting (TA) algorithm is a widely used global optimization al-

gorithm (Dueck and Scheuer, 1990; Xiao and Xu, 2018). To avoid falling into a local

optimal solution, the TA algorithm will accept a new solution that is not much

worse than the old one. We briefly describe its work-flow for identifying optimal de-

signs here. Starting from an initial solution (design), the current solution is changed

through its neighbor in each iteration, and the new solution is accepted if its objec-

tive function value improves or worsens less than a threshold. The threshold values

are generated by the empirical distributions of increments for the object function.

As the iteration increases, the threshold values decreases and the search tends to

become more stable with less “jumps”. The pseudo code for the TA algorithm is

reported in the following Algorithm 1.

Algorithm 1 A TA algorithm

Initialize tuning parameters nseq (number of iterations to compute the threshold
sequence), nrounds (number of rounds) and nsteps (number of steps).
Initialize a starting design D0; set Dopt = Dc = D0.
for j = 1 to nseq do

Generate a neighbor solution N(Dc) and let ∆j = |f(Dc)− f(N(Dc))|.
end for
Compute the empirical distribution of ∆j, j = 1, 2, . . . , nseq, denoted it as F .
for r = 1 to nrounds do

Generate thresholds τr = F−1 (0.5(1− r/nrounds)).
for i = 1 to nsteps do

Generate a neighbor solution N(Dc) and let δ = f(N(Dc))− f(Dc).
if δ < τr, then let Dc = N(Dc).
if f(Dc) < f(Dopt), then let Dopt = Dc.

end for
end for
Return Dopt.

This TA algorithm will be used in both LP and LE as well as for searching

near OAs. Note that the BLPE and the SLPE are combinations of the LP and

the LE methods. Specifically, for the LP procedure, the neighbor design N (Dc) in

the TA algorithm is obtained by exchanging all elements of two random levels in
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a randomly chosen column of the current design Dc. For the LE procedure, the

neighbor design N (Dc) is obtained by exchanging the levels in two positions from

a randomly chosen column of Dc, where these two positions have different values in

Dc but the same value in its corresponding initial design. The criterion ϕ in (1) is

used as the objective function f here. When searching for near OAs, the neighbor

design N (Dc) is obtained by exchanging two random positions in a randomly chosen

column of the current design Dc. The criterion A2 is used as the objective function

f . In Algorithm 1, we typically set the tuning parameters nseq from 500 to 2000,

nrounds from 10 to 50 and nsteps from 1000 to 5000 according to the practical needs.

B Proofs

We first present a lemma that will be used in the subsequent proofs.

Lemma 3. For a balanced (n, sk) design X = (xil)n×k with levels from {1, . . . , s},
suppose hi,j, di,j and d2(xi, xj) are Hamming distance, L1- and L2-distance of two

rows xi = (xi1, . . . , xik) and xj = (xj1, . . . , xjk) respectively. We have

n∑

i=1

n∑

j=1

hi,j =
kn2(s− 1)

s
, (B.1)

n∑

i=1

n∑

j=1

h2
i,j =

n2

s2
{2A2(D) + (s− 1)k[1 + (s− 1)k]} , (B.2)

n∑

i=1

n∑

j=1

di,j =
kn2 (s2 − 1)

3s
, (B.3)

n∑

i=1

d22 (xi, s0)=
kn (s2 − 1)

12
, (B.4)

n∑

i=1

d44 (xi, s0)=
kn (s2 − 1) (3s2 − 7)

240
, (B.5)

where s0=(s+1)/2, d2 (xi, s0)=
(∑k

l=1 |xil−s0|2
)1/2

and d4 (xi, s0)=
(∑k

l=1 |xil−s0|4
)1/4

.

Equations (B.1) and (B.2) refer to Xu (2003), which demonstrates the relationship

between the generalized word-length pattern and Hamming distances. The remaining

equations in Lemma 3 can be proven via tedious calculations, so we omit the details.

Proof of Theorem 1. We prove this result by using Theorem 3.1 of Tang and Xu

(2013) and induction.
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For any U-type design D with 1 or 2 columns, the result follows directly by

Theorem 3.1 of Tang and Xu (2013). Suppose that the result holds for any U-type

(n, sk−1) design with k − 1 ≥ 3. For any U-type (n, sk) design D, we partition D as

(D{1}, D{2,...,k}). Then,

ϕP (D′) =
1

(s!)k
∑

D∗
{1}∈P(D{1})

∑

D∗
{2,...,k}∈P(D{2,...,k})

ϕ
((
D∗

{1}, D
∗
{2,...,k}

))

=
1

(s!)k
∑

D∗
{1}∈P(D{1})

∑

D∗
{2,...,k}∈P(D{2,...,k})

1(
k
2

)×


 ∑

i=2,...,k

CD
(
D∗

{1,i}
)
+

∑

|u|=2,u⊂{2,...,k}
CD (D∗

u)




=
1(
k
2

)
(

k∑

i=2

(s+ 1)2

36s4
A2

(
D{1,i}

)
+ (k − 1)ϕLB2

)

+

(
k−1
2

)

(
k
2

)
(

(s+ 1)2

18(k − 1)(k − 2)s4
A2

(
D{2,...,k}

)
+ ϕLB2

)

=
(s+ 1)2

18k(k − 1)s4

(
A2

(
D{2,...,k}

)
+

k∑

i=2

A2

(
D{1,i}

))
+ ϕLB2,

where the second to last equation follows by induction. By the definition of A2(D),

we have A2(D) = A2(D{2,...,k}) +
∑k

i=2A2(D{1,i}), which completes the proof.

To prove Theorem 2, we first prove Lemma 2.

Proof of Lemma 2. For a balanced (n, sk) design D = (xil)n×k, combining (B.4)

and (B.5), we can simplify g(D) using Lemma 2 of Sun et al. (2019):

g(D) =
n∑

i=1

n∑

j=1

d2i,j −
2

n

n∑

i=1




n∑

j=1

di,j




2

=
n∑

i=1

n∑

j=1

d2i,j −
4n

s2

n∑

i=1

∑

1⩽p<q⩽k

(xip − s0)
2 (xiq − s0)

2 + C0,

where C0 = −kn2 (s2 − 1) ((25k + 3)s2 − 25k − 7) /120s2. Thus, based on (1), we

have

ϕ(D) =
1

4k(k − 1)n2s2

n∑

i=1

n∑

j=1

d2i,j

− 1

k(k − 1)ns4

n∑

i=1

∑

1⩽p<q⩽k

(xip − s0)
2 (xiq − s0)

2 + C2,

24



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

where C2 = C(k, s) − (s2 − 1) ((25k + 3)s2 − 25k − 7) /480(k − 1)s4 and C(k, s) is

defined in (1).

Proof of Theorem 2. Generate a series of
(
n, (ms)k

)
designs D′ = (x′

il)n×k from

an initial
(
n, sk

)
design D = (xil)n×k via level expansion. First of all, we need to

calculate the expectations of the first two terms in equation (4) by Lemma 2. Note

that the generated designs take ms levels, so the s in (4) should be replaced by ms.

For the expectation of the first term, we first prove the result below based on

Theorem 1 of Xiao and Xu (2018). For generated designs D′, the second moment

of their pairwise L1-distance d′i,j, for i, j = 1, . . . , n and i ̸= j, has the following

relationship with the initial design D:

EE
(
d′i,j
)2

= m2d2i,j + 2kmγdi,j − 2mγhi,jdi,j

+ γ2h2
i,j +

(
C2,1 − 2kγ2

)
hi,j +

(
C2,0 + k2γ2

)
,

where γ = n (m2−1)/3m(n−s), C2,0 = kn (m2−1) (m2n+2n−3m2s)/18m2(n−s)2

and C2,1 = (m2 − 1) [2n2 (m2 − 1)− 3m2s(n− s)]/18m2(n − s)2. Then, combining

(B.1)-(B.3), we can obtain

EE




n∑

i=1

n∑

j=1

d′2i,j


 = m2

n∑

i=1

n∑

j=1

d2i,j −
2n (m2 − 1)

3(n− s)

n∑

i=1

n∑

j=1

hi,jdi,j

+
2n4 (m2 − 1)

2

9m2s2(n− s)2
A2(D) + C2,2, (B.6)

where the constant C2,2 = k(k − 1)n3 (m2 − 1) (s2 + n (m2 − 1)) /9m2s2(n − s)2+

kn2(m2 − 1)[−(4kn−3)s3+2(2kn−3)ns2+(2k + 3n+ 2)ns−4kn2]/18s(n− s)2.

For the expectation of the second term, we first prove the below conclusion:

EE
(
x′
ip − s′0

)2
=

m∑

t=1

((xip − 1)m+ t− s′0)
2
P
(
x′
ip = (xip − 1)m+ t

)

=
1

m

m∑

t=1

(t+ ((xip − 1)m− s′0))
2

= m2 (xip − s0)
2 +

m2 − 1

12
, (B.7)

where s′0 = (ms + 1)/2. Since x′
ip and x′

iq (p ̸= q) are determined independently

by the pth and qth columns in the initial design D, combining (B.4) and (B.7), we
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obtain

EE




n∑

i=1

∑

1⩽p<q⩽k

(
x′
ip − s′0

)2 (
x′
iq − s′0

)2



=
n∑

i=1

∑

1⩽p<q⩽k

EE
(
x′
ip − s′0

)2
EE

(
x′
iq − s′0

)2
(B.8)

= m4
n∑

i=1

∑

1⩽p<q⩽k

(xip−s0)
2 (xiq−s0)

2+
nk(k−1) (m2−1) (2m2s2−m2−1)

288
.

Ultimately, because each level expansion occurs with equal probability in the sub-

space E(D), combining (B.6), (B.8) and (4) we have

ϕE (D
′) = EE [ϕ (D

′)] = ϕ(D)− m2 − 1

6k(k − 1)m2s2n(n− s)

n∑

i=1

n∑

j=1

hi,jdi,j

+
n2 (m2 − 1)

2

18k(k − 1)m4s4(n− s)2
A2(D) + C1,

where the constant

C1 =
(m2 − 1) [−(4kn− 3)s3 + 2(2kn− 3)ns2 + (2k + 3n+ 2)ns− 4kn2]

72(k − 1)m2s3(n− s)2

+
n (m2−1) (s2 + n (m2 − 1))

36m4s4(n− s)2
− 1+(−1)s

64s4
− (m2−1) (2m2s2 −m2 − 1)

288m4s4

− (m2 − 1) (2(11k − 9)m2s2 − 3(k − 1)m2 − 3k + 3)

96(k − 1)m4s4
+
1 + (−1)ms

64m4s4
.

Proof of Remark 1. For a balanced (n, sk) design D = (xil)n×k, to justify that

the first term of ϕ(D) in (4) is greater than the absolute value of the second term,

we can prove the following inequation:

n∑

i=1

n∑

j=1

(
k∑

l=1

|xil − xjl|
)2

>
4n

s2

n∑

i=1

∑

1⩽p<q⩽k

(xip − s0)
2 (xiq − s0)

2 . (B.9)

On the one hand, using (B.3) and the Cauchy-Schwarz inequality twice on the

left side of (B.9), we can obtain

n∑

i=1

n∑

j=1

(
k∑

l=1

|xil − xjl|
)2

⩾
n∑

i=1



1

n




n∑

j=1

k∑

l=1

|xil − xjl|



2

 (B.10)

⩾ 1

n2




n∑

i=1

n∑

j=1

k∑

l=1

|xil − xjl|



2

=
k2n2 (s2 − 1)

2

9s2
.

26



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

On the other hand, using (B.5) and the Cauchy-Schwarz inequality once on the

right side of (B.9), we can obtain

4n

s2

n∑

i=1

∑

1⩽p<q⩽k

(xip − s0)
2 (xiq − s0)

2

⩽ 4n

s2
∑

1⩽p<q⩽k

(
n∑

i=1

(xip − s0)
4

) 1
2
(

n∑

i=1

(xiq − s0)
4

) 1
2

(B.11)

=
n2k(k − 1) (s2 − 1) (3s2 − 7)

120s2
.

In addition, since k ≥ 2 and s ≥ 2, it is easy to verify that

k2n2(s2−1)
2

9s2

n2k(k−1)(s2−1)(3s2−7)
120s2

=
40

3

(
1 +

1

k − 1

)(
s2 − 1

3s2 − 7

)
⩾ 40

9
> 1. (B.12)

Thus, combining (B.10)-(B.12), we can prove (B.9).

Proof of Remark 2. For a balanced (n, sk) design D, when all possible level

expansions of D are considered, we find the following:

(1) For the coefficient part, since n ≥ ms and m ≥ 2,

1
4k(k−1)n2s2

m2−1
6k(k−1)m2s2n(n−s)

=
3m2

2 (m2 − 1)

(
1− s

n

)
=

3

2

(
1− 1

m+ 1

)
⩾ 1. (B.13)

For the body part, since (di,j − hi,j) ⩾ 0, we can consider (di,j − hi,j) to be

the L1-distance between the i-th row and the j-th row of a new design. We define

(di,j − hi,j) =
∑k

l=1 f1 (xil, xjl) , where f1 (xil, xjl) equals to |xil − xjl − 1| if xil ̸= xjl

and 0 otherwise. Furthermore, we define the L2-distance between the i-th row and

the j-th row of the new design as
√∑k

l=1 f2 (xil, xjl), where f2 (xil, xjl) equals to

(xil − xjl − 1)2 if xil ̸= xjl and 0 otherwise. By the norm inequality and several

simple algebraic steps, we have

n∑

i=1

n∑

j=1

(di,j − hi,j)
2 =

n∑

i=1

n∑

j=1

(
k∑

l=1

f1 (xil, xjl)

)2

⩾
n∑

i=1

n∑

j=1

k∑

l=1

f2 (xil, xjl) =
kn2(s− 2)(s− 1)2

6s
. (B.14)
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Since hi,j ⩽ k, combining (B.3) and (B.14) yields

∑n
i=1

∑n
j=1 d

2
i,j∑n

i=1

∑n
j=1 hi,jdi,j

= 1 +

∑n
i=1

∑n
j=1 (di,j − hi,j) di,j∑n

i=1

∑n
j=1 hi,jdi,j

⩾ 1 +

∑n
i=1

∑n
j=1 (di,j − hi,j)

2

∑n
i=1

∑n
j=1 hi,jdi,j

⩾ 1 +
(s− 2)(s− 1)

2k(s+ 1)
. (B.15)

Therefore, combining (B.13) and (B.15), we obtain

T1

T2

=

1
4k(k−1)n2s2

∑n
i=1

∑n
j=1 d

2
i,j

m2−1
6k(k−1)m2s2n(n−s)

∑n
i=1

∑n
j=1 hi,jdi,j

⩾ 1 +
(s− 2)(s− 1)

2k(s+ 1)
.

(2) If the ratio of the second term to the third term in Equation (3) is greater than

or equal to 1, it is easy to obtain

A2(D) ⩽ 3m2s2(n− s)

n3(m2 − 1)

n∑

i=1

n∑

j=1

hi,jdi,j.

For the lower bound of (3m2s2(n−s))(n3(m2−1))−1∑n
i=1

∑n
j=1 hi,jdi,j, since n ≥ ms,

m ≥ 2, s ≥ 2 and hi,j ⩾ 1, combining (B.3), we obtain

3m2s2(n− s)

n3 (m2 − 1)

n∑

i=1

n∑

j=1

hi,jdi,j ⩾
km2s (s2 − 1)

m2 − 1

(
1− s

n

)
⩾ kms (s2 − 1)

m+ 1
⩾ 4k.

Proof of Corollary 2. For a design D(n, 2k), its L1-distances equal Hamming

distances. (1) By Theorem 2, Corollary 1 and (B.2), we obtain

ϕE (D
′) =

((2m2 + 1)n− 6m2)2

288k(k − 1)m4(n− 2)2
A2(D) + C3,

where

C3 =
(k + 1) ((m2 + 2)n− 6m2)

192(k − 1)m2(n− 2)
+

n (m2 − 1) ((m2 − 1)n+ 4)

576m4(n− 2)2

+
(m2 − 1) ((6k + 3)n2 − (14k + 10)n+ 12)

288(k − 1)m2(n− 2)2
+

1

512m4

+
64(5k − 2)m4 + 120(3k − 5)m2 + 15k + 33

11520(k − 1)m4

− (4m2 − 1) ((20k + 1)m2 − 5k − 1)

1440(k − 1)m4
.

(2) Specifically, when the generated design D′ is an LHD(n, k) (m = n/s), we can
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simplify this further:

ϕE (D
′) =

(n− 1)2

72k(k − 1)n2
A2(D) + C4,

where C4 = (6n3 + 62n2 − 8n− 1)/(288n4).

Proof of Theorem 3. Let σ represent a level permutation procedure, π represent

a level expansion procedure, and Θ represent the set of all designs generated via all

possible level permutations and expansions. Let Eσ express the expectation of the

designs generated via all possible level permutations, Eπ express the expectation of

the designs generated via all possible level expansions and EΘ express the expec-

tation of the designs generated via all possible level permutations and expansions.

Using the properties of conditional expectations, we obtain

EΘ [ϕ(D′)] = Eσ [Eπ (ϕ(D
′)|σ)] . (B.16)

Given a level permutation procedure σ, let dσi,j represent the L1-distance of a design

generated via σ. The level permutation does not change the pairwise Hamming

distances or A2 value of a design. Using Theorem 2, we obtain

Eπ [ϕ (D
′) |σ] = (ϕ(D))σ − m2 − 1

6k(k − 1)m2s2n(n− s)

n∑

i=1

n∑

j=1

hi,jd
σ
i,j

+
n2 (m2 − 1)

2

18k(k − 1)m4s4(n− s)2
A2(D) + C1

=
1

4k(k−1)n2s2

n∑

i=1

n∑

i=1

(
dσi,j
)2
+

n2 (m2−1)
2

18k(k−1)m4s4(n−s)2
A2(D)

− 1

k(k − 1)ns4

n∑

i=1

∑

1⩽p<q⩽k

(
xσ
ip − s0

)2 (
xσ
iq − s0

)2

− m2 − 1

6k(k − 1)m2s2n(n− s)

n∑

i=1

n∑

j=1

hi,jd
σ
i,j + C3,1, (B.17)

where C3,1 = C1 + C(k, s)− (s2 − 1) ((25k + 3)s2 − 25k − 7) /480(k − 1)s4.

Xiao and Xu (2018) pointed out that the expectation and variance of dσi,j have

the following relationships: Eσ

(
dσi,j
)
= (s + 1)hi,j/3 and Varσ

(
dσi,j
)
= (s + 1)(s −

2)hi,j/18. Thus, we can obtain the second moment of dσi,j:

Eσ

(
dσi,j
)2

=
(s+ 1)(s− 2)

18
hi,j +

(s+ 1)2

9
h2
i,j. (B.18)
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In addition, we have

Eσ

(
xσ
ip−s0

)2
=

s∑

t=1

(t−s0)
2 P

(
xσ
ip= t

)
=

1

s

s∑

t=1

(t−s0)
2 =

s2−1

12
. (B.19)

Since the pth and qth columns of the generated design are determined independently

in the level permutation procedure, combining Theorem 2, (B.1), (B.2) and (B.16)-

(B.19), after performing some simple algebra, we obtain

ϕΘ (D′) = EΘ [ϕ (D′)] =
(m2s2 − (n− 1)m2s− n)

2

18k(k − 1)m4s4(n− s)2
A2(D) + C5,

where the constant

C5 = C1 + C(k, s)− (s2 − 1) ((25k + 3)s2 − 25k − 7)

480(k − 1)s4
− (s2 − 1)

2

288s4

− (s2 − 1) [(2k + 1)m2s3 − (2k + 1)nm2s2 − 4kns]

72(k − 1)m2s4(n− s)

+
(s2 − 1) [2(k − 1)n(m2 − 2)− 2(2kn− k + 1)m2s]

72(k − 1)m2s4(n− s)
,

and C1 is defined in (3).

C Codes

For the codes used for the SLPE, please see https://github.com/Yishan130426/

TA_UPD.
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