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Abstract

A considerable amount of research in the literature has focused on quantifying the

effect of extreme observations on classical methods for estimating the Central Sub-

space (CS) for regression through the study of influence functions and their sample

estimates. Alternatively, a method that is inherently robust to data contamination is

also important and desirable for the increased reliability in the estimation of the CS

without relying on the identification and removal of influential values. To this end,

we develop a new method that is innately resistant to outlying observations in recov-

ering a dimension reduction subspace for regression based on the Rényi divergence.

In addition to deriving the theoretical Influence Function (IF), the Sample Influence

Function (SIF) values are directly utilized to provide new powerful and efficient meth-

ods for both estimating the dimension of the CS and selecting an optimal level of the

tuning parameter to decrease the impact of extreme observations. The model-free

approach is detailed theoretically, its performance investigated through simulation,

and the application in practice is demonstrated through a real data analysis.
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1 Introduction

In regression analysis, the relationship between a response variable Y and a vector of

explanatory variables X = (X1, . . . , Xp)
> is the primary focus, and while the curse of

dimensionality is a hindrance for large p, the dimension of X is often only artificially high

since there often exists a functional relationship between Y and some lower-dimensional

projection of X. Therefore, it is natural to first identify this lower-dimensional subspace,

termed a Dimension Reduction Subspace (DRS). Identification of a DRS is an important

initial phase in a regression data analysis, as it not only serves as a basis, but also guides

subsequent analysis when a parsimonious parametric model is not yet available.

Inspired by the pioneering methods of Sliced Inverse Regression and Sliced Average

Variance Estimation (SAVE), there has been a proliferation of powerful model-free dimen-

sion reduction methods over three decades; see for example, Cook [8], Yin and Cook [38],

and Iaci et al. [22], and references therein. Additionally, Sufficient Dimension Reduction

(SDR) methods have been developed in Wang et al. [32] using the Hellinger integral, in

Xue et al. [34] using the Hilbert-Schmidt independence criterion, and a unified approach

established in Xue et al. [35] through a generalized index. Zhang et al. [41] developed a

new geometric framework to reformulate the SDR problem and introduced a new concept

called the Maximum Separation Subspace (MASES). They focused on the MASES under

the squared Hellinger distance and developed an estimation procedure to obtain an SDR

in regression and linear discriminant analysis, where the response is categorical. However,

different from this article, these developed methodologies based on the Hellinger distance

do not study the robustness of the respective estimation procedures under contamination.

Note that, the Rényi divergence provides a general framework for robust estimation, which

includes the Hellinger-Bhattacharya distance as a special case.

While useful, many Dimension Reduction (DR) methods are highly sensitive to influen-

tial observations. One way to address this issue is to study the sensitivity of the existing DR

methods to extreme observations and then construct more robust versions. For example,

Gather et. al [15], [14] studied the outlier sensitivity of Sliced Inverse Regression (SIR) and
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proposed a robust version of this method. Yohai and Noste [37] proposed another robust

version of SIR by assuming that the observations in each slice have a multivariate normal

distribution. More recently, Dong et al. [12] developed robust methods for SDR, termed

robust inverse regression and inverse median estimation, while Zhang and Chen [40] utilized

ball covariance for this objective. The Minimum Average Variance Estimation (MAVE)

method of Xia et al. [33] is a popular approach for SDR, but it is also not robust against

outliers in the response variable Y , as discussed in Rousseeuw and Leroy [27], Č́ıžek [4],

Critchley [11], and Č́ıžek and Härdle [3]. To achieve robust estimation, Zhang et al. [42]

developed a regularized MAVE under a nonconvex penalized regression framework, and

performed a comparative study with other robust versions of MAVE.

The lack of robustness of DR methods are exacerbated for high dimensional datasets,

where it is not only difficult to detect outlying and/or influential observations but often hard

to resolve when they are identified. In a series of articles, Prendergast, and Prendergast and

Smith (see Prendergast and Smith [25] and references therein), have derived the influence

functions, and extensively studied the sample influence functions, for the effective dimension

reduction directions corresponding to the SIR, principal Hessian directions (pHd) and SAV

methods; Critchley [10] investigated the empirical influence functions for these methods.

While these studies provide a formal way of assessing the influence of extreme observations

on the estimates provided by SIR, pHd and SAVE, they do not provide a way to construct

estimates that are inherently robust to data contamination.

Our goal is to provide a comprehensive methodology, based on the Rényi divergence,

that recovers the intersection of all dimension reduction subspaces, termed the Central

Subspace (CS), that is inherently robust to data contamination. Importantly, use of this

divergence measure not only allows for the identification of both linear and nonlinear re-

lationships between the response and a linear combination of the predictors without any

model specification, but also enables us to strike a balance between efficiency and robust-

ness against data contamination. In addition to the robust estimation of the regression

dimension reduction directions, the Sample Influence Function (SIF) values can be used

to determine the minimal number of significant dimensions in order to provide a sufficient
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dimension reduction, and to select a key index that balances efficiency and robustness,

thereby providing a comprehensive approach to robust high-dimensional data analysis in

regression.

The article is organized as follows. Section 1.1 introduces the Rényi divergence between

two densities and gives a general motivation for its use in the robust recovery of the CS. Sec-

tion 2.1 discusses the CS and its properties, including the subsequently provided minimal

sufficient dimension reduction, with the developed Rényi divergence method for identifying

the CS and the associated fundamental properties detailed in Section 2.2. The sample

version is defined in Section 2.3, with subsequent subsections containing a heuristic argu-

ment for robustness, a consistency theorem, and two different computational algorithms.

A formal assessment of the robustness is achieved through the study of the influence and

estimated influence functions in Section 3. Multiple procedures for the estimation of the

dimension of the CS, or the structural dimension of the regression, and the determination

of the optimal level of the tuning parameter are given in Section 4. The methods developed

in Sections 4.3 and 4.4 show that the calculated SIF values can be used to determine both

the estimated dimension and the optimal value of the tuning parameter. The numerical

studies to quantify the accuracy of the estimated central subspace are outlined in Section

5. Analysis of a baseball salary dataset, originally the focus of a sponsored section of the

American Statistical Association, is revisited in Section 6 due to the known presence of

outliers. The numerical studies and data analysis are carried out in detail in a Web Ap-

pendix, with an additional simulation study comparing the performance of our method to

those of Zhang et al. [42].

1.1 Motivation

The Kullback Leibler (KL) divergence has been the basis of many dimension reduction

methods in regression and also extended to reduce the dimensions of multiple sets of random

vectors; see for example Yin and Cook [38], Iaci et al. [22], and references therein. For α > 0,

α 6= 1, Rényi [26] defined the generalization of the KL divergence between two probability

density functions f1(u) and f2(u), where u is a random vector. Specifically, the Rényi
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divergence can be defined as

Dα{f1(U)||f2(U)} =
1

α− 1
ln

[
E

{
f1(U)

f2(U)

}α−1]
=

1

α− 1
ln

[ ∫
u

{
f1(u)

f2(u)

}α−1
f1(u) du

]
. (1)

Erven and Harremoës [13] systematically present many of the properties of (1) such as

the monotonicity, continuity, and skew symmetry, as a function of α. In addition, the den-

sity divergence in (1) has the two fundamental properties that Dα{f1(U)||f2(U)} ≥ 0 for all

f1(u) and f2(u), and Dα{f1(U)||f2(U)} = 0 if and only if f1(u) = f2(u). There are two in-

teresting cases for α ∈ (0, 1) that provide a further motivation for the use of this divergence

measure for dimension reduction. First, as a consequence of a limiting result, the Rényi

divergence is bounded above by the KL divergence, that is, limα→1Dα{f1(U)||f2(U)} =

E
[
ln{f1(U)/f2(U)}

]
= DKL{f1(U)||f2(U)} and thus, Dα{f1(U) ||f2(U)} ≤ DKL{f1(U)||

f2(U)}. Second, when α = 1/2, D1/2{f1(U)||f2(U)} = −2 ln
[
1 −

{
(HB)2/2

}]
, where

HB =
[ ∫

u

{√
f1(u)−

√
f2(u)

}2
du
]1/2

is the Hellinger-Bhattacharyya (HB) distance.

Another important motivation for considering this divergence is the balance between

efficiency and robustness that is provided by controlling the level of the tuning parameter

α; see Section 2.4. For example, Simulation Study 3 considers a complicated regression

relationship between the response and predictor variables with contaminated error terms.

For a simulated dataset from this study, the standardized SIF values for each observation

are calculated using our proposed Rényi divergence based index for two levels of the tuning

parameter, α = 0.4 and 0.8; these values are plotted in the left and right panels of Figure

1, respectively. Note that, only a few observations have SIF values less than −0.05 when

α = 0.4, while a significantly larger proportion are less than −0.05 for α = 0.8, which

indicates that α = 0.4 parameterizes the more robust index in recovering the regression

DR directions.

The above discussion demonstrates that the Rényi divergence parameterized by α ∈

(0, 1) can be used to provide a rich family of density divergences that include well known

distances and consequently, provide a solid foundation for the development of a robust

dimension reduction method for regression. Moreover, the developed methods to identify
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the regression DR directions utilizing this divergence produce an estimate of a basis for the

CS and thus, provide a minimum sufficient dimension reduction of the predictor vector.
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Figure 1: n = 300, π = .90: Sample influence function (SIF) values. Left panel: α = 0.4. Right panel:
α = 0.8. (Study 3 Simulation I; successive search algorithm).

Lastly, the Rényi divergence is one of the most important and classical measures of in-

formation that is functionally connected to the λ-power divergence in Cressie and Read [9].

Both measures possess important properties that have been applied in different contexts in

several disciplines. In the context of multivariate association, it is also possible, as in Iaci

and Sriram [21], to use the Density Power Divergence (DPD) of Basu et al. [1]. However,

the pivotal reason for using the Rényi divergence here is the ability to establish the key

result in Proposition 1 part (iii) of Section 2.2 that guarantees the recovery of CS; it is

unclear whether this property holds for the DPD and λ-power divergence.

2 Methodology

This section details the robust measure of association based on the Rényi density divergence

that identifies both linear and nonlinear regression DR directions and ultimately, recovers

a basis for the Central Subspace (CS).

2.1 Introduction

The goal of regression is to make an inference about the conditional distribution of a

univariate response variable Y given a p × 1 vector X of predictors. Throughout, we

assume that Y and X are defined on a common probability space and that (Yi,Xi), i =
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1, 2, . . . , n, are independent and identically distributed observations of (Y,X) with a joint

probability density function f(y,x) and corresponding distribution function F (y,x). The

theory of sufficient dimension reduction has been developed to reduce the dimension of X

prior to model formulation such that the full regression information between the predictors

and response is preserved, while imposing the fewest probabilistic assumptions. More

specifically, the goal of the dimension reduction is to identify the p×1 coefficient vectors, or

directions, a1, . . . , ak such that the significant relationships between the response variable Y

and the predictor vector X are identified through the k linear combinations a>1 X, . . . , a>k X,

where 1 ≤ k < p.

To this end, let S denote any subspace, S(B) the k-dimensional subspace in Rp spanned

by the columns the matrix B, and PS(B) the projection onto S(B) with respect to the

usual inner product. The subspace S(B) is a Dimension Reduction Subspace (DRS) for

the regression of Y on X if Y is conditionally independent of X given the projection of

X onto S(B), denoted Y X|PS(B)X. That is, S(B) is a DRS if f(y,x| PS(B)x) =

f(y| PS(B)x)f(x| PS(B)x), or equivalently f(y| x) = f(y| PS(B)x), for all (y,x) ∈ R×Rp.

Importantly, the conditional independence holds if B is replaced with any matrix B∗ such

that S(B∗) = S(B), which means that any basis of a DRS is also a DRS. Also, when S(B)

is a DRS, the transformation B>X provides a sufficient dimension reduction.

Next, let SY |X denote the intersection of all DRSs, which is a DRS under mild conditions

and termed the Central Subspace (CS); see Cook [8]. The true dimension of the CS,

d = dim(SY |X), commonly termed the structural dimension for the regression of Y on

X, is typically far less than the dimension p. Suppose that A is a d < p dimensional

basis for SY |X, then the conditional distributions of Y |A>X and Y |X are the same and

consequently, A>X and X contain the same information for the regression. That is, given

the minimum sufficient dimension reduction A>X, the remaining feature of X can be

discarded without sacrificing predictive power. Throughout, we assume that SY |X exists

with structural dimension d and focus on the robust estimation of a basis A for SY |X.
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2.2 Robust identification of the CS

Consider the p× 1 random vector X, response variable Y , and p× k matrix A with k ≤ p.

Next, let f(Y,A>X), f(A>X) and f(Y ) denote the joint and marginal densities of Y and

the linear transformation A>X. To recover SY |X and provide a robust method for dimension

reduction in regression, for each α ∈ (0, 1) consider a new Rényi divergence-based index,

denoted Rα(A), defined as

Rα(A) = Dα

{
f(Y,A>X)||f(Y )f(A>X)

}
=

1

α− 1
ln

[
E

{
f(Y,A>X)

f(Y )f(A>X)

}α−1]

=
1

α− 1
ln

[∫
y

∫
A>x

{
f(y,A>x)

f(y)f(A>x)

}α−1

f(y,A>x) d(A>x) dy

]
. (2)

Letting U = (Y,A>X) in (1), then Dα{f1(Y,A>X)||f2(Y,A>X)} ≥ 0 and Dα{f1(Y,

A>X)|| f2(Y,A>X)} = 0 if and only if f1(y,A
>x) = f2(y,A

>x) by definition. Next,

defining f1(y,A
>x) = f(y,A>x) and f2(y,A

>x) = f(y)f(A>x), which are both probabil-

ity density functions, then these results hold for (2) and consequently, Rα(A) is bounded

below by zero with equality if and only if Y A>X. Also, by Proposition 1 part (iii),

Rα(A) ≤ Rα(I) and consequently, if Y X then Rα(I) = Rα(A) = 0.

As noted in Section 1.1, the limit of (2) as α→ 1 is

lim
α→1
Rα(A) = DKL(A) = DKL{f(Y,A>X)||f(Y )f(A>X)}

= E
{

ln
[
f(Y,A>X)/

{
f(Y )f(A>X)

}] }
,

which is the Kullback-Leibler (KL) divergence considered in the Expected Log-likelihood

(EL) methods of Yin and Cook [38]. Also, for a fixed A, due to the monotonicity property

of the Rényi divergence,Rα1(A) ≤ Rα2(A) ≤ DKL(A) for 0 < α1 < α2 < 1; details of these

two properties are discussed in Appendix A.5 for completeness. When α = 1/2, R1/2(A)

is equivalent to the Hellinger - Bhattacharyya (HB) distance and therefore, {Rα(A);α ∈

(0, 1)} provides a continuous, and non-decreasing, family of divergences that includes log-

likelihood association, inverse regression and the KL divergence; equivalence to the HB

distance is shown in Appendix A.6. The fundamental properties for recovering a basis for
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SY |X using (2) are stated in the following proposition.

Proposition 1: Let A and A1 denote p×k and p×l matrices, with k, l ≤ p. For α ∈ (0, 1),
and a p× p identity matrix I, then the following hold:

(i) If S(A1) ⊆ S(A), then Rα(A1) ≤ Rα(A).

(ii) If S(A1) = S(A), then Rα(A1) = Rα(A).

(iii) Rα(I) ≥ Rα(A), and Rα(I) = Rα(A) if and only if Y X|A>X.

The proof of Proposition 1 is given in Appendix A.1.

Part (i) implies that searches made successively through increasing dimensional sub-

spaces will ultimately yield a basis for SY |X when part (iii) is satisfied. Part (ii) implies

that matrices that span the same subspace have the same measured dependence and there-

fore, only a basis for the subspace is needed.

Important to the goals of this paper, part (iii) first establishes the bound Rα(A) ≤

Rα(I), which indicates that the most dependence between X and Y in k dimensions can

be recovered by maximizing Rα(A) with respect to A. Next, if Rα(A) = Rα(I) for a fixed

α, then A with full rank provides a basis for a k-dimensional DRS in Rp and accordingly,

A>X is a sufficient dimension reduction for the regression of Y on X. This also implies

that when the column dimension of A is equal to the structural dimension of the regression,

k = d, and the equality holds, then A is a basis for SY |X and respectively, A>X provides

a minimum sufficient dimension reduction. That is, for d known and α fixed, a basis Ap×d

for SY |X can be recovered as

A = arg maxRα(A∗) subject to the constraint A
>

ΣXA = I, (3)

where ΣX is the covariance matrix of the explanatory vector X. This constraint ensures

that A is full rank and that each of the transformations a>i X, termed variates, have unit

variance, var(a>i X) = 1 for all i = 1, 2, . . . , d, and are uncorrelated with all other variates,

cov(a>i X, a>j X) = 0 when i 6= j; these are equivalent to the well known principle component

analysis constraints.

Note that, the EL divergence index of Yin and Cook [38] also satisfies Proposition 1,

but that using Rα(A) has a distinct advantage over their procedure in that the tuning
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parameter α can be exploited to naturally down-weigh outliers and thereby, yield robust

estimates of a basis for SY |X; see Sections 2.4 and 3 for more details.

The next proposition shows that Rα(A) is invariant under a full rank linear transfor-

mation of the explanatory vector and a scalar multiple of the response. For notational

convenience, let R(U1,U2),α(A) represent the divergence measured in the (U1,U2) scale,

where U1 is any random variable and U2 any p× 1 random vector.

Proposition 2: Consider the arbitrary scalars C1 and a, and any nonsingular p×p matrix
C2 and p×1 vector b. Then, for the transformations W1 = C−11 Y +a and W2 = C−12 X+b
the following holds:

R(Y,X),α(A) = R(W1,W2),α(C>2 A), which implies R(Y,X),α(I) = R(W1,W2),α(C>2 I).

The proof of Proposition 2 is given in Appendix A.2.

Proposition 2 states that the index in (2) is invariant under linear transformations,

establishing that is these types of transformations of the response and predictor vector

do not affect the associations that exist between X and Y . Accordingly, if Aw2 is a

coefficient matrix in the transformed scale, then A>w2
W2 is recovered in the original scale

as A>w2
{C−12 X + b} = (C−>2 Aw2)

>X + A>w2
b, which implies that the coefficient matrix in

the original scale is C−>2 Aw2 .

Of computational importance, discussed in more detail in Section 2.6, for the trans-

formations ZY = σ−1/2{Y − E(Y )} and ZX = Σ−1/2{X − E(X)}, the constraint in (3) is

reduced to A>A = I; note that the coefficient matrix in the original scale is Σ
1/2
X A. Also,

for k < p, A is a semi-orthogonal matrix and therefore, an orthonormal basis for S(A).

For convenience, a matrix of any dimension k ≤ p with orthonormal columns is termed

orthonormal.

2.3 Sample estimation

Consider a random sample {(yi,xi); i = 1, 2, . . . , n} from (Y,X), and assume that the

structural dimension d of the regression is known. Since no distributional assumptions are

made, the densities in (2) are unknown and therefore, for any p×k matrix A and α ∈ (0, 1),
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we define the following sample estimate

R̂α(A) =
1

α− 1
ln

[
1

n

n∑
i=1

{
f̂(yi,A

>xi)

f̂(yi)f̂(A>xi)

}α−1]
, (4)

where f̂(yi), f̂(A>xi) and f̂(yi,A
>xi) are kernel density estimates of f(yi), f(A>xi) and

f(yi,A
>xi), respectively. Specifically, to estimate f(yi,A

>xi) for a specific coefficient

matrix A = [a1 a2 · · · ak], we use the Gaussian product kernel density estimate

f̂(yi,A
>xi) =

1

nh∗
∏k

l=1 hl

n∑
j=1

(
K
[{

(yj − yi)
}
/h∗
] k∏
l=1

K
[{

a>l (xj − xi)
}
/hl
])
,

with bandwidths h∗ = (4/3)1/5 syn
−1/5 and hl = {4/(k + 2)}1/(k+4) sl n

−1/(k+4), l = 1, 2, . . . , k,

where sy and sl are the sample standard deviations of the sample observations
{
yi, i =

1, . . . , n
}

and
{
a>l xi, i = 1, . . . , n

}
, respectively. The above formula is modified to provide

an estimate of the marginal density f(A>xi) as f̂
(
A>xi

)
= 1

nh1h2···hk

∑n
j=1

(∏k
l=1K

[{
a>l (xj−

xi)
}
/hl
])

; similarly, the density estimate of f(yi) is f̂
(
yi
)

= 1
nh∗

∑n
j=1

(
K
[{

(yj−yi)
}
/h∗
])

.

Note that, due to the limiting result of (2) as α → 1, the sample estimate in (4) can de-

fined as D̂KL(A) = 1
n

∑n
i=1 ln

[
f̂(yi,A

>xi)/
{
f̂(yi)f̂(A>xi)

}]
at α = 1, which is the sample

version of the KL based method of Yin and Cook [38].

The suggested use of Gaussian product kernels in Scott [29] and Silverman [31] were

shown to work well in the simulation studies testing the performance of the KL based meth-

ods of association in Yin and Sriram [39], and Iaci et al. [22]; the bandwidth selection was

also supported by the results. Successful implementations of this pairing are also referenced

in Iaci et. al [22]. Additionally, Iaci et al. [20] compared the Gaussian and Epanechnikov

kernels at different bandwidths in the estimation of their L2 based measure of association

and noted a slight improvement in performance using the above kernel bandwidth combi-

nation. Noting that the index in (2) provides a smooth bridge between the KL and an L2

distance, for 0 < α < 1, further motivated our choice. The performance in the simulation

studies in Section 5 support our kernel and bandwidth selection and importantly, the prop-

erties of the method hold for any kernel of bounded variation; see Theorem 1 of Section

2.5.
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With the structural dimension d known, then based on the discussion of Proposition 1

in Section 2.2, an estimate of a basis for SY |X can be recovered by maximizing the sample

version of (2) with respect to the p × d matrix A. To this end, for α ∈ (0, 1), our Rényi

divergence based estimator of A is defined as

Â = argmax R̂α(A∗) subject to the constraint Â>Σ̂xÂ = I, (5)

where Σ̂X is the sample estimate of the covariance matrix of X.

2.4 Heuristic argument for robustness

The inherent robustness of (4) and the role of the tuning parameter in balancing efficiency

and robustness, is motivated through a heuristic argument in Web Appendix B since a

more formal assessment is provided in Section 3.

2.5 Consistency

In this section a consistency result is stated for the estimated coefficient matrix Â defined

in Section 2.3 under the constraint Â>Â = I, with the proof given in Appendix A.3.

First, define the set

χb =
{
i : f(yi) > b, f(A>xi) > b, and f(yi,A

>xi) > b, for any A such that A>A = I
}
,

for some b > 0 given in the proof, and let nbc denote the number of observations whose

indices are not in χb. We then have the following result.

Theorem 1 (Consistency) Assume the conditions of Lemma 1 in Appendix A.3, and

that nbc/n→ 0 as n→∞. Let Âb = arg max R̂b
α(A∗) and A = arg maxRα(A∗), for each

α ∈ (0, 1), where

R̂b
α (A∗) =

1

α− 1
ln

[
1

n

n∑
i=1

J (i ∈ χb)
{

fn(yi,A
∗>xi)

fn(yi)fn(A∗>xi)

}α−1]
,
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with fn defined in Appendix A.3 and J (i ∈ χb) is the indicator function for χb. Then,

Â→ A as n→∞ almost surely (a.s.).

2.6 Computational algorithms

Due to the invariance of Rα(A) under nonsingular matrix transformations, the response

and explanatory vector can be mean centered and transformed as ZY = σ
−1/2
Y {Y − E(Y )}

and ZX = Σ
−1/2
X {X−E(X)}. These transformations change the scale, but not the relation-

ships between the response and predictors, and removes any multicollinearity between the

explanatory variables. The transformation of X also lessens the effect of variables of dif-

fering magnitude and importantly, as addressed following Proposition 2 in Section 2.2, the

coefficient matrix in the original scale can easily be recovered as Σ
1/2
X A. Note that, under

these transformations the sample constraint in (5) is simplified to Â>Â = I and therefore,

Â is an orthonormal matrix, semi-orthogonal for k < p and orthogonal for k = p, with

the columns providing an orthonormal basis for a k-dimensional subspace in Rp. Since the

estimated coefficient vectors âl, l = 1, . . . , k, k ≤ p, that identify the relationships are of

interest, and not the scale of the regression DR directions, Â>Â = I is referred to as the

orthonormal constraint. For simplicity, the algorithms are put forward assuming that the

response and predictor vector are in this whitened scale, but maintain the notation Y and

X for continuity.

Two methods for estimating Â are considered. The first is a direct matrix maximization

approach, and the second a successive search for each of the estimated coefficient vectors

âl, l = 1, 2, . . . , k. The maximization of the sample index in (4) under the orthonormal con-

straint is achieved using the nonlinear constrained minimizer fmincon in MATLAB, which

uses a Sequential Quadratic Programming procedure that simultaneously incorporates the

constraints.

Direct search algorithm:

This matrix maximization algorithm is a modification of the one used in Iaci et al. [22]

that employed an alternating search procedure to provide a sufficient dimension reduction
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of two random vectors in a multivariate association setting.

Step 0: Set l = 0 and generate a p×k initial guess matrix Â0 to be supplied to the fmincon
function.

− Orthonormal matrices of dimension p × k are generated at random, termed
type 1 initial guesses. Next, type 2 orthogonal matrices are generated at random
with columns consisting only of zeros and ones. Let I1 = {B1,i; i = 1, 2, . . . N1}
and I2 = {B2,j; j = 1, 2 . . . , N2} denote the sets of N1 type 1 and N2 type 2

matrices, respectively. The best initial guess Â0 is taken to be the matrix that
generates the largest sample index value in (4) among all randomly generated
matrices in I1 ∪ I2.

Step 1: Find Âl+1 = arg max R̂α(A∗), subject to the constraint Â>l+1Âl+1 = I. That is,

determine Âl+1 such that the sample index in (4) is maximum and ÂT
l+1Âl+1 = I.

Step 2: Let Âl+1 be the new initial guess. Increment l by 1. If l = 1, repeat step 1 so that
there are at least two iterations for the comparison in step 3.

Step 3: Repeat steps 1 and 2 until the difference
[
R̂α(Âl)− R̂α(Âl−1)

]
is less than a user

defined tolerance, say 10−6, or the user defined maximum number of iterations has been
reached.

The minimum number of iterations taken was four and found to be more than necessary

for the difference in successive estimated index values to be within 10−6. In practice, the

convergence settings in the fmincon function can be relied on in performing steps 0 and 1

only.

Successive search algorithm:

The algorithm for estimating Â = [â1 â2 · · · âk] by searching for the estimated coefficient

vectors âl, l = 1, 2, . . . , k, in succession is detailed here, and is a modification of the method

presented in Iaci et. al [20] to estimate the coefficient vectors that recover the relationships

between m-sets of random vectors.

Step 0: Set l = 1, generate an initial guess b to be supplied to the fmincon function and
determine the coefficient vector â1 = arg max R̂α(a), subject to the constraint â>1 â1 = 1.
That is, find â1 such that the sample index in (4) is maximized and â>1 â1 = 1.

− An initial guess is produced by first generating a p-dimensional random vector
consisting of zeros and ones, say b∗j , and then normalizing it to have unit length,
bj = b∗j/||b∗j ||. Let I = {bj; j = 1, 2, . . . , N} denote the set of N initial guesses.
The best initial guess is the vector b that produces the largest sample index value
of (4) among all randomly generated vectors in I.
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Step 1: If l = k then stop, else increment l by 1. Use the singular value decomposition
to determine the left singular vectors of the matrix A∗ = [â1 â2 · · · âl−1][â1 â2 · · · âl−1]>.
Define the matrix U = [u1 u2 · · ·up], where u1, . . . ,up are the left singular vectors of A∗.

Step 2: Let U∗ = [uk uk+1 · · ·up] and project the data matrix, denoted Dn×p, onto the
subspace spanned by the columns of U∗. That is, create the new data matrix D∗n×{p−(l−1)} =
DU∗.

Step 3 : Based on the data matrix D∗, generate an initial guess as detailed in Step 0 and
determine the {p− (l−1)}×1 coefficient vector â∗l that maximizes the index in (4) subject
to the constraint â∗

>

l â∗l = 1.

Step 4 : Calculate the estimated coefficient vector based on the original data D as âl =
[ul ul+1 · · · up] â∗l = â∗1lul + â∗2lu(l+1) + · · · â∗(p−1)lup = U∗â∗l . Return to Step 1.

− The orthogonal constraints are satisfied, since (for l > 1)

â>(l−1)âl = â>(l−1)U
∗â∗l = â∗1lâ

>
(l−1)ul + â∗2lâ

>
(l−1)ul+1 + · · ·+ â∗(p−1)lâ

>
(l−1)up

= â∗1lu
>
(l−1)ul + â∗2lu

>
(l−1)ul+1 + · · ·+ â∗(p−1)lu

>
(l−1)up = 0.

Note that, u(l−1) and ul are left singular vectors of U and thus, u>i uj = 0 for all

i 6= j. Also, the orthonormal constraints are satisfied as âTl âl = â∗
>

l U∗
>
U∗â∗l =

â∗
>

l â∗l = 1, since U∗
>
U∗ = I.

Both algorithms were used in the simulation studies of Section 5 with generally com-

parable performance.

3 Influence Function

While the heuristic arguments offered point toward the inherent robustness of the index

in (2), a more formal study of the robustness can be implemented through the Influence

Function (IF); see Hampel et al [16], and Staudte and Sheather [30]. For a fixed α ∈ (0, 1)

and dimension k ≤ p, the IF measures the local robustness of the Rényi divergence based

estimated basis Â = [â1 â2 · · · âk] for S(A) against outlying observations. As in Section

2.6, the following derivations assume the orthonormal constraints are satisfied, but the

notation Y and X is maintained for constancy.

For a fixed α ∈ (0, 1), let F denote the cumulative distribution function of (Y,A>X),

then the maximization problem in (3) can be considered in terms of the functional T defined
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as

T (F ) = arg maxRα(A∗) = A, (6)

where A is a p × k matrix. To derive the influence function, let W = (Y,X) and define

the contamination distribution Fε = (1− ε)F + ε∆w0 , 0 < ε < 1, where ∆w0 is the Dirac

distribution that puts all of its mass at the point w0 = (y0,x0) and thereby, allows for

the contamination of both the response and predictor vector. The influence function for T

evaluated at F in the direction w0 is then defined as

IF(T, F ; w0) = lim
ε↓0

T (Fε)− T (F )

ε
=

∂

∂ε
T (Fε)

∣∣∣∣
ε=0

, (7)

and describes the effect of an infinitesimal amount of contamination at w0 on the func-

tional T . The theoretical influence function for the index in (2) is stated in the following

proposition.

Proposition 3: Let A denote a p × k matrix, with k ≤ p, and in (2) define Sα(A; w) =[
f(y,A>x)/{f(y)f(A>x)}

]α−1
, and Ṡα(A; w) = ∂

∂A
Sα(A; w). Then, for α ∈ (0, 1), the

influence function for Rα(A) is given by,

IF(T1, F ; w0)

= −
[{∫

y

∫
T (Fε)>x

∂

∂ε
Ṡα(T (Fε); w) f(y, T (Fε)

>x)d(T (Fε)
>x)dy

}∣∣∣∣
ε=0

]−1
Ṡ(T (Fε); w0).

The proof of Proposition 3 is given in Appendix A.4.

Importantly, the Rènyi based method for the robust recovery of SY |X assumes that

F is unknown and therefore, the IF needs to be estimated. The empirical distribution

function F̂ based on a random sample {wi = (yi,xi), i = 1, · · · , n} from W = (Y,X) can

be considered by noting that based on the sample estimates in (4) and (5) of Section 2.3,

the empirically based functional can be defined as T (F̂ ) = arg max R̂α(A∗). Then, as in

Critchley [10], the Empirical Sample Influence Function (ESIF) for T evaluated at F̂ in the

direction of the ith observation wi is defined as

ESIF(T, F̂ ,wi) = (n− 1)
{
T
(
F̂
)
− T

(
F̂(i)

)}
, (8)
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where F̂(i) = {1 + (n− 1)−1}F̂ − (n− 1)−1∆wi is the empirical distribution function with

the ith observation removed.

The ESIF in (8) quantifies the influence of each observation through the change in the

estimated basis when the observation is removed, which can be equivalently conceptualized

as measuring the difference between the estimated subspaces of these directions; taking

this into consideration Prendergast [24] suggested another Sample Influence Function (SIF)

defined as

SIF
(
ρ
BC
, F̂ ,wi

)
= (n− 1)

{
ρ
BC

(Â(i), Â)− 1
}
, (9)

where Â = T (F̂ ) and Â(i) = T (F̂(i)). The ρ
BC

term is the Bénasséni [2] Coefficient (BC)

defined as

ρ
BC

(Â(i), Â) = 1− 1

k

k∑
l=1

∣∣∣∣âl − PS(Â(i))
âl
∣∣∣∣
2

= 1− 1

k

k∑
l=1

∣∣∣∣{I− PS(Â(i))

}
âl
∣∣∣∣
2
, (10)

where Â = [â1 â2 · · · âk], || · ||2 is the standard matrix 2-norm, and PS(Â(i))
= Â(i)Â

>
(i) is

the unique orthogonal projection matrix onto S(Â(i)); by Proposition 2, and the discussion

in Section 2.6, it is assumed that Â and Â(i) are orthonormal bases for S(Â) and S(Â(i)),

respectively. Note that, when S(Â) = S(Â(i)), then {I−PS(Â(i))
} projects âl onto S⊥(Â(i))

and consequently, ρ
BC

(Â(i), Â) = 1 since {I − PS(Â(i))
} âl = 0 for all l = 1, 2, . . . , k.

Analogously, ρ
BC

(Â(i), Â) = 1 when S(Â) = S⊥(Â(i)).

Due to the sensitivity of the subspace difference measure in (10) to small perturbations,

it is also used as a distance measure in the bootstrap dimension detection procedure in

Section 4.2. Notably, the SIF values are used directly to provide new methods for identifying

the structural dimension of SY |X and the level value of α in Sections 4.3 and 4.4, respectively.

4 Dimension estimation and α selection

4.1 Introduction

As in Section 2.6, due to the invariance of (2), the methods developed in this section assume

that the orthonormal constraint U>U = I is satisfied for any matrix U. Also, the notation
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Uk is used with the subscript denoting the column dimension of U.

In Section 4.2, |U| denotes the determinant of U, and ||U||2 the matrix 2-norm equal to

the largest singular value of U. Since U is orthonormal, PS(U) = U(U>U)−1U> = UU>

is a unique orthogonal projection matrix onto S(U) and thus, ||PS(U)||2 ≤ 1.

Note that the methods for dimension detection and tuning parameter selection described

in Sections 4.3 and 4.4 are based on the SIF defined in equation (9). Consequently, these

methods do not depend on the procedure used to estimate the CS, which makes the SIF

methodology applicable more generally. It is argued below that the approach based on

the SIF values is intuitively more sensible than bootstrap methodologies in the presence

of contamination, which is supported by the results of the simulation studies presented in

Web Appendix C using the Rényi divergence based method. An interesting future direction

would be to investigate whether the improved performance of the SIF based methods over

bootstrapping approaches continues to hold for other existing SDR methods.

4.2 Bootstrap dimension estimation

For a fixed α ∈ (0, 1), let X denote a p×1 random predictor vector and Ak a k-dimensional

basis for a DRS for the regression of Y on X, where k ∈ {1, 2, . . . , (p− 1)}. In general, the

structural dimension for the regression of Y on X can be considered as the value of k such

that the subspace spanned by the columns of Ak, S(Ak), has the least variability. More

specifically, the dimension of SY |X can be identified as the value k ∈ {1, 2, . . . , (p−1)} that

produces the smallest averaged bootstrapped estimate of the variability of S(Ak). The

dimension k < p is assumed since k = p leads to the trivial case Y X|I>p X; the effect on

the distance measures used in the bootstrap procedure when k = p is discussed below.

First, to estimate the variability of S(Ak) for each fixed k, an estimate Âk of Ak is calcu-

lated based on the observed dataset D = {(y1,x1), (y2,x2), . . . , (yn,xn)}. Next, a bootstrap

estimate Âb
k of Ab

k is calculated from a bootstrapped dataset Db = {(y1,x1)
b, (y2,x2)

b, . . . ,

(yn,xn)b} that is generated by randomly sampling from D with replacement. For each

of the b = 1, 2, . . . , B bootstrap iterations, a distance between the subspaces S(Âk) and

S(Âb
k) is calculated and averaged over all iterations to give an estimate of the variability
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of S(Ak). This method has been well studied in a multivariate association context in the

papers of Iaci et al [22] and Ye and Weiss [36], where they used many different subspace

distance measures. Three different distances are investigated, including a new estimate

based on the Bénasséni coefficient (BC), all defined next.

To measure the distance between S(Âk) and S(Âb
k) consider a slight modification of

the BC given in (10) and define

ρ
BC∗ (Â

b
k, Âk) =

1

k

k∑
l=1

∣∣∣∣âl − PS(Âb
k)

âl
∣∣∣∣
2

=
1

k

k∑
l=1

∣∣∣∣{I− PS(Âb
k)

}
âl
∣∣∣∣
2
, (11)

where PS(Âb
k)

= Âb
kÂ

b>

k is the unique projection matrix onto S(Âb
k). When S(Âk) =

S(Âb
k), then {I − PS(Âb

k)
} projects âl onto S⊥(Âk) and consequently, {I − PS(Âb

k)
} âl = 0

for all l = 1, 2, . . . , k and therefore, ρ
BC∗ (Â

b
k, Âk) = 0. Also, ρ

BC∗ (Â
b
k, Âk) ≤ 1 since∣∣∣∣{I− PS(Âb

k)

}
âl
∣∣∣∣

2
≤
∣∣∣∣{I− PS(Âb

k)

}∣∣∣∣
2

∣∣∣∣âl∣∣∣∣2 =
∣∣∣∣{I− PS(Âb

k)

}∣∣∣∣
2
≤ 1; the bound a result

of the discussion in Section 4.1. Therefore, smaller values of (11) correspond to more

equivalent subspaces.

Next, the L2 norm subspace distance investigated in Iaci et. al [22] is used and defined

as

L2(O)(Â
b
k, Âk) =

∣∣∣∣PS(Âk)

{
I− PS(Âb

k)

}∣∣∣∣
2
. (12)

Note that, if S(Âk) = S(Âb
k), then

(
I−PS(Âb

k)

)
projects onto S⊥(Âk) and L2(O)(Â

b
k, Âk) =

0, and
∣∣∣∣PS(Âk)

{
I− PS(Âb

k)

}∣∣∣∣
2
≤
∣∣∣∣PS(Âk)

∣∣∣∣
2

∣∣∣∣{I − PS(Âb
k)

}∣∣∣∣
2
≤ 1. Again, small values of

(12) indicate similar subspaces.

The last distance investigated is the one used in Ye and Weiss [36], and then in Iaci et.

al [22], based on the square root of Hotelling’s [19] squared vector correlation coefficient,

given by

1− ρ
HC

(
Âb
k, Âk

)
= 1−

∣∣Â>k Âb
kÂ

b>

k Âk

∣∣ 12 = 1−
( k∏

i=1

λi

) 1
2

, (13)

where the λi, i = 1, 2, . . . , k, are the eigenvalues of Â>k Âb
kÂ

b>

k Âk. Since ρ
HC

(
Âb
k, Âk

)
is a

measure of the correlation between S(Âk) and S(Âb
k), with ρ

HC

(
Âb
k, Âk

)
= 1 when the
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subspaces are equal, and ρ
HC

(
Âb
k, Âk

)
= 0 when they are orthogonal, smaller values of

1− ρ
HC

(
Âb
k, Âk

)
correspond to similar subspaces.

For a fixed k, small values of (11), (12) and (13) correspond to similarly estimated sub-

spaces based on the original and bootstrapped datasets, where both are meant to estimate

S(A). Therefore, small values of ρ
BC∗

= 1
B

∑B
b=1 ρBC∗ (Â

b
k, Âk), L2(O) = 1

B

∑B
b=1 L2(O)(Â

b
k,

Âk), or 1− ρ
HC

= 1− 1
B

∑B
b=1 ρHC

(
Âb
k, Âk

)
, b = 1, 2, . . . , B, identify a dimension k where

S(Ak) has less variability. The structural dimension d can then be estimated using any of

these three methods by determining the value k∗ ∈ {1, 2, . . . , (p − 1)} that produces the

smallest value, and setting d̂ = k∗. Alternatively, for each k < p, boxplots of the individual

values of (11), (12) or (13) for each of the bootstrap iterations can be created to visually

determine the value k∗ that corresponds to the boxplot that is the most closely centered

near zero with the smallest variability.

Note that when k = p, all measures are zero, since Âk and Âb
k span the same vector

space Rp. Specifically, as discussed in Section 4.1, under the orthonormal constraints the

orthogonal projections PS(Âk)
and PS(Âb

k)
onto Rp are unique and thus,

(
I − PS(Âb

k)

)
= 0

and |Â>k Âb
kÂ

b>

k Âk| = |I| in (12) and (13), respectively; and for the distance measure in

(11), every term in the summation is ||
{
I− PS(Âb

k)

}
âl||2 = ||{Ip − Ip}âl||2 = 0.

When the dimension of the estimated coefficient matrix exceeds the true structural

dimension, k > d, consider the partition Âk = [Âd Â(k−d)], where Âd is the estimated

basis of SY |X and Â(k−d) an estimated basis of a (k - d) dimensional subspace orthogonal

to SY |X. Then, the resulting estimates of the partial coefficient matrices Â(k−d), and

analogously Âb
(k−d), will be determined randomly in subspaces orthogonal to S(Âd) and

S(Âb
d), respectively. In general, for all three distance measures, this will be reflected

through larger values of the distance between S(Âk) and S(Âb
k). However, different from

the distance measures in (12) and (13), ρ
BC∗ averages over each dimension k < p and thus,

for d << p it trends to 0 when k >> d in practice. In such a case, the centers of the

boxplots, or bar plots of the mean, of ρ
BC∗ can show a decreasing parabolic pattern as k

approaches p. For example, in Simulation I of Study 1 the predictor vector has dimension

p = 10 and the structural dimension is d = 1. The top left panel of Web Appendix C.3
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Figure 3 shows that the ρ
BC∗ values begin to decrease for k > 3. However, it is clear that

there is a significant increase in the centers of the boxplots from k = 1 to k = 2, 3 and

therefore, the estimated true dimension is taken to be d̂ = 1. That is, the centers of the

boxplots for d < k << p will make the estimated d̂ = k∗ ∈ {1, 2, . . . , (p− 1)} discernible.

4.3 SIF dimension estimation

Bootstrapping a dataset that contains outlying observations can increase the level of con-

tamination, making the estimated subspaces spanned by Âk and Âb
k more variable even

when k = d. For example, this can be seen in the boxplots in the bottom right panel of

Web Appendix C.4 Figure 4 of the bootstrapped values of the L2(O) distance in (12) for

Simulation I of Study 2. For this simulation the true structural dimension is d = 2 and the

level of contamination is 10%, and assuming an exact number of 30 contaminated values

based on a sample size of n = 300, the probability of maintaining or increasing the level

of contamination of each bootstrapped dataset is 0.52. Further, the spirit of the boot-

strap procedure is that for k > d, the distance and variability between the estimated and

bootstrap estimated subspaces increases, which is comparable to all data values becoming

influential. For example, this can be seen in the smoothed curve plots of the scaled SIF

values for Simulation I of Study 2 in the far right panel of Figure 2, where the plots cor-

responding to the dimensions k = 3 and 4 are all well below the SIF curves corresponding

to k = 1 and d = k∗ = 2 and thus, show that most of the n = 300 observations are much

more influential at these dimensions. This motivates the investigation of a new method for

estimating d based on the SIF values.

For a fixed α the true dimension d can be estimated more efficiently using the sample

influence values since they are a direct measure of the effect of the observations on the

estimated subspace S(Âk). That is, the estimated structural dimension can be defined

as the dimension that produces the fewest influential observations among the possible

dimensions k < p. Specifically, the absolute value of (9), |s(i,k)| =
∣∣SIF

(
ρ
BC
, F̂ ,wi

)
| =∣∣(n−1)

{
ρ
BC

(Â(i)k, Âk)−1
}∣∣, is calculated for each observation wi = (yi,xi), i = 1, 2, . . . , n,

at each dimension k ∈ {1, 2, . . . , (p−1)}. Note that, the absolute value of the SIF measures
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are taken to be comparable to the bootstrap plots, and Â(i)k is the estimated coefficient

matrix with the ith observation removed. Next, as in the above bootstrap procedure,

boxplots of the |s(i,k)| values, i = 1, 2, . . . , n, or bar plots of the means, for each k can be

generated to visually determine the estimated true dimension d̂. Specifically, the dimension

k∗ such that the centers and spread increase noticeably for k > k∗ is taken to be the

estimated structural dimension d̂ = k∗. Also, smoothed values of the raw SIF values can

be plotted to determine the first dimension k∗ such that for k > k∗ a significantly larger

amount of observations are highly influential. All three visualizations methods are used in

the numerical studies in Section 5, and in practice all can be used to confirm the inference

made for the dimension of SY |X.

4.4 SIF tuning parameter selection

For a fixed dimension k, the SIF values can also provide a powerful and efficient method for

determining the level of the tuning parameter that generates the most robust estimate of

Ak. Intuitively, the value of α ∈ (0, 1) that parameterizes the most robust index in (4) is the

value that produces an estimate of Ak that is the least sensitive to influential observations.

Let H = {α1, α2, . . . , αm} denote a set of m different values of the tuning parameter, then

quantifying robustness at different values of α is naturally accomplished by first considering

the SIF values in (9), sα(wi) = SIF
(
ρ
BC
, F̂ ,wi

)
= (n − 1)

{
ρ
BC

(Â(i)k, Âk) − 1
}

, for each

observation wi = (yi,xi), i = 1, 2, . . . , n, at a fixed level of α ∈ H. Next, a smoothed plot

of the ordered sα(wi), i = 1, 2, . . . , n, can be used to visually determine the level α ∈ H

that dominates all other values of the tuning parameter. For example, for Simulation I of

Study 2 the top left panel of Web Appendix C.4 Figure 4 shows the plots of the ordered

SIF values at four different levels of α, with α = 0.8 generally producing the smallest values

of sα(wi) for all observations. In this sense, α = 0.8 dominates all other levels considered.

Therefore, the optimal level of α for robustness can be identified by considering the

area above each of the plots of the smoothed ordered SIF values as shown in the left panel

of Figure 2. Equivalently, this can be measured as the area under the curve (AUC) of the

smoothed plot of the |sα(wi)| values, as shown in the middle panel of Figure 2. To quantify
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this specifically, for a fixed α the AUC is calculated on the absolute value of the ascending

ordered SIF values using the trapezoidal rule as AUCα = 1
2

∑n−1
h=1(uh+1 − uh){|sα(wh)| +

|sα,h+1(wh+1)|} = 1
2

∑n−1
h=1{|sα,h(wh)|+|sα,h+1(wh+1)|}, where {uh = h;h = 1, 2, . . . , (n−1)}

is taken to create subintervals of unit length. A simple comparison of the AUCα measures

for different values of α can then be used to select the value that parameterizes the most

robust sample index. For example, in the previously mentioned simulation the top right

panel of Web Appendix C.4 Figure 4 shows that α = 0.8 produces the lowest AUC among

the nine different values selected for comparison.

1 n-1 n

-2

-1

0

Area

1 n-1 n

0

1

2

AUC  

Figure 2: Left panel: example plot of sα(wi) with labeled Area; Middle panel: example plot of |sα(wi)|
with AUCα labeled AUC; Right panel: simulation plot of sα(wi) for dimensions k = 1, 2, 3, 4 with d = 2.

5 Simulation studies

In this section, we introduce the various regression models and parameters of the three

different numerical studies used to investigate the performance of our method in estimating

a basis for SY |X in the presence of data contamination. A detailed, self-contained, discussion

of the simulation studies and results are provided in Web Appendix C.

Uncontaminated error terms in the regression models are generated from a N(0, σ) dis-

tribution, while asymmetric outlying observations are generated at random from a uniform

distribution on the interval (0, θ) with probability (1 − π), π ∈ {.95, .90}. In the study

descriptions below, this is denoted as ε ∼ N(0, σ)I(π)+U(0, θ){1−I(π)}, where I(π) = 1

with probability π and 0 with probability (1− π).

The distributions of the predictor variables X = (X1, . . . , X10)
> and model error terms
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of each study are summarized as follows:

Study 1: X10 ∼ N(0, I); ε ∼ N(0, σ = 0.5)I(π) + U(0, 50){1 − I(π)}, π ∈
{.95, .90}.

Study 2: X1 ∼ t(25), X2, X3 ∼ t(5), X4, X5 ∼ N(0, 1), X6 ∼ Γ(4, 1), X7 ∼
N(0, 1), X8 ∼ χ2

(3), X9 ∼ Γ(3, 2), X10 ∼ N(0, 1); ε ∼ N(0, σ = .3)I(π) +

U(0, 20){1− I(π)}, π ∈ {.95, .90}.

Study 3: X1 ∼ Γ(4, 3), X2 ∼ t(15), X3 ∼ N(0, 1), X4 ∼ χ2
(3), X5 ∼ t(20),

X6 ∼ t(25), X7 ∼ N(0, 1), X8 ∼ Γ(10, 2), X9 ∼ χ2
(6), X10 ∼ N(0, 1); ε ∼

N(0, σ = .3)I(π) + U(0, 20){1− I(π)}, π ∈ {.95, .90}.

The regression models for each of the simulations for studies 1 - 3 are summarized in

Table 1.

Simulation Model True Coefficient Matrices

Study 1

I Y = A>X + ε A = (1, 2, 0, 0, 0, . . . , 0)>

II Y = A>X + ε A = (1, 1, 1, 1, 0, . . . , 0)>

III Y = (A>X)2 + ε A = (1, 2, 3, 0, 0, . . . , 0)>

Study 2

I Y = a>1 X
(
a>2 X + 1

)
+ ε A = [(1, 0, . . . , 0)>; (0, 1, 0, . . . , 0)>]

Study 3

I Y =
a>1 X

0.5+
(
a>2 X+1.5

)2 + ε A = [(1, 0, . . . , 0)>; (0, 1, 0, . . . , 0)>]

Table 1: Simulation regression models.

Note that, Study 3 considers a model that was used in Prendergast [24] to illustrate their

methods ability to detect influential observations using SIR, but not necessarily to examine

the robustness of the procedure. Different from their numerical study, the predictors are not

all normal, but complicated almost entirely with variables that follow a variety of skewed

and heavy-tailed distributions, which are then contaminated with errors from a U(0, 20)

distribution.

As suggested by a reviewer, an additional simulation study is implemented to compare

the performance of our method to other robust methods for estimating a basis of the CS. To

this end, the performance of the Rényi based method is compared to the results reported
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in Zhang [42] under the same simulation parameters. A motivation for considering their

study is that they demonstrated an improved performance using their robust methods for

estimating a basis of SY |X, termed regMAVE and regOPG, over SIR, SAVE, MAVE, and the

robust MAVE (rtMAVE) method of Č́ıžek and Härdle [5], for the regression model of Study

3 in the presence of symmetrically contaminated error terms generated from a U(−θ, θ)

distribution. Note that, Zhang et al. [42] defined the error term in the regression model as

0.5ε∗, where ε∗ ∼ U(−θ, θ), which would be equivalent to generating contaminated error

terms from a U(−0.5θ, 0.5θ) distribution for the error term defined in the simulation studies

above. Also, different from Simulation Study 3, Zhang et al. [42] investigated a multivariate

normal explanatory vector with a Toeplitz matrix covariance dependence structure. The

full details and results of this numerical study are provided in Web Appendix E, where it is

shown that our Rényi divergence based approach estimates the CS with improved accuracy.

6 Baseball salary data

The inherent robustness of our method is illustrated in the analysis of a well-studied dataset,

known to contain outliers and extremes observations, that was initially presented in a

sponsored section on statistics and graphics of the American Statistical Association in

1998 with the stated goal of answering the question, “are players paid according to their

performance?” Importantly, different from many previous analyses for predicting annual

salary from the predictors, our procedure to estimate regression DR directions does not

require a preliminary analysis to identify outliers, which is inherently difficult in high

dimensional settings. A more comprehensive discussion of the dataset with a detailed

analysis is given in Web Appendix D.

7 Supplementary material

The supplementary material is prepared as an extension of Appendix A and for this reason

is referenced in the main text as the Web Appendix. The first section, Web Appendix B,

provides the full heuristic argument for robustness mentioned in Section 2.4. The simulation
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methodology of Section 5 is comprehensively discussed in Web Appendix C, with measures

to quantify the accuracy of the estimated central subspaces given in Web Appendix C.1,

regression models and parameters provided in Web Appendix C.2, and the results reported

in Web Appendices C.3-C.5. As a demonstration of our methodology in a real world

application, a complete discussion and analysis of the baseball salary dataset introduced

in Section 6 is provided in Web Appendix D.
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A Appendix

A.1 Proof of Proposition 1

Consider the alternate expression of Rα(A),

Rα(A) =
1

α− 1
ln

(
E

[{
f(Y,A>X)

f(Y )f(A>X)

}α{f(Y )f(A>X)

f(Y,A>X)

}])

=
1

α− 1
ln

[∫
y

∫
A>x

{
f(y,A>x)

f(y)f(A>x)

}α
f(A>x)f(y) d(A>x) dy

]

=
1

α− 1
ln

[
E∗
{

f(Y,A>X)

f(Y )f(A>X)

}α]
, (14)

and note the following result.

Result 1: For α ∈ (0, 1), define h(l) = lα, l > 0, then h
′′
(l) = α(α − 1)lα−2 < 0 =⇒ h(l)

is concave for all l. Then, for the random variable L, E{h(L)} ≤ h{E(L)} by Jensen’s
inequality.

Suppose that S(A1) ⊆ S(A), then A1 = AB for some matrix B such that rank(A1) ≡
rank(AB) ≤ rank(A) =⇒ f(y| B>w,A>x) = f(y| A>x), where w = A>x and
A>1 x = B>A>x = B>w. This leads to the following result.
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Result 2:

f(B>w| A>x, y) =
f(y,B>w,A>x)

f(y,A>x)
=
f(y| B>w,A>x)f(B>w,A>x)

f(y| A>x)f(A>x)

=
f(y| A>x)f(B>w,A>x)

f(y| A>x)f(A>x)

= f(B>w| A>x),

which implies f(B>w| A>x, y)/f(B>w| A>x) = 1.

For the alternate expression in (14), this leads to the following result.

Result 3:∫
y

∫
A>x

{
f(y,A>x)

f(y)f(A>x)

}α
f(A>x)f(y) d(A>x)dy

=

∫
y

∫
A>x

[ ∫
B>w

{
f(B>w| A>x, y)

f(B>w| A>x)

f(y,A>x)

f(y)f(A>x)

}α
f(B>w,A>x) d(B>w)

]
f(y) d(A>x)dy

=

∫
y

∫
A>x

[ ∫
B>w

{
f(y,B>w,A>x)

f(y)f(B>w,A>x)

}α
f(A>x| B>w)f(B>w) d(B>w)

]
f(y) d(A>x)dy

=

∫
y

∫
B>w

[ ∫
A>x

{
f(y,A>x| B>w)

f(y| B>w)f(A>x| B>w)

f(y,B>w)

f(y)f(B>w)

}α
f(A>x| B>w) d(A>x)

]
× f(B>w)f(y) d(B>w)dy

≤
∫
y

∫
B>w

[ ∫
A>x

f(y,A>x| B>w)

f(y| B>w)f(A>x| B>w)

f(y,B>w)

f(y)f(B>w)
f(A>x| B>w) d(A>x)

]α
× f(B>w)f(y) d(B>w)dy

=

∫
y

∫
B>w

{
f(y,B>w)

f(y)f(B>w)

}α[ ∫
A>x

f(y,A>x| B>w)

f(y| B>w)
d(A>x)

]α
f(B>w)f(y) d(B>w)dy

=

∫
y

∫
B>w

{
f(y,B>w)

f(y)f(B>w)

}α[ ∫
A>x

f(y,B>w,A>x)

f(y| B>w)f(B>w)
d(A>x)

]α
f(B>w)f(y) d(B>w)dy

=

∫
y

∫
B>w

{
f(y,B>w)

f(y)f(B>w)

}α[ ∫
A>x

f(A>x| y,B>w)
f(y,B>w)

f(y,B>w)
d(A>x)

]α
× f(B>w)f(y) d(B>w)dy

=

∫
y

∫
B>w

{
f(y,B>w)

f(y)f(B>w)

}α
f(B>w)f(y) d(B>w)dy,

where the first equality stems from Result 2 and the inequality due to Result 1. Therefore,

ln

[
E∗
{

f(Y,A>X)

f(Y )f(A>X)

}α]
≤ ln

[
E∗
{

f(Y,B>W)

f(Y )f(B>W)

}α]
= ln

[
E∗
{

f(Y,A>1 X)

f(Y )f(A>1 X)

}α]
=⇒ 1

α− 1
ln

[
E∗
{

f(Y,A>X)

f(Y )f(A>X)

}α]
≥ 1

α− 1
ln

[
E∗
{

f(Y,A>1 X)

f(Y )f(A>1 X)

}α]
, since (α− 1)−1 < 0,

which shows that Rα(A) ≥ Rα(A1) when S(A1) ⊆ S(A).
Next, suppose that S(A1) = S(A), then A1 = AB for some matrix B such that

rank(A1) ≡ rank(AB) = rank(A) =⇒ f(y| B>w,A>x) = f(y| B>x) for all y,B>w
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and A>x. This implies that

f(y,A>x| B>w)

f(y| B>w)f(A>x| B>w)
=

f(y,B>w,A>x)

f(y| B>w)f(A>x| B>w)f(B>w)
=

f(y,B>w,A>x)

f(y| B>w)f(B>w,A>x)

=
f(y| B>w,A>x)

f(y| B>x)

=
f(y| B>x)

f(y| B>x)
= 1

and therefore, the inequality becomes equality =⇒ Rα(A) = Rα(A1).
By definition, S(A) ⊆ S(I) since k ≤ p =⇒ Rα(I) ≥ Rα(A) as shown above. Next,

setting A>x = I>x = x and B>w = A>x, Result 2 holds and thus, substituting into
Result 3 leads to∫

y

∫
x

{
f(y,x)

f(y)f(x)

}α
f(x)f(y) dxdy

=

∫
y

∫
A>x

[ ∫
x

{
f(y,x| A>x)

f(y)f(x| A>x)

f(y,A>x)

f(y| A>x)f(A>x)

}α
f(x| A>x) dx

]
f(A>x)f(y) d(A>x)dy

≤
∫
y

∫
A>x

[ ∫
x

f(y,x| A>x)

f(y)f(x| A>x)

f(y,A>x)

f(y| A>x)f(A>x)
f(x| A>x) dx

]α
f(A>x)f(y) d(A>x)dy

=

∫
y

∫
A>x

{
f(y,A>x)

f(y)f(A>x)

}α
f(A>x)f(y) d(A>x)dy.

Next, since h(l) is strictly concave for α ∈ (0, 1), equality holds if and only if for all y,A>x
and x,

f(y,A>x)

f(y)f(A>x)
=

f(y,x| A>x)

f(y| A>x)f(x| A>x)

f(y,A>x)

f(y)f(A>x)

=⇒ f(y,x| A>x)

f(x| A>x)f(y| A>x)
= 1 =⇒ f(y,x| A>x) = f(y| A>x)f(x| A>x)

and thus, Y X|A>X if and only if Rα(I) = Rα(A).

A.2 Proof of Proposition 2

First, note the equivalent conditional expectation representation of (2),

E(Y,A>X)

{
f(Y,A>X)/f(Y )f(A>X)

}α−1
= EA>XE(Y |A>X)

{
f(Y | A>X)/f(Y )

}α−1
,

since∫
y

∫
A>x

{
f(Y,A>X)/f(Y )f(A>X)

}α−1
f(y,A>x) d(A>x)dy

=

∫
A>x

∫
y

{
f(Y | A>X)/f(Y )

}α−1
f(y| A>x)f(A>x) dy d(A>x).

Also,

E(Y,A>X)

{
f(Y,A>X)/f(Y )f(A>X)

}α−1
= EY E(A>X|Y )

{
f(A>X| Y )/f(A>X)

}α−1
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and thus,

(α− 1)R(Y,X)(A) = ln
[
E(Y,A>X)

{
f(Y,A>X)/f(Y )f(A>X)

}α−1]
= ln

[
EA>XE(Y |A>X)

{
f(Y | A>X)/f(Y )

}α−1]
= ln

[
EA>C2{W2−b}E(Y |A>C2{W2−b})

{
f(Y | A>C2{W2 − b})/f(Y )

}α−1]
= ln

[
E(A>C2W2)E(Y |A>C2W2)

{
f(Y | A>C2W2)/f(Y )

}α−1]
= ln

[
E(Y,A>C2W2)

{
f(Y,A>C2W2)/f(Y )f(A>C2W2)

}α−1]
(15)

- conditioning on Y in (15) and using the analogous steps above -

= ln
[
E(C1W1,A>C2W2)

{
f(C1W1,A

>CW2)/f(C1W1)f(A>C2W2)
}α−1]

= (α− 1)R(W1,W2)(C
>
2 A).

Therefore, R(Y,X),α(A) = R(W1,W2),α(C>2 A), and setting A = I =⇒ R(Y,X),α(I) =
R(W1,W2),α(C>2 I).

A.3 Proof of consistency

Let Ui be a sequence of k-dimensional random vectors with distribution function F and
Lebesgue measurable density f . Define the kernel density estimate of f as

fn (u) =
1

nakn

n∑
i=1

K

(
u−Ui

akn

)
for u ∈ Rk,

where K : Rk → R+ is a probability density on Rk, uniformly for ‖u‖ → ∞, and an > 0
such that limn→∞ an = 0. Noting that the theorem 1-m of Kiefer [23] holds for all F , a
direct application of Theorem 1 of Ruschendorf [28] yields the following lemma.

Lemma 1 Let {(yi,xi); i = 1, 2, . . . , n} be iid and

∞∑
n=1

e−γna
2kr
n <∞ for all γ > 0.

Let K be of bounded variation and f(y), f(A>x) and f(y,A>x) be uniformly continuous in
y,A and x. Under these conditions as n→∞:

sup
y∈R
|fn(y)− f(y)| → 0 a.s., where kr = 1

sup
A, x∈Rk

∣∣fn(A>x)− f(A>x)
∣∣→ 0 a.s., where kr = k

sup
A, y∈R, x∈Rk

∣∣fn (y,A>x
)
− f

(
y,A>x

)∣∣→ 0 a.s., where kr = 1 + k.

Proof of Theorem 1: Assume that the conditions of Lemma 1 hold, and let ε > 0, b >
0→ 0 as n→∞ such that ε/b→ 0; also assume that nb/n

p→ 0. Note that the matrix Ap×k
under the constraint A>A = I is not unique, but the subspace spanned by the columns of
A, S (A), is unique and therefore, for simplicity assume that A is unique.
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Using proof by contradiction, suppose that Â does not converge to A almost surely
(a.s.). Then there exists a subsequence, still denoted by n, and a matrix A0 satisfying the

constraints A>0 A0 = I such that Â → A0 a.s., where A 6= A0. Therefore, for any ε > 0
and n large enough, from Lemma 1:

fn (yi) = f (yi) + δ1,i

fn

(
Â>xi

)
= f

(
Â>xi

)
+ ∆1,i = f

(
A>0 xi

)
+ δ2,i

fn

(
yi, Â

>xi

)
= f

(
yi, Â

>xi

)
+ ∆2,i = f

(
yi,A

>
0 xi
)

+ δ3,i,

such that |∆j,i|, |δj,i| < ε for all i = 1, 2, . . . , n and j ∈ {1, 2, 3}. The first equalities in the
last two equations follow from the conclusion of Lemma 1, and the remaining equalities
from the uniform continuity conditions. Taking the natural log of each equation above
gives:

ln
{
fn (yi)

}
= ln

{
f (yi)

}
+ ln

{
1 + δ1,i/f (yi)

}
ln
{
fn

(
Â>xi

)}
= ln

{
f
(
A>0 xi

)}
+ ln

{
1 + δ1,i/f

(
A>0 xi

)}
ln
{
fn

(
yi, Â

>xi

)}
= ln

{
f
(
yi,A

>
0 xi
)}

+ ln
{

1 + δ1,i/f
(
yi,A

>
0 xi
)}

.

Subtracting the first two equations from the last gives,

ln

{
fn(yi, Â

>xi)

fn (yi) fn(Â>xi)

}
= ln

{
f
(
yi,A

>
0 xi
)

f (yi) f
(
A>0 xi

)}+ ln

{
1 + δ3,i/f

(
yi,A

>
0 xi
)

{1 + δ1,i/f (yi)}{1 + δ2,i/f
(
A>0 xi

)
}

}
.

Next, letting G1,i = fn(yi,Â
>xi)

fn(yi)fn(Â>xi)
, G2,i =

f(yi,A
>
0 xi)

f(yi)f(A>0 xi)
, w1,i =

{
1 + δ1,i/f (yi)

}
, w2,i ={

1+δ2,i/f
(
A>0 xi

) }
and w3,i =

{
1+δ3,i/f

(
yi,A

>
0 xi
) }

, eliminating the natural logarithms,
and raising to the α− 1 power,

(G1,i)
α−1 = (G2,i)

α−1
(

w3,1

w1,iw2,i

)α−1
=⇒

ln

{
1

n

n∑
i=1

(G1,i)
α−1

}
= ln

{
1

n

n∑
i=1

(G2,i)
α−1

(
w3,1

w1,iw2,i

)α−1}
. (16)

Under the restriction that i ∈ χb, and since |δj,i| < ε and ε/b → 0 by definition,{
δ1,i/f (yi)

}
,
{
δ2,i/f

(
A>0 xi

) }
and

{
δ3,i/f

(
yi,A

>
0 xi
) }
→ 0 as n → ∞. This implies

that λi = (w3,1/w1,iw2,i)
α−1 → 1 as n → ∞. Define, λmaxn = max{λ1, λ2, . . . , λn} and

λminn = min{λ1, λ2, . . . , λn}. These results together with (16) provide the inequality,

R̂b
α(Â) =

1

α− 1
ln

[
1

n

n∑
i=1

J (i ∈ χb)
{

f(yi,A
>
0 xi)

f(yi)f(A>0 xi)

}α−1
λi

]

≤ 1

α− 1
ln

[
1

n

n∑
i=1

J (i ∈ χb)
{

f(yi,A
>
0 xi)

f(yi)f(A>0 xi)

}α−1
λmaxn

]
= Rb

n,α(A0) + {1/(α− 1)}ln(λmaxn )

= Rb
n,α(A0) + o(1).
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Substituting λminn for λi above, and following an analogous argument, then R̂b
α(Â) ≥

Rb
n,α(A0)+{1/(α−1)}ln(λminn ) =Rb

n,α(A0)+o∗(1). Next, letting χcb denote the complement
of χb, we have that

Rb
n,α(A0) + o∗(1) ≤ R̂b

α(Â) ≤ Rb
n,α(A0) + o(1) and Rb

n,α(A0) = Rn,α(A0)−Rbc

n,α(A0).

Substituting the expression on the right into the left, and subtracting R(A0), results in
the inequality,

Rn,α(A0)−Rα(A0)−Rb
c

n,α(A0) + o∗(1) ≤ R̂bα(Â)−Rα(A0)

≤ Rn,α(A0)−Rα(A0)−Rb
c

n,α(A0) + o(1).

Next, by the law of large numbers Rn,α(A0)−Rα(A0)→ 0 as n→∞, and Rbc

n,α(A0)→ 0
since nb/n→ 0 as n→∞, and therefore,

lim
n→∞

R̂b
α(Â) = Rα(A0).

Now, by assumption: Â = argmax R̂α(A∗) [i], A = argmaxRα(A∗) [ii], andRα(A0) ≤
Rα(A) [iii]. Therefore, [i] implies R̂b

α(Â) ≥ R̂b
α(A) =⇒ Rα(A0) = limn→∞ R̂b

α(Â) ≥
limn→∞ R̂b

α(A) = Rα(A) [iv]. Then, [iii] and [iv] imply that Rα(A) ≤ Rα(A0) ≤ Rα(A)
=⇒ Rα(A) = Rα(A0), which contradicts the assumed uniqueness of A and therefore,

Â→ A almost surely.

A.4 Proof of Proposition 3

To be more consistent with the influence function literature, and to ease in the exposition of
the proof of Proposition 3, we use the differential notation dF (y,A>x) = f(y,A>x)d(A>x)dy
in (2). The regularity conditions allowing the interchange of differentiation and integration
is assumed in the following proof.

Proof of Proposition 3:

As defined in (6), T (F ) and T (Fε) maximize (2) for the distribution functions F and Fε,
respectively, and therefore, each functional correspondingly solve∫

y

∫
T (F )>x

Ṡα(T (F );w) dF (y, T (F )>x) = 0 (17)

and∫
y

∫
T (Fε)>x

Ṡα(T (Fε);w) dFε(y, T (Fε)
>x) = 0. (18)

Rewriting the contamination distribution as Fε = F + ε(∆w0 − F ) and substituting into
(18) yields the expression,∫

y

∫
T (Fε)>x

Ṡα(T (Fε);w) dF (y, T (Fε)
>x)

+ ε

∫
y

∫
T (Fε)>x

Ṡα(T (Fε);w) d(∆w0 − F )(y, T (Fε)
>x) = 0. (19)
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Next, differentiating the expression in (19) with respect to ε,

∂

∂ε

∫
y

∫
T (Fε)>x

Ṡα(T (Fε);w) dF (y, T (Fε)
>x)

+

∫
y

∫
T (Fε)>x

Ṡα(T (Fε);w) d(∆w0 − F )(y, T (Fε)
>x)

+ ε
∂

∂ε

∫
y

∫
T (Fε)>x

Ṡα(T (Fε);w) d(∆w0 − F )(y, T (Fε)
>x) = 0. (20)

Taking the partial derivative of (20) with respect to ε and evaluating at ε = 0 results in
the equality,{∫

y

∫
T (Fε)>x

∂

∂ε
Ṡα(T (Fε);w) dF (y, T (Fε)

>x)

}∣∣∣∣
ε=0

× ∂

∂ε
T (Fε)

∣∣∣∣
ε=0

+

∫
y

∫
T (Fε)>x

Ṡα(T (Fε);w) d∆w0

−
∫
y

∫
T (Fε)>x

Ṡα(T (F );w) dF (y, T (F )>x) = 0. (21)

Noting that the last integral expression in (21) equals 0 since T (F ) solves (17), and then
solving the equality for (7) yields the result,

∂

∂ε
T (Fε)

∣∣∣∣
ε=0

= −
[{∫

y

∫
T (Fε)>x

∂

∂ε
Ṡα(T (Fε);w) dF (y, T (Fε)

>x)

}∣∣∣∣
ε=0

]−1
× Ṡ(T (Fε);w0).

A.5 Rényi properties

The limiting result, lim
α→1
Rα(A) = DKL(A) = DKL{f(Y,A>X)||f(Y )f(A>X)}, was estab-

lished in Erven and Harremoës [13], and can be shown by directly taking the limit, applying
L’Hospital’s rule, of the integral expression of the index in (2).

The bound Rα(A) ≤ DKL(A) is shown by first considering h(u) = ln(u), u > 0, then
h′′(u) = −1/u2 < 0 =⇒ h(u) is concave for all u and thus, for a positive random variable
U, E{h(U)} ≤ h{E(U)} by Jensen’s inequality. Then, with U = f(Y,A>X)/f(Y )f(A>X),

E

[
ln

{
f(Y,A>X)

f(Y )f(A>X)

}α−1]
≤ ln

[
E

{
f(Y,A>X)

f(Y )f(A>X)

}α−1]
=⇒ (α− 1)E

[
ln

{
f(Y,A>X)

f(Y )f(A>X)

}]
≤ ln

[
E

{
f(Y,A>X)

f(Y )f(A>X)

}α−1]
=⇒ E

[
ln

{
f(Y,A>X)

f(Y )f(A>X)

}]
≥ 1

α− 1
ln

[
E

{
f(Y,A>X)

f(Y )f(A>X)

}α−1]
.

The monotonicity, Rα1(A) ≤ Rα2(A) when 0 < α1 < α2 < 1, can be established in an anal-

ogous argument, by noting that for h(u) = u

(
α1−1
α2−1

)
, u > 0, h′′(u) =

(
1−α1

1−α2

)(
1−α1

1−α2
− 1
)
u

(
α1−1
α2−1

)
−2
>

0, since 1−α1

1−α2
> 1 =⇒ h(u) is convex for all u. Then, for the previously defined U, by
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Jensen’s inequality

E

[{
f(Y,A>X)

f(Y )f(A>X)

}α2−1]α1−1
α2−1

≥
[
E

{
f(Y,A>X)

f(Y )f(A>X)

}α2−1]α1−1
α2−1

=⇒ ln

(
E

[{
f(Y,A>X)

f(Y )f(A>X)

}α2−1]α1−1
α2−1

)
≥
(
α1 − 1

α2 − 1

)
ln

[
E

{
f(Y,A>X)

f(Y )f(A>X)

}α2−1]
=⇒ 1

α1 − 1
ln

[
E

{
f(Y,A>X)

f(Y )f(A>X)

}α1−1]
≤ 1

α2 − 1
ln

[
E

{
f(Y,A>X)

f(Y )f(A>X)

}α2−1]
.

A.6 Hellinger-Bhattacharyya distance equivalence

Consider the Hellinger-Bhattacharyya distance

HB =

[ ∫
y

∫
A>x

{√
f(y,A>x)−

√
f(y)f(A>x)

}2
d(A>x) dy

]1/2
.

Then,

(HB)2 =

∫
y

∫
A>x

[
f(y,A>x)1/2 − {f(y)f(A>x)}1/2

]2
d(A>x) dy

=

∫
y

∫
A>x

[
f(y,A>x) + f(y)f(A>x)− 2f(y,A>x)1/2{f(y)f(A>x)}1/2

]
d(A>x) dy

=

∫
y

∫
A>x

f(y,A>x) d(A>x) dy +

∫
y

∫
A>x

f(y)f(A>x) d(A>x) dy

− 2

∫
y

∫
A>x

f(y,A>x)1/2{f(y)f(A>x)}1/2 d(A>x) dy

= 2

[
1−

∫
y

∫
A>x

f(y,A>x)1/2{f(y)f(A>x)}1/2 d(A>x) dy

]
,

since
∫
y

∫
A>x

f(y,A>x) d(A>x) dy =
∫
y

∫
A>x

f(y)f(A>x) d(A>x) dy = 1. There-

fore, −2ln
{

1 − (HB)2/2
}

= −2ln
{ ∫

y

∫
A>x

f(y,A>x)1/2 {f(y)f(A>x)}1/2 d(A>x) dy
}

=

D1/2{f(Y,A>X)||f(Y ) f(A>X)} = R1/2(A).
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