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Motivation

Design a nonparametric change-point detection method (M -statistic)
in both the offline and online setting.

•Distribution Free: kernel approaches are distribution free as they
provide consistent results over larger classes of data distributions.

•Efficient to compute: split data to compute the offline
M -statistics in a novel structured way; update M -statistics
recursively in the online setting.

•Analytical way to obtain threshold: accurately characterize the
tail probability of the M -statistics under null hypothesis in both
offline and online setting.

•Powerful: numerically demonstrate that our algorithm is more
powerful and more robust compared to conventional parametric
approaches (e.g., Hoteling’s T 2).

MMD

Assume there are two sets with n observations from a domain X ,
where X = {x1, x2, . . . , xn} are drawn iid from distribution P , and
Y = {y1, y2, . . . , yn} are drawn iid from distribution Q.

•The maximum mean discrepancy (MMD) is defined as [1]
MMD0[F , P,Q] := sup

f∈F
{Ex[f (x)]− Ey[f (y)]} .

•An unbiased estimate of MMD2
0 can be obtained using U -statistic

MMD2
u[F , X, Y ] = 1

n(n− 1)
n∑

i,j=1,i 6=j
h(xi, xj, yi, yj),

where h(·) is the kernel of the U -statistic defined as
h(xi, xj, yi, yj) = k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj, yi).

• Intuitively, the empirical test statistic MMD2
u is expected to be small

(close to zero) if P = Q, and large if P and Q are far apart.
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(a): offline
Figure: Illustration of (a) offline case: data are split into blocks of size Bmax,
indexed backwards from time t, and we consider blocks of size B,
B = 2, . . . , Bmax.

•Search for a location B (2 ≤ B ≤ Bmax) for a change-point.

ZB : = 1
N

N∑
i=1

MMD2
u(X

(B)
i , Y (B))

= 1
NB(B − 1)

N∑
i=1

B∑
j,l=1,j 6=l

h(X (B)
i,j , X

(B)
i,l , Y

(B)
j , Y

(B)
l ).

•Detect a change-point whenever the M -statistic exceeds the
threshold b > 0:
M := max

B∈{2,3,...,Bmax}
ZB/

√
Var[ZB] > b. {offline change-point detection}

Online M-statistic
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(b): sequential
Figure: Illustration of (b) online case. Assuming we have large amount of reference
or background data that follows the null distribution.

•Fixed block size B0.
ZB0,t := 1

N

N∑
i=1

MMD2
u(X

(B0,t)
i , Y (B0,t)).

•Detect a change-point whenever the normalized B-statistic exceeds
a pre-determined threshold b > 0:
T = inf{t : ZB0,t/

√
Var[ZB0] > b}. {online change-point detection}

•Recursive update:
Xi
(B0 ,t ) Y (B0 ,t )
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(B0 ,t )

Y (B0 ,t )

1
B0 (B0 −1)

k(Xi, j
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Figure: Recursively update the Gram matrix when calculating the online
M -statistics.

Examples of M-Statistics
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(a): Offline, τ = 250 (b): Online, τ = 250

Tail Probability Approximation under H0

•Theorem 1. Significance Level Approximation. When
b→∞ and b/

√
Bmax → c for some constant c, the significant level

of the offline M -statistic is given by

P∞
 max
B∈{2,3,...,Bmax}

ZB√
Var[ZB]

> b

 = b2e−
1
2b

2 ·
Bmax∑
B=2

(2B − 1)
2
√

2πB(B − 1)

ν

b
√√√√√√√√

2B − 1
B(B − 1)

 + o(1),

where the special function
ν(u) ≈ (2/u)(Φ(u/2)− 0.5)

(u/2)Φ(u/2) + φ(u/2)
,

φ is the pdf and Φ(x) is the cdf of the standard normal distribution,
respectively.

•Comparison of thresholds, determined by simulation, Theorem 1,
and Skewness Correction(SC).

α
Bmax = 10 Bmax = 20 Bmax = 50

b (sim) b (th3) b (SC) b (sim) b (th3) b (SC) b (sim) b (th3) b (SC)
0.10 2.29 2.40 2.65 (0.10) 2.47 2.60 2.90 (0.12) 2.70 2.80 3.14 (0.17)
0.05 2.72 2.72 3.02 (0.12) 2.88 2.90 3.25 (0.14) 3.15 3.08 3.46 (0.19)
0.01 3.74 3.30 3.71 (0.16) 3.68 3.46 3.87 (0.16) 4.08 3.62 4.02 (0.19)

•Theorem 2. Average Run Length (ARL) Approximation.
When b→∞ and b/

√
B0→ c′ for some constant c′, the average

run length (ARL) of the stopping time T is given by

E∞[T ] = eb
2/2

b2 ·


(2B0− 1)√

2πB0(B0− 1)
· ν

b
√√√√√√√√√

2(2B0− 1)
B0(B0− 1)





−1

+ o(1).
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(a): B0 = 10 (b): B0 = 200
Figure: In online case, for a range of ARL values, comparison b obtained from
simulation, from Theorem 2, and from skewness correction under various null
distributions.

Power Analysis

Table: Power, offline, thresholds for all methods are calibrated so that α = 0.05.
Case 1 Case 2 Case 3 Case 4 Case 5

M -statistic 0.71 1.00 0.26 1.00 0.44
Hotelling’s T 2 0.18 0.88 0.07 0.87 0.03

GLR 0.03 0.05 0.07 0.12 0.04
Note: Case 1 to 4, change from N (0, I) to N (0.1, I), N (0.2, I),
N (0,Σ),N (0.2,Σ), respectively.
Case 5, change from N (0, 1) to Laplace(0,1).

[1] A Kernel Two-Sample Test.(Gretton,A., et.al. JMLR 2012)


