M -Statistic for Kernel Change-Point Detection

Motivation

Design a nonparametric change-point detection method (M -statistic)

in both the offline and online setting.

« Distribution Free: kernel approaches are distribution free as they
provide consistent results over larger classes of data distributions.

« Efficient to compute: split data to compute the offline
M -statistics in a novel structured way; update M -statistics
recursively in the online setting.

» Analytical way to obtain threshold: accurately characterize the
tail probability of the M -statistics under null hypothesis in both
offline and online setting.

« Powerful: numerically demonstrate that our algorithm is more
powerful and more robust compared to conventional parametric
approaches (e.g., Hoteling's 7).

MMD

Assume there are two sets with n observations from a domain X
where X = {x,29,...,2,} are drawn iid from distribution P, and
Y =A{wy1, 9, ...,yn} are drawn iid from distribution ().

» The maximum mean discrepancy (MMD) is defined as [1]

MMDo|F, P, Q)] := Sup Bl f ()] = Ey[f(y)]} -

- An unbiased estimate of MMD; can be obtained using U-statistic
1 n

MMD;[F, X, Y] = o
n(n — 1) ij=Li#
where h(-) is the kernel of the U-statistic defined as
Mwi, xj, yiy y5) = k@i, 5) + k(Y y;) — k@i, y5) — k2, 4i)-
. Intuitively, the empirical test statistic MMD: is expected to be small
(close to zero) if P = (), and large if P and () are far apart.

Offline M -statistic
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(a): offline

Figure: Illustration of (a) offline case: data are split into blocks of size By,
indexed backwards from time ¢, and we consider blocks of size B,

B =2 ... Buiu
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« Search for a location B (2 < B < By.) for a change-point.
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» Detect a change-point whenever the M -statistic exceeds the
threshold b6 > 0:

M = max
Be{2,3,...,Buax

Zp/\Var[Zg] > b.

Online M -statistic
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(b): sequential
Figure: Illustration of (b) online case. Assuming we have large amount of reference
or background data that follows the null distribution.

« Fixed block size B,.

1
Zp, = & MMD(x [0,y (50)

» Detect a change-point whenever the normalized 5-statistic exceeds
a pre-determined threshold b > O:

T = inf{t: Zp,;/|Var[Zp] > b}. {online change-point detection}

« Recursive update:

Time t;: Time t+1;

________

Figure: Recursively update the Gram matrix when calculating the online
M -statistics.

Examples of )/-Statistics
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(a): Offline, 7 = 250 (b): Online, 7 = 250

{offline change-point detection }

Tail Probability Approximation under

« Theorem 1. Significance Level Approximation. When
b — oo and b/+/ B.x — ¢ for some constant ¢, the significant level
of the oftline M -statistic is given by
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where the special function
V(u) ~ (2/u>(®<u/2> — 0.5)

¢ is the pdf and ®(x) is the cdf of the standard normal distribution,
respectively.

« Comparison of thresholds, determined by simulation, Theorem 1,

and Skewness Correction(SC).

Bmax = 10 Bmax = 20 Bmax = o0
b (sim) b (th3) b (SC) b (sim)b (th3) b (SC) b (sim)b (th3) b (SC)
0.10 229 2.40 265 (0.10) 247 2.60 290 (0.12) 2.70 2.80 3.14 (0.17)
0.05 272 2.72 3.02(0.12) 288 2.90 3.25(0.14) 3.15 3.08 3.46 (0.19)
0.01 3.74 330 3.71(0.16) 3.68 3.46 3.87 (0.16) 4.08 3.62 4.02 (0.19)
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« Theorem 2. Average Run Length (ARL) Approximation.
When b — oo and b/+/ By — ¢ for some constant ¢, the average
run length (ARL) of the stopping time 7' is given by
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LT = + o(1).
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Figure: In online case, for a range of ARL values, comparison b obtained from

simulation, from Theorem 2, and from skewness correction under various null
distributions.

Power Analysis

Table: Power, oftline, thresholds for all methods are calibrated so that o = 0.05.

Case 1 Case 2 Case 3 Case 4 Case 5
M-statistic  0.71 1.00 0.26 1.00 0.44
Hotelling’s 7% 0.18 0.88 0.07 0.87 0.03
GLR 0.03 0.0 0.07 0.12 0.04

Note: Case 1 to 4, change from N (0,1) to N(0.1,1), N(0.2,1),
N (0, %), N (0.2, %), respectively.
Case 5, change from A (0,1) to Laplace(0,1).
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