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Mixed-Effect Models

Mixed-effect models (aka, “mixed models”) are like classical statistical models, but
with some regression parameters (“fixed effects”) replaced by “random effects”.
• Random effects can be thought of as random regression coefficients describing

the effects of explanatory factors or covariates.
• Typically, fixed effects and random effects are used in the same model, hence

mixed effects models.
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Why use random effects?

• They account for and quantify multiple sources of variability.
• Useful for multiple levels of sampling/randomization, accounting for
measurement error, etc.

• They broaden the scope of inference.

• Useful for correlated data.
• Observations that share the same random effect(s) are correlated, according to
the model. So mixed models useful for longitudinal/panel/repeated measures
data, spatial data, etc.

• Some multivariate models use shared random effects to account for correlation
between different response variables.
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Why use random effects?

• Shrinkage.
• Predictors for factor levels modeled with random effects are closer to the fitted
population mean than those from purely fixed effect models. Such “shrinkage”
predictors typically have good statistical properties.

• Usefull for small area estimation, other problems where it is sensible to “borrow
strength” from the population when predicting/estimating characteristics of an
individual in that population.

• Splines. Mixed models are useful for fitting nonparametric and semiparametric
models where covariate effects are modeled flexibly with penalized splines.
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Applications of mixed models abound:

• Longitudinal/panel/repeated measures data (aka clustered data).
• Spatial data.
• Small area estimation applications involving data from complex, multi-stage

sampling designs.
• Study designs involving blocking factors and stratification variables.
• Analysis of data subject to variability from multiple hierarchically organized

sources of variability.
• E.g., educational studies involving data from students within classes, within
schools, within school districts, etc.

• Applications in every field: education, epidemiology, agriculture, ecology,
business, sociology, forestry, . . . .
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Different names:

• Hierarchical models.
• Multilevel models.
• Random coefficient models.
• Variance component models.
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Different classes of mixed models:

• Linear mixed models.
• Generalized linear mixed models.
• Nonlinear mixed effect models.
• Frailty models.
• Joint models.

We will focus on linear mixed-effect models or LMMs.
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One-way random effects model—Rails
In a study of the stress experienced by railway rails, 6 randomly chosen rails were
tested 3 times each by measuring travel time for an ultrasonic wave through the
rail.
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Rails

Clearly, these data are grouped, or clustered, by rail. This clustering has two
closely related implications:
• Within-cluster correlation; and
• Between cluster heterogeneity.

These are really flip-sides of the same coin.
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A Model for the Rails Data:

Let yij be the jth response from the ith rail. Assume

yij = µ+ bi + eij ,

where
• b1, . . . , b6 are independent random effects, where bi ∼ N(0, σ2

b),
• e11 . . . , e63 are independent random errors, where eij ∼ N(0, σ2).
• and we assume the bi ’s independent of the eij ’s.

Model implies:
• corr(yij , yi′k) = 0 ⇒ no b/w cluster correlation.
• var(yij) = σ2

b + σ2 ⇒ total variance=sum of 2 variance components.
• corr(yij , yik) = σ2

b
σ2

b+σ2 ≡ ρ ⇒ constant w/in cluster correlation.

11/30



A Model for the Rails Data:

Let yij be the jth response from the ith rail. Assume

yij = µ+ bi + eij ,

where
• b1, . . . , b6 are independent random effects, where bi ∼ N(0, σ2

b),
• e11 . . . , e63 are independent random errors, where eij ∼ N(0, σ2).
• and we assume the bi ’s independent of the eij ’s.

Model implies:
• corr(yij , yi′k) = 0 ⇒ no b/w cluster correlation.
• var(yij) = σ2

b + σ2 ⇒ total variance=sum of 2 variance components.
• corr(yij , yik) = σ2

b
σ2

b+σ2 ≡ ρ ⇒ constant w/in cluster correlation.

11/30



A Model for the Rails Data:

Let yij be the jth response from the ith rail. Assume

yij = µ+ bi + eij ,

where
• b1, . . . , b6 are independent random effects, where bi ∼ N(0, σ2

b),
• e11 . . . , e63 are independent random errors, where eij ∼ N(0, σ2).
• and we assume the bi ’s independent of the eij ’s.

Model implies:
• corr(yij , yi′k) = 0 ⇒ no b/w cluster correlation.
• var(yij) = σ2

b + σ2 ⇒ total variance=sum of 2 variance components.
• corr(yij , yik) = σ2

b
σ2

b+σ2 ≡ ρ ⇒ constant w/in cluster correlation.

11/30



Fitting the Model in R with lme():

library(nlme) # package with the lme() function
str(railData)

'data.frame': 18 obs. of 2 variables:
$ Rail : Factor w/ 6 levels "1","2","3","4",..: 1 1 1 2 2 2 3 3 3 4 ...
$ travel: num 55 53 54 26 37 32 78 91 85 92 ...

(m1.Rails <- lme(travel~1,data=railData,random=~1|Rail))

Linear mixed-effects model fit by REML
Data: railData
Log-restricted-likelihood: -61.0885
Fixed: travel ~ 1

(Intercept)
66.5

Random effects:
Formula: ~1 | Rail

(Intercept) Residual
StdDev: 24.80547 4.020779

Number of Observations: 18
Number of Groups: 6
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Some Results from the Fitted Model:
VarCorr(m1.Rails) # variance components

Rail = pdLogChol(1)
Variance StdDev

(Intercept) 615.31111 24.805465
Residual 16.16667 4.020779

emmeans(m1.Rails,specs=~1) # from emmeans package: estimated marginal means (ls means)

1 emmean SE df lower.CL upper.CL
overall 66.5 10.2 5 40.4 92.6

Degrees-of-freedom method: containment
Confidence level used: 0.95

Be careful!:
intervals(m1.Rails,which="fixed") # uses df=12, correct in fixed effect model, but not here

Approximate 95% confidence intervals

Fixed effects:
lower est. upper

(Intercept) 44.33921 66.5 88.66079
attr(,"label")
[1] "Fixed effects:"
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Notice that the big SE and wide CI for the mean respone. Compare to result from
a fixed effect model—a one-way ANOVA model with fixed rail effects:
# Pop mean inference from random effects model:
emmeans(m1.Rails,specs=~1)

1 emmean SE df lower.CL upper.CL
overall 66.5 10.2 5 40.4 92.6

Degrees-of-freedom method: containment
Confidence level used: 0.95

# Pop mean inference from fixed effects model:
m2.Rails <- lm(travel~Rail,data=railData); emmeans(m2.Rails,specs= ~1)

1 emmean SE df lower.CL upper.CL
overall 66.5 0.948 12 64.4 68.6

Results are averaged over the levels of: Rail
Confidence level used: 0.95

Why such a big difference?
• Different scopes of inference!
• The mean in pop of all rails vs the mean for the 6 rails in the study.
• Our uncertainty is much greater when doing inference on the former quantity.
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More Results from the Fitted Model:
Recall:
• Model implies constant variance (equal to between-rail + within-rail
variances).
• Model implies responses are uncorrelated across different rails, but implies
(constant) correlation for repeated responses on the same rail.

getVarCov(m1.Rails,individuals=c("1","2"),type="marginal")

Rail 1
Marginal variance covariance matrix

1 2 3
1 631.48 615.31 615.31
2 615.31 631.48 615.31
3 615.31 615.31 631.48

Standard Deviations: 25.129 25.129 25.129
Rail 2
Marginal variance covariance matrix

1 2 3
1 631.48 615.31 615.31
2 615.31 631.48 615.31
3 615.31 615.31 631.48

Standard Deviations: 25.129 25.129 25.129

This covariance structure is called compound symmetry. Here, ρ̂ = 615.31
631.48 = .97. 15/30



An Alternative Model for the Rails Data:

Assume

yij = µ+ eij ,

where
• e1 . . . , e6 are independent random error vectors, where

ei =

ei1
ei2
ei3

 ∼ N3(0,Σ).

• and we assume Σ is compound symmetric.
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Fitting the model in R

This model can be fitted with gls(), also from the nlme package:

m1a.Rails <- gls(travel~1,data=railData,corr=corCompSymm(form=~1|Rail))
logLik(m1.Rails);logLik(m1a.Rails) # maximized objective functions (restricted loglikelihoods)

'log Lik.' -61.0885 (df=3)

'log Lik.' -61.0885 (df=3)

They are the same model!

Actually, not quite.
• The random effect model implies a model of compound symmetry, but not
vice versa.
• The latter model admits negative within-cluster correlation (rare), which the

former does not.
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Random Effects or Error Covariance?
The previous example illustrates that correlation can be built into a model through
• the inclusion of random effects;
• the assumption of an error covariance structure;
• or both (but not redundantly, which induces non-identifiability).

General form of LMM for clustered data:

yij = x1ijβ1 + x2ijβ2 + · · ·+ xpijβp + z1ijb1i + · · ·+ zqijbqi + eij

for i indexes clusters; j indexes obs w/in clusters.

Equivalently, writing with vectors:

yi = x′iβ + z′ibi + ei

where

{bi}
ind∼ N(0,D), {ei}

ind∼ N(0,Ri) ⇒ var(yi) = z′iDzi + Ri ≡ Σi .
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More Examples:
• RCBD Model: yij = µ+ αj + bi + eij , i for blocks, j for treatments.

• Split Plot Model:

yhij = µ+ αh + βj + (αβ)hj + bi(h) + ehij ,

h for whole plot factor, i for whole plots, j for split plot factor.

• Repeated Measures ANOVA Model:

yhij = µ+ αh + βj + (αβ)hj + bi(h) + ehij

h for b/w subjects factor, i for subjects, j for time factor.

• Clasical RM-ANOVA: assumes {ehij}
ind∼ N(0, σ2) (same as split plot model) and

“fixes” the analysis for non-compound symmetry.
• Modern approach: assume a more suitable covariance structure in the
specification of bi(h) + ehij , so no need for ad hoc correction.

19/30



More Examples:
• RCBD Model: yij = µ+ αj + bi + eij , i for blocks, j for treatments.

• Split Plot Model:

yhij = µ+ αh + βj + (αβ)hj + bi(h) + ehij ,

h for whole plot factor, i for whole plots, j for split plot factor.

• Repeated Measures ANOVA Model:

yhij = µ+ αh + βj + (αβ)hj + bi(h) + ehij

h for b/w subjects factor, i for subjects, j for time factor.

• Clasical RM-ANOVA: assumes {ehij}
ind∼ N(0, σ2) (same as split plot model) and

“fixes” the analysis for non-compound symmetry.
• Modern approach: assume a more suitable covariance structure in the
specification of bi(h) + ehij , so no need for ad hoc correction.

19/30



More Examples:
• RCBD Model: yij = µ+ αj + bi + eij , i for blocks, j for treatments.

• Split Plot Model:

yhij = µ+ αh + βj + (αβ)hj + bi(h) + ehij ,

h for whole plot factor, i for whole plots, j for split plot factor.

• Repeated Measures ANOVA Model:

yhij = µ+ αh + βj + (αβ)hj + bi(h) + ehij

h for b/w subjects factor, i for subjects, j for time factor.

• Clasical RM-ANOVA: assumes {ehij}
ind∼ N(0, σ2) (same as split plot model) and

“fixes” the analysis for non-compound symmetry.
• Modern approach: assume a more suitable covariance structure in the
specification of bi(h) + ehij , so no need for ad hoc correction.

19/30



More Examples:
• RCBD Model: yij = µ+ αj + bi + eij , i for blocks, j for treatments.

• Split Plot Model:

yhij = µ+ αh + βj + (αβ)hj + bi(h) + ehij ,

h for whole plot factor, i for whole plots, j for split plot factor.

• Repeated Measures ANOVA Model:

yhij = µ+ αh + βj + (αβ)hj + bi(h) + ehij

h for b/w subjects factor, i for subjects, j for time factor.

• Clasical RM-ANOVA: assumes {ehij}
ind∼ N(0, σ2) (same as split plot model) and

“fixes” the analysis for non-compound symmetry.
• Modern approach: assume a more suitable covariance structure in the
specification of bi(h) + ehij , so no need for ad hoc correction.

19/30



More Examples:
• RCBD Model: yij = µ+ αj + bi + eij , i for blocks, j for treatments.

• Split Plot Model:

yhij = µ+ αh + βj + (αβ)hj + bi(h) + ehij ,

h for whole plot factor, i for whole plots, j for split plot factor.

• Repeated Measures ANOVA Model:

yhij = µ+ αh + βj + (αβ)hj + bi(h) + ehij

h for b/w subjects factor, i for subjects, j for time factor.

• Clasical RM-ANOVA: assumes {ehij}
ind∼ N(0, σ2) (same as split plot model) and

“fixes” the analysis for non-compound symmetry.
• Modern approach: assume a more suitable covariance structure in the
specification of bi(h) + ehij , so no need for ad hoc correction.

19/30



More Examples:

Many LMMs are suitable for clustered data with cluster-specific random effects,
but not all.
• Latin Square Model (crossed random effects):

yijk = µ+ αk + ri + cj + eijk

i for row factor, j for column factor, k for treatment factor.

• Nested Random Effects: We select three leading grocery chains, four cities to
study, sample 5 stores per chain within each city, and sample 10 bags of
grapes per store. Response is proportion of soft or rotted grapes per bag.

yhijk = µ+ αh + ci + sj(hi) + ehijk

h for chains, i for cities, j for stores, k for bags.
• ci and sj(hi) are city and store-within-city random effects.
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More Examples:

• Penalized Quadratic Spline Model (random effects at the observation level):

yi = β1 +β2xi +β3x2
i + b1[max(xi −κ1, 0)]2 + · · ·+ bq[max(xi −κq, 0)]2 + ei

κ1, ..., κq are knots; b1, ..., bq
ind∼ N(0, σ2

b).

General LMM:
y = Xβ + Zb + e.

where

b ∼ N(0,D), e ∼ N(0,R) ⇒ var(y) = ZDZ′ + R ≡ Σ.
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Software

Many software packages implement LMMs, but I primarily use SAS and R. The
main tools for LMMs in these packages are
• PROCs MIXED and HPMIXED in SAS
• the lme() function and others in the nlme package for R.
• the lmer() function and others in the lme4 package for R.

Feature MIXED HPMIXED lme lmer
Non-nested random effects Yes Yes No Yes
Non-spherical error covariance Yes No Yes No
Heterogeneous error covariance Yes No No No
Kenward-Roger inference Yes No No Yes
Handles large problems No Yes No Yes
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Software

Other Software Notes:
• PROC GLIMMIX in SAS handles generalized linear mixed models (GLMMS).

But also useful for LMMs because of tools that MIXED lacks (e.g., for
penalized splines).

• PROC HPLMIXED has similar capabilities to PROC MIXED, but runs in
distributed and multicore computing environments for greater speed.

• NLMMs but not GLMMs implemented in nlme package for R.
• GLMMs and NLMMs implemented in lme4 package for R.
• Routines in lme4 and HPMIXED use sparse matrix techniques and other

computationally efficient methods to efficiently handle big problems.
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Orthodontic Growth Data
Data below are skull measurements taken every 2 years for 11 females, 16 males.
Y =distance between pituitary and the pterygomaxillary fissure (mm).
Grouped Data: Y ~ age | id

id age Y sexFac male fem
1.8 1 8 21.0 F 0 1
1.10 1 10 20.0 F 0 1
1.12 1 12 21.5 F 0 1
1.14 1 14 23.0 F 0 1
2.8 2 8 21.0 F 0 1

age

Y

20

25

30

8 9 10 11 12 13 14

M

8 9 10 11 12 13 14

F
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Orthodontic Growth Data
Random intercept model.

yhij = (αh + bhi) + βhagehij + ehij

where h for sex, i for subject, j for time point, and

{bhi}
ind∼ N(0, ψh), {ehij}

ind∼ N(0, σ2
h).

• Model mean is linear in time with different intercepts and slopes for each sex.
• Intercepts vary randomly by subject, with different variability for each sex.
• Error variance differs by sex.

lme():
m1.lme <-

lme(Y ~ 0+fem+male+fem:age+male:age, # formula for fixed effects
data=orthData.grpd, # data frame to use (convenient if a groupedData object)
method="REML", # the default and recommended fitting method
random= list(id=pdDiag(form= ~ -1+fem+male)), # random effects specification
weights = varIdent(form = ~ 1|sexFac), # specifies error heteroscedasticity model
corr=NULL # specifies error correlation model (not used in this model)
)
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lmer():
• lmer() only handles errors that are i.i.d. N(0, σ2) (uncorrelated,

homoscedastic).
• So syntax below is for simpler model with constant error variance.

m2.lmer <-
lmer(Y ~ 0+fem+fem:age+male+male:age+ # single formula specifies fixed...

(0+fem|id)+(0+male|id), # and random effects
REML=TRUE, # REML fitting method is the default
data=dentT.grpd) # data frame with model variables (need not be a groupedData object)

)

• Random effects in parentheses with a bar and grouping factor specifying the
level at which they operate.
• (0+fem|id) specifies subject-level random intercepts for females
• (0+male|id) specifies subject-level random intercepts for males
• (1+age|id) would specify subject-level random intercepts and slopes for each
subject. By this syntax they would be assumed to by correlated.
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PROC MIXED:

• MODEL statement specifies fixed effects in the model.
• RANDOM specifies random effects and their assumed covariance structure.
• REPEATED statement specifies the error covariance structure for the model.

or
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Fitted Growth Curves
Estimated mean (fixed) and predicted subject-specific (random) growth curves for
four female subjects (IDs 1–4) and 4 males (IDs 12–15):

age 

Y
 

20
22
24
26
28
30

8 9 10 11 12 13 14

1 2

8 9 10 11 12 13 14

3 4

12

8 9 10 11 12 13 14

13 14

8 9 10 11 12 13 14

20
22
24
26
28
30

15

fixed id
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29/30



Thank You!

If you need help using mixed effect models in your research, contact the SCC!
www.stat.uga/consulting
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