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Background

• With the rapid development of modern technology, massive
amounts of data are generated. However, it is common to
encounter the case where data has high dimensional inputs
but limited number of observations.

• Out of the large amount of inputs, it is often the case that
only a few features are really meaningful or active.

• Unlike the classic generalized linear models which can select
the variables using LASSO ([Tibshirani, 1996],
[Park and Casella, 2008]), it is challenging to identify those
active variables in Gaussian process models.
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Current Methods

• Recall the RBF kernel:

C (xi, xj) = σ2 exp
(
−1

2

K∑
k=1

(
xi,k − xj,k

)2
γ2k

)
, (1)

where marginal variance σ2 and length-scales {γ2k}K
k=1 are the

hyperparameters that control the shape of the Gaussian
process.

• The inverse of length-scale γk decides how relevant the kth
feature is. As the length-scale γk increases, the kth feature
becomes less relevant. When γk reaches a huge value, the kth
feature would only have ignorable impact on the covariance
kernel, thus it can be removed from the model. This is
so-called Automatic Relevance Determination (ARD) (e.g.
[Williams and Rasmussen, 1995], [Neal, 2012])
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Current Methods

• ARD is one of the most commonly used methods for variable
selection in Gaussian process models
([Rasmussen and Williams, 2006]). However, it is known that
ARD is open ended, which does not have a clear rule for the
threshold.

• Recently, [Dance and Paige, 2022] introduced the spike and
slab variational Gaussian process (SSVGP), which
demonstrated superior performance compared to benchmark
algorithms such as LASSO. Despite the attractive performance
of the SSVGP, it is not applicable for classification tasks.

• More generalized approaches for variable selection in Gaussian
process models are needed.
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Inverse RBF Kernel

• Instead of the commonly used version of RBF kernel, we
re-parameterize the RBF kernel to have the form:

C (xi, xj) = σ2 exp
(
−1

2

k∑
d=1

ℓ2d ×
(
xi,d − xj,d

)2)
, (2)

where the inverse length-scale ℓd determines how relevant an
input is.

• If the inverse length-scale ℓ2k has a large value, any difference
in kth input would cause large impact on the covariance.
Conversely, the input would only have ignorable influence on
the covariance kernel if the inverse length-scale has a value
that is close or even equal to 0, thus we can remove it from
the model effectively.

• The interpretation is similar to that of the coefficients of
regular GLM models.
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Regularizing Prior

• In order to achieve the goal of selecting variables,
regularization is needed to shrink the inverse length-scales of
unnecessary features.

• In terms of Bayesian perspective, priors with large proportion
of mass concentrated near 0 is needed for the inverse
length-scales.

• [Park and Casella, 2008] discussed the Bayesian LASSO and
demonstrated that the LASSO regression can be interpreted
as a Bayesian regression with Laplace priors, which has density
function proportional to

π(β) ∝ exp (−τ |β|) , β ∈ (−∞,∞). (3)
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Regularizing Exponential Prior

• Since the inverse length-scale ℓ2 is non-negative, the Laplace
prior is not applicable in this case, therefore we set the prior
for ℓ2 as

π(ℓ2) ∝
{

exp(−τ |ℓ2|) if ℓ2 ≥ 0;
0 if ℓ2 < 0

⇒ π(ℓ2) ∝ exp(−τℓ2),

(4)
which is actually an exponential distribution with mean 1

τ .
• The joint distribution of the model can be expressed as:

n∏
i=1

p(yi|fi)×
1√

(2π)n|C|
e− 1

2
fTC−1f × π(σ2)×

K∏
k=1

π(ℓ2k), (5)

where
∏n

i=1 p(yi|fi) is the model likelihood, f is the realization
of Gaussian process, C is the corresponding covariance matrix,
and π(σ2) represents the hyper-prior for marginal variance σ2.
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Regularizing Exponential Prior

• Inserting the exponential priors for {ℓ2k}K
k=1 and taking

logarithm of equation (5), the log joint density of the model is
proportional to

n∑
i=1

log p(yi|fi)−
1

2
log |C|−1

2
fTC−1f+logπ(σ2)−τ

K∑
k=1

ℓ2k. (6)

• it is obvious to see the last element τ
∑K

k=1 ℓ
2
k plays a role of

regularization. That is, as the ℓ2 gets larger, it introduces
more penalty to the log joint density.

• Also, by increasing the rate parameter τ for the exponential
priors, the degree of penalty grows up.
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Existing Methods

• We take advantage of the reference distribution variable
selection (RDVS) method proposed by
[Linkletter et al., 2006], which augments the design matrix X
by including an inert variable and compares it with the
existing experimental variables.

• However, the RDVS is also designed for normal response and
only considers the case in which Markov chain Monte Carlo
(MCMC) method is used.

• Next, we will provide two general variable selection algorithms
for Gaussian process models.

Dipak Dey, Zhiyong Hu UCONN
Generalized Variable Selection Algorithms for Gaussian Process Models by LASSO-like Penalty 12 / 46



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Variable Selection Algorithms

• Consider the design matrix X = (x1, x2, . . . , xK), where xk is
the column vector of kth feature, a nuisance vector x0 that is
irrelevant to the data is binded to it, then the augmented
design matrix is X∗ = (x0,X).

• The variable x0 is known to be irrelevant, therefore it is
expected to have no impact on the prediction if it is included
in the model.

• In other words, the corresponding inverse length-scale ℓ20 for
x0 should be very close to 0, then the researchers are
confident to remove any inputs from the model if their inverse
length-scales are even smaller than the ℓ20.
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Variable Selection Algorithms

• Ideally, the added nuisance column should be absolutely
irrelevant to the data in order to eliminate any effect on the
model. However, this is often not achievable when the sample
size is small but the dimension is relatively high.

• To address this issue, the data augmentation should be
repeated several times, say M times, and record the
parameter estimates for the inverse length-scales of x0 and all
columns in X at each time.

• By repeating the procedure, it averages over the effect of the
inert columns.

• As for the parameter estimates, it is natural to consider the
maximum a posteriori probability (MAP) estimate, where
variational inference is used for the computation.
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Variable Selection Algorithms

• Denote ℓ̂2j = (ℓ̂21,j, . . . , ℓ̂
2
m,j, . . . , ℓ̂

2
M,j)

T, where ℓ̂2m,j is the MAP
estimate for the inverse length-scale of xj in the mth iteration
of the algorithm, j = 0, 1, . . . ,K.

• For each j ∈ {1, . . . ,K}, we compare the distribution of ℓ̂2j
with the distribution of ℓ̂20 to evaluate whether the jth feature
is active or not.

• More specifically, the qth percentile of ℓ̂20, denoted as αq, is
used as the threshold for selecting active inputs. That is, if
the median of ℓ̂2j is smaller than αq, then the jth feature xj is
considered inactive, thus it can be dropped from the model
effectively.
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Algorithm 1

Algorithm 1 summarizes the steps for variable selection with
random nuisance columns.
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Remarks

• A larger q indicates the researcher prefers lower false discovery
of inactive inputs, however, it increases the chance that some
weakly active inputs are determined to be inactive. From the
empirical results, an intuitive explanation of the threshold is
to consider (100− q)% as the maximum false discovery rate.

• As for the number of iterations M, a larger value is always
preferred since more iterations of augmentation can average
down the effect of the nuisance columns.

• However, M is restricted by the computational power and
computing time. By our empirical experiments, it turns out
that in general M = 20 iterations are enough for identifying
active features accurately.
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Algorithm 2

• We also propose to conduct principal component analysis
(PCA) on design matrix X and use the last few PCA
transformed columns as the nuisance columns for variable
selection.

• The first few principle components explain most of the
variance in the data, while the last few PCA transformed
columns are often considered nuisance.

• PCA is an orthogonal linear transformation such that
transformed data are uncorrelated, thus we can ensure that
the added column in each iteration is uncorrelated to others.
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Algorithm 2

Algorithm 2 summarizes the steps for variable selection with PCA
transformed Columns.
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Remarks

• When the sample size is small but the dimension is relatively
high, the Algorithm 2 often outperforms the Algorithm 1.

• However, when the dimension of data is relatively low, the
Algorithm 2 is not recommended since the last few PCA
transformed columns are likely to be correlated to the original
X and the value of M is limited.
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Simulation: Binary Response Variable

• The design matrix X of this example is generated by drawing
a 500× 56 matrix (i.e., n = 500,K = 56) of standard normal
variables.

• The latent probability of the dependent variables is
determined by

E(yi|xi) = µi = g−1(xi,1 − xi,2 − 1
2xi,3 +

1
4xi,4 +

1
8xi,5 +

1
16xi,6), i = 1, . . . , 500,

(7)
• The format of the linear function is designed to test the

sensitivity of the algorithms. The elements with smaller
magnitude of coefficient tend to be less active.
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Power of Priors

• The simulation is repeated 50 times with different exponential
priors on the inverse length-scales to check the power of the
regularization of the exponential prior using Algorithm 1.

• We also run the algorithms without regularization (i.e., no
prior on inverse length-scales) to show the importance of the
proposed exponential priors.
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Power of Priors

• The variable selection algorithm is not able to detect the active
features when no regularization is assigned. Instead, with the
proposed exponential prior, the algorithm can work very well.

• By increasing the rate parameter τ for the exponential prior, the
degree of penalty increases.

• The false discovery rate decreases as the rate parameter for the
exponential prior increases. However, the weakly active features are
less likely to be detected if the penalty is too large.

Threshold Prior Discovery Rate
Inactive Features x1 x2 x3 x4 x5 x6

α80

No Prior 0.17 0.14 0.26 0.12 0.12 0.18 0.18
Exp(1) 0.10 1 1 0.94 0.62 0.20 0.04
Exp(2) 0.06 1 1 0.96 0.72 0.22 0.04
Exp(4) 0.05 1 1 0.98 0.68 0.24 0.04
Exp(10) 0.03 1 1 0.96 0.58 0.18 0.02

Dipak Dey, Zhiyong Hu UCONN
Generalized Variable Selection Algorithms for Gaussian Process Models by LASSO-like Penalty 24 / 46



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Simulation: Binary Response Variable
• The following table shows the discovery rate of the actual active or

weakly active features x1, . . . , x6 and all other 50 inactive features
using the Exp(4) prior for inverse length-scales under different
thresholds.

• Both algorithms can easily identify the first 3 strongly active
features. Algorithm 2 performs slightly better on identifying the 4th
feature. Although the 5th feature that has small coefficient is hard
to be detected, it is still identified more often than the absolutely
inactive features. As for the 6th feature, since its coefficient is too
small the algorithm considers it as inactive.

Threshold Algorithm Discovery Rate
Inactive Features x1 x2 x3 x4 x5 x6

α60
Random 0.35 1 1 1 0.86 0.58 0.22

PCA 0.38 1 1 1 0.94 0.62 0.16

α80
Random 0.05 1 1 0.98 0.68 0.24 0.04

PCA 0.08 1 1 0.96 0.72 0.28 0.06

α90
Random 0.01 1 1 0.92 0.48 0.12 0.02

PCA 0.01 1 1 0.90 0.50 0.14 0.02
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Simulation: Binary Response Variable
The following figure shows the Box-plots of the first 10 features of L in
one repetition of simulations, while other 46 features are ignored due to
the limited space. The first 2 features are most active, thus their boxes
locate above all others obviously. As the magnitude of the 3rd to 5th
features’ coefficients decreases, the corresponding boxes locate lower and
lower. As for the 6th feature, it is similar to those of inactive features as
its coefficient is too small.

Dipak Dey, Zhiyong Hu UCONN
Generalized Variable Selection Algorithms for Gaussian Process Models by LASSO-like Penalty 26 / 46



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Correlated Predictors

• Following the design of correlated features in
[Barber and Candès, 2015], each row of the design matrix is
drawn from a N (0,Θ) distribution, where Θi,i = 1 for all i and
Θi,j = 0.3 for all i ̸= j.

• The following table shows the discovery rate of the features
using the Exp(2) prior for inverse length-scales when all
features are correlated, under different thresholds of Algorithm
2. The performance of the proposed algorithm is only
degraded on the weakly active features.

Threshold Discovery Rate
Inactive Features x1 x2 x3 x4 x5 x6

α60 0.37 1 1 1 0.94 0.58 0.26
α80 0.07 1 1 1 0.64 0.12 0.08
α90 0.02 1 1 0.98 0.42 0.06 0.02
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Simulation: Normal Response Variable

• The design matrix X of this example is generated by drawing
a 500× 54 matrix (i.e., n = 500,K = 54) of standard normal
variables.

• The mean of the dependent variables is determined by

E(yi|xi) = µi = sin xi,1 +
3
2 cos xi,2 + 2 sin xi,3 +

5
2 cos xi,4, i = 1, . . . , 500,

(8)
where the dependent variable yi is sampled from N (µi, 1).

• In this example, a more complex non-linear latent probability
function is considered.
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Simulation: Normal Response Variable

Again, the simulation is repeated 50 times. the following table shows the
discovery rate of the active features x1, . . . , x4, and the inactive features
from SSVGP and Algorithm 2 with Exp(2) prior for inverse length-scales.
From the results, our proposed method can achieve even better
performance than SSVGP by selecting an optimal threshold.

Prior Algorithm Discovery Rate
Inactive Features x1 x2 x3 x4

SSVGP 0.09 1 0.98 1 0.98

Exp(2) Algorithm 2 with α80 0.16 1 1 1 1
Algorithm 2 with α90 0.04 1 1 1 1
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Application to Electroencephalography Data

• An application to multi-subject electroencephalography (EEG)
data that studies alcoholic levels of experimental subjects is
conducted.

• Clinically, EEG refers to the recording of the brain’s
spontaneous electrical activity over a period of time, as
recorded from multiple electrodes placed on the scalp.

• The EEG data is usually a 3-dimensional tensor that has
dimension of n × K × t, where n, K and t are the number of
experimental subjects, the number of electrodes (locations)
and the number of time points respectively.

• The data used in our work is from an experiment on studying
the EEG correlates of genetic predisposition to alcoholism (see
[Hu and Allen, 2015] and [Mohammed et al., 2019]) with
dimension 122× 57× 256 (i.e., n = 122,K = 57, t = 256).
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Electroencephalography Data

• The experimental subjects are divided into two groups with 77
subjects in the alcoholic group and the other 45 subjects in
the control group.

• During the experiment, stimulus was applied to each subject
and the electrical activity is recorded.

• The target is to predict the alcoholic status (binary) of the
subject given the EEG records.
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Electroencephalography Data

• Since the number of features 57× 256 is extremely high, it is
not suitable to use the general GLM in this case.

• We adopt the local aggregate modeling approach proposed by
[Mohammed et al., 2019] that fits a local model at each time
point separately.

• The complexity of brain activities is well-known, and it
surpasses what linear latent functions can represent. Thus,
Gaussian process models are considered more suitable for
capturing this level of complexity.
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Variable Selection

• At each time point, given the 122× 57 design matrix, a
Gaussian process model is fitted as the local model.

• However, at a particular time point it is clear that not all the
regions of brain are activated. Learning which regions of brain
are correlated with the stimulus is also a crucial topic.

• In addition to the local Gaussian process model (LGP),
variable selection is also conducted to find the active locations
at each time point using the proposed algorithms.

• For notational simplicity, the LGP incorporated with
Algorithm 1 is denoted as LGP.1, while the LGP incorporated
with Algorithm 2 is denoted as LGP.2.
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Setups

• Both LGP.1 and LGP.2 use Exp(2) prior for the inverse
length-scales.

• We predict the alcoholic status using each local model and
record the responses sequentially through all time points.
Thus, for each individual, we will have a binary prediction
vector with length 256. As suggested in
[Mohammed et al., 2019], we predict the subject level
responses as the class indicator with the longest length of run.

• [Mohammed et al., 2019] proposed a local Bayesian model
(LBM) with independent spike-and-slab prior for this problem.
[Mohammed et al., 2020] then update the LBM using
structured spike-and-slab prior that utilizes spatial
information. The results from these two methods are also
included for comparison.
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Prediction Accuracy
• The following table shows the average prediction accuracy and

standard error across multiple 5-fold cross-validations for the EEG
data using different methods.

• It is easy to see that the LGP methods are more accurate than the
LBM methods.

• The standard errors of LGP methods are also lower than LBM,
which suggests our proposed models are more stable.

• As for the comparison among LGP methods, the LGP.2 shows
higher accuracy in prediction with lower standard errors.

Method Accuracy Std. Err.
LBM (Independent) 0.701 0.040
LBM (Structured) 0.717 0.029

LGP.1 with α50 0.734 0.021
LGP.1 with α55 0.727 0.024
LGP.2 with α50 0.746 0.018
LGP.2 with α55 0.729 0.012
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Remarks

• Unlike the simulation experiments that have known highly
active features, a threshold larger than α60 would over-sparsify
the models for the EEG data, resulting poor estimations.

• Though the prediction accuracy using threshold α55 is slightly
lower compared to α50, it provides more reasonably sparse
models. Therefore, we discuss the LGP models with α55 in
the remaining part.

• Besides the prediction accuracy, identifying locations of brain
that are correlated with the stimulus is also of interest.
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EEG Activated Regions
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Findings

• The activated locations tend to stay active for a long time,
which suggests the particular regions of brain are reacting to
the stimulus consistently.

• The identified active regions of both methods are consistent
across different folds of subjects.

• Although the detected active location sets of Algorithm 2 are
more sparse, the major part of the selected locations is quite
similar, showing that both algorithms can identify the active
regions consistently.
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Summary

• This work introduces two variable selection algorithms for
Gaussian process models, which use artificial nuisance
columns as baseline for identifying the active features.

• We also propose to use inverse-RBF kernel and regularizing
exponential prior on inverse length-scale parameters.

• The simulation experiments and application to EEG data
demonstrate the performance of the proposed algorithms. In
particular, the Algorithm 2 shows promising capability of
identifying sparse active features while keeping the important
information from the EEG data.
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Simulation 2: Binary Response Variable

• The design matrix X of this example is generated by drawing
a 500× 54 matrix (i.e., n = 500,K = 54) of standard normal
variables.

• The latent probability of the dependent variables is
determined by

E(yi|xi) = µi = g−1(sin xi,1 +
3
2 cos xi,2 + 2 sin xi,3 +

5
2 cos xi,4), i = 1, . . . , 500,

(9)
• In this example, a more complex non-linear latent probability

function is considered.
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Simulation 2: Binary Response Variable

Both algorithms can successfully detect the active features at most of the
times. The Exp(2) prior works better than the other one, suggesting that
a better choice of prior on inverse length-scales can lead to better
variable selection.

Prior Threshold Algorithm Discovery Rate
Inactive Features x1 x2 x3 x4

Exp(2)

α60
Random 0.33 0.88 0.98 1 1

PCA 0.37 0.90 1 1 1
α80

Random 0.06 0.82 0.94 1 1
PCA 0.07 0.80 0.94 1 1

α90
Random 0.01 0.76 0.90 1 1

PCA 0.01 0.70 0.94 1 1

Exp(4)

α60
Random 0.32 0.86 0.92 1 1

PCA 0.41 0.86 0.92 1 1
α80

Random 0.05 0.80 0.76 1 1
PCA 0.07 0.78 0.78 1 1

α90
Random 0.01 0.74 0.68 1 1

PCA 0.01 0.74 0.68 1 1
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Thanks!
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