EMORY | CBJIS Novel Unsupervised Signal Separation Methods for Complex

ROLLINS Center for Biomedical

FUBTIC | imaging Sttt High-dimensional fMRI Data Decomposition

HEALTH

INTRODUCTION

Blind signhal separation (BSS), also known as blind source
separation, is the separation of a set of source signals from a set
of mixed signals, without the aid of information about the source
signals or the mixing process.

Example: Cocktail party problem
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Independent component analysis (ICA) is a signal processing
method for separating a multivariate signal into additive
subcomponents with the assumption that the subcomponents are
non-Gaussian and are statistically independent.

Specifically, ICA is the most commonly used method in brain
imaging field for identifying the latent brain functional networks
(BFN) based on fMRI data:
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Y(v) =A4AS5S) + e(v).
How to extend ICA to complex group-level study?
« Single ICA + IC Matching
* Temporal-concatenation ICA (TC-GICA)

Hierarchical ICA Framework
Assume we have K fMRI scans, i.e. Y, (v), and covariates x;:

Level 1: Yk(v) — AkSk(v) + ek(v),

Level 2: Sk(v) — SO(U) + bg(k)(v) + ﬁc(k)(v)xk + ek(v).

 Y,.(v):(Tx1)fMRItime series at location v for scan k;

A, (T x q) scan-specific temporal loading matrix;
 S.(v):(gx1)scan-specific latent component at location v ;
* so(v):(gx 1) population-level spatial map at location v ;

* by (v) : (qx1) group-level random effects at location v ;

* Bcuo(w) 1 (qx 1) covariate effects at location v .

Specifically, we set mixture of Gaussian prior on s,(v). With latent state
variable z(v), we have s,(v) = Uy + Y20y, Yz)~N (O, Zz(v)), where z(v)
represents which Gaussian component in MoG that voxel v belongs to.

Hc-ICA (special case for cross-sectional study)
Level 1: Yi(v) = AiSi(U) + e,;(v),
Level 2: Si(v) = SO(U) + bi(v) + ﬁ(v)xl-
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Longitudinal ICA (special case for longitudinal study)
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EM algorithm

conditional expectation of L(v) :

Stochastic EM

Voxel-specificSubspace Construction
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Denote L(v) to contain all latent variables except for where R represents the set of all possible values of
z(v). Conditioned on z(v), we can estimate the z(v),i.e. R = {z"} ™.

BILW) |y(@):;0®] = 3 plz(v) | y(©); 0WEL() | y(v), 2(v); 6], Lln_utatlon: _
A 2(v)er A A This exact EM requires 0(m4) for each voxel for
BIL@)* |y(@):;0®] = 3 plz(v) |y();0PE[L@) | y(v), 2(v); 6] learn the latent structure of z(v), which increases
z(v)ER :
£ pla(o) [ y(0): 6P VarlL(v) | y (), 2(v); 6P, exponentially with the number of ICs.
z(v)ER

We proposed a stochastic EM to adaptively learn the latent structure of z(v) driven by the data to eliminate
the redundant steps in exact EM and reduce the computational complexity.

» Based on current estimation, i.e. §o(v), we classified all voxels for each IC into three
classes: IC region, background region and uncertain region through a pre-specified

decision rule F.

» Finally we can construct a subspace R, for each voxel based on F(8,(Vv)) by
eliminating the original space R.

For example, map each IC element into a m dimensional decision space by:

/
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The decision rule with 2 terms:

F(z1,22;€) = 4

|visit—specific Intercepts:I

(

1, if 21 <0,29 <0 or z; >O,22<0,|21/z2‘ <1-—¢,

2, if 21 > 0,290 > 0o0r z; >0,22<O,|21/Zg‘ > 1+4¢,

where 1: background, 2: IC region, 0: uncertainty region, € € (0,1).

0, otherwise ,
\

» It can be further expressed as:

I High

N=10 0.886 (0.053) 0.621 (0.213)
N=20 0.899 (0.042) 0.691 (0.187)
N=60 0.958 (0.011) 0.856 (0.162)
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» Similar to Shi and Guo (2016), this model can be viewed as a multivariate

Subj-Visit  Subject/Vist-specific time courses

linear model at each voxel, and we proposed a variance estimator as,

Covariate Effects

N=60 1.000 (0.001) 0.957 (0.063)

» Based on the EM algorithm, the unknown parameters in W;(v) can be High
N=10 0.987 (0.019)  0.884 (0.092)
N=20 0.990 (0.014)  0.885 (0.093)

N=60 0.992 (0.007) 0.910 (0.077)

estimated simultaneously,

1 L-ICA TC-GICA L-ICA TC-GICA
. x N Low
Var {C (v)} — (Z X Wi(v)™ X/*) N=10 0.997 (0.004)  0.941 (0.076) 0.152 (0.009)  0.159 (0.068)
. N=20 0.998 (0.003) 0.942 (0.075) 0.093 (0.006) 0.153 (0.063)

0.040 (0.000) 0.128 (0.039)

0.253 (0.015)  0.273 (0.101)
0.187 (0.011)  0.239 (0.086)
0.098 (0.004)  0.192 (0.083)

Wi(v) = U(2z, () + DU + (8% + 72 AA)) Ik,

» After we plug-in this, the final variance estimator for &*(v) is
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Figure 2. Group-level DMN based on LICA

ADNIZ2 is a longitudinal study aiming at
examining changes in neuroimaging with the
progression of mild cognitive impairment
(MCI) and Alzheimer's Disease (AD).

« Longitudinal rs-fMRI images from 51
subjects that were collected at screening, 1
year and 2 year.

« Among 51 subjects, 16 were normal, 17
had EMCI, 12 had LMCI and 6 were
diagnosed with AD at baseline
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Figure 3. P-values on AD vs CN

Summary

1. General hierarchical ICA modeling framework with broad applications.

2: Highly efficient stochastic EM algorithm with space encoding.

3: Approximate inference procedure for covariate effects.

Current / Related Works

 Connectivity ICA for network-valued data analysis;

* Discrete ICA for discrete data analysis;

 Template-driven single scan ICA : a robust estimation;

« Multi-site ICA to account for batch effects
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