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Recurrent Events
Multiple events of the same type for a subject in
longitudinal studies. Examples inlcude:
• seizures in epileptic patients;
• successive tumors in cancer patients.

By the multiplicity nature, a dependence structure
between events is often observed within a subject;
not all dependence is captured by observed covari-
ates, i.e., unobserved heterogeneity between individ-
uals.

The Motivation for
Dynamic Model: Constant

Effect Over Time?
Most models with recurrent events assume constant
effects of covariates, e.g., Andersen and Gill (1982)
and Lin et al. (2000).

In practice, the effects may vary over time. In a
clinical study for AIDS patients, for example,
• a drug may take time to reach its full efficacy,
• the treatment effect may erode over time as drug
resistance develops;

e.g., Eshleman et al. (2001) and Wu et al. (2005).
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Figure: Nonparametric Nelson-Aalen type mean frequency
functions for two treatment arms in the bladder tumor
study (Byar (1980)); and the ratio of these over time

The Proposed Model
To accommodate time-varying effects, we propose
a marginal dynamic regression model to target
the mean frequency of recurrent events,

E(N∗(t)|Z) = µ0(t) exp{b0(t)>Z}
= exp{β0(t)>Z̃}, t ≥ 0.

•N∗(t): the number of events on interval [0, t]
•Z: p-dimensional covariate vector
•µ0(t): unspecified baseline mean frequency
• b0(t): p-dimensional time-varying coefficient

We adopt the conditional independence censoring
assumption on incomplete follow-ups, that is,

N∗(·) ⊥ C | Z.

The Proposed Estimating
Integral Equation

Under the proposed model and the independent cen-
sorship, it follows that

E

Z̃[
N(t)−

∫ t

0
Y (s) d exp{β0(s)>Z̃}

] = 0,

where N(t) = N∗(t ∧ C) and Y (t) = I(C ≥ t).

Therefore we propose an estimating integral equa-
tion, for all t ≥ 0,

n−1
n∑
i=1
Z̃i

Ni(t)−
∫ t

0
Yi(s) d exp{β(s)>Z̃i}

 = 0.

Based on this, β0(·) is sequentially estimated over
ordered observed event times in the sample, cf. Peng
and Huang (2007).

Large Sample Properties
Theorem 1: Uniform Consistency
Under regularity conditions C1–C6,
supt∈[κ,τ ] ‖β̂(t)− β0(t)‖ −→ 0, almost surely.

Theorem 2: Weak Convergence
Under regularity conditions C1–C6,
n1/2{β̂(·)− β0(·)} on (κ, τ ] weakly converges to a
mean-zero Gaussian process.

The Proposed Bootstrap
Inference Procedure

For interval estimation, we propose a multiplier
bootstrap, adapting Rubin (1981); for all t ≥ 0,

n∑
i=1
ξiZ̃i

 dNi(t)− Yi(t) d exp{β(t)>Z̃i}
 = 0.

•{ξi}ni=1: size n random sample from Exp(1)
•β∗(t): the stochastic solution at time t
The 100(1 − α)% confidence interval for β0(t) can
be constructed with the (α/2)th and (1 − α/2)th
quantiles of the empirical distribution for β∗(t).

Simulation Studies
Monte Carlo simulations with various setups demon-
strated the proposed estimator was virtually unbi-
ased and efficient, cp. Fine et al. (2004).

h0(t) = log(t) b0(t) = exp{−t/ exp(1)}
Proposed Method Fine et al. (2004) Proposed Method Fine et al. (2004)

t B SD SE Cov95 B SD SE Cov95 B SD SE Cov95 B SD SE Cov95
Multiplicative unit-mean gamma frailty with variance 1
0.5 -8 240 234 94.5 -11 257 247 93.9 -6 393 380 95.0 -3 421 401 94.0
1.0 -1 209 203 93.7 2 230 229 94.3 -11 350 335 93.0 -23 388 380 93.8
1.5 0 202 194 93.6 -4 256 243 93.1 -11 339 324 93.3 -22 442 405 93.8
2.0 -5 203 194 93.2 -16 301 278 92.6 -6 342 324 92.8 -8 518 469 92.6
2.5 -9 213 199 93.1 -38 424 370 91.4 0 360 333 92.6 -1 725 625 90.0
NOTE: B: empirical bias (×1000); SD: empirical standard deviation (×1000); SE: av-
erage standard error (×1000); Cov95: empirical coverage probability of the Wald 95%
confidence interval (×100). Based on 1,000 Monte Carlo replications.

Application to the
Bladder Tumor Data
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Figure: Estimates for time-varying effects of covariates
and the baseline mean frequency function (blue rugged
lines); with the point-wise 95% bootstrap percentile
confidence intervals (dashed lines).

Remarks
•We propose a marginal model on mean
frequency of recurrent events, accommodating
dynamic effects of covariates, cf. the
proportional means model of Lin et al. (2000);

• It is a global model over time for evolving
effects of covariates, which facilitates efficient
estimation, cf. Fine et al. (2004)’s local model.

•Consistency and weak convergence of the
proposed estimator are established.

•The proposed nonparametric bootstrap
inference procedure provides confidence band
construction even for an infinite-dimensional
quantity.

•Conducted simulations and two real data
analyses illustrated practical utility of the
proposed method.
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