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ABSTRACT
A new type of experiment that aims to determine the optimal quantities of a sequence of factors is
eliciting considerable attention in medical science, bioengineering, and many other disciplines. Such studies
require the simultaneous optimization of both quantities and sequence orders of several components
which are called quantitative-sequence (QS) factors. Given the large and semi-discrete solution spaces
in such experiments, efficiently identifying optimal or near-optimal solutions by using a small number
of experimental trials is a nontrivial task. To address this challenge, we propose a novel active learning
approach, called QS-learning, to enable effective modeling and efficient optimization for experiments with
QS factors. QS-learning consists of three parts: a novel mapping-based additive Gaussian process (MaGP)
model, an efficient global optimization scheme (QS-EGO), and a new class of optimal designs (QS-design).
The theoretical properties of the proposed method are investigated, and optimization techniques using
analytical gradients are developed. The performance of the proposed method is demonstrated via a real
drug experiment on lymphoma treatment and several simulation studies. Supplementary materials for this
article are available online.
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1. Introduction

In modern scientific areas, nontraditional experiments that con-
sider the quantities and sequences for arranging components,
called quantitative sequence (QS) factors, are being conducted.
For example, both the doses and order-of-addition for multiple
drug components as a combination showed significant impacts
on the efficacy of cancer treatments (Ding et al. 2015; Wang, Xu,
and Ding 2020). In nanocellulose (NC) gel production, a pre-
treatment process involved swelling agents, different acids and
enzymes to release hemicellulose. The sequence in which the
pretreatment components were added, along with their quan-
tities, was to be optimized for the NC size (Bharimalla et al.
2015). In the bio-plastics industry, the order in which the com-
patibilizer and scavenger were mixed with resin, along with their
quantities, can cause a significant difference between catfish
algae plastic and Solix microalgae plastic. Such QS factors are
also used in physical or simulation experiments (a.k.a. computer
experiments) in biochemistry (Shinohara and Ogawa 1998),
food science (Jourdain et al. 2009) and management science
(Panwalkar, Dudek, and Smith 1973).

To illustrate the characteristics of experiments with QS fac-
tors, Table 1 presents three runs from an in vitro drug combina-
tion experiment (Wang, Xu, and Ding 2020). Three antitumor
drugs (A, B, and C) were added every 6 hr in a sequence at
different doses. The percentage of tumor inhibition was mea-
sured as the response 6 hr after administering the last drug. As
indicated in Table 1, different drug doses (comparing Runs 1
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and 2) and sequences of adding drugs (comparing Runs 1 and
3) lead to varying responses. Thus, to identify the best drug
combination, the doses and sequence for administering drugs
should be optimized simultaneously. Notably, this experiment
is different from crossover trials (Jones and Kenward 2014). A
crossover trial measures all responses after the addition of every
drug, and each drug exerts a fixed effect that may be carried over
to the next period but does not depend on its order-of-addition.
By contrast, only the endpoint efficacy after adding all the drugs
will be measured as the response in a QS experiment, and drug
effects are assumed to be dependent on the order-of-addition.

For experiments with QS factors, one of the key tasks is
finding the optimal settings of quantities and sequences for
arranging components to optimize experimental outcomes. In
the current literature, researchers frequently enumerate all pos-
sible sequences and apply factorial designs to determine the
quantities for each sequence (Wang, Xu, and Ding 2020). How-
ever, when the number of components is moderate or large, such
a strategy may require a prohibitively large number of runs. It
may also miss the optimal setting unless a wide range of levels
is adopted. To the best of our knowledge, very few studies have
been conducted on how to optimize the settings of QS factors
via efficient modeling and experimental design. This problem
is new and challenging, because QS factors are neither purely
continuous nor categorical. To fill this gap, we propose a novel
active learning approach, called QS-learning, which can identify
good solutions by using only a few sequential experimental
trials.
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Table 1. Illustration of drug data involving QS factors.

Run Drug A Drug B Drug C Response
dosage order dosage order dosage order

1 3.75 μM 1 95 nM 2 0.16 μM 3 39.91
2 2.80 μM 1 70 nM 2 0.16 μM 3 30.00
3 3.75 μM 3 95 nM 1 0.16 μM 2 34.68

Active learning has attracted considerable attention in recent
years (Cohn, Ghahramani, and Jordan 1996; Settles 2009; Deng
et al. 2009). It sequentially queries the next data point on the
basis of what it has learned from the current ones. Different
methods for formulating query strategies have been proposed in
the literature, including uncertainty sampling (Lewis and Gale
1994), query-by-committee (Seung, Opper, and Sompolinsky
1992), expected model change (Settles, Craven, and Ray 2007)
and variance reductions (Cohn, Ghahramani, and Jordan 1996).
Refer to Settles (2009) for a survey. From the experimenta-
tion perspective, active learning overlaps with optimal design
(Burnaev and Panov 2015) and Bayesian optimization (Fra-
zier 2018). It allocates runs in an adaptive manner, efficiently
improving the decision for designing the next experimental
trial as more information is acquired over time. Active learning
frequently outperforms one-shot experimental designs for opti-
mization when the solution space is large and complex (Kapoor
et al. 2007; Burnaev and Panov 2015; Frazier 2018). It involves
three major parts: (a) a method for statistical modeling and
inference, (b) optimization of some acquisition functions for
choosing the next design point, and (c) an initial design for
exploring input space. Here, the acquisition function is typi-
cally a function that measures the “utility” of the run that will
be evaluated next. It often considers “exploration/exploitation”
tradeoff, such that balance is achieved between focusing on
alternatives that appear to be good and experimenting with little
known alternatives. Common choices of acquisition functions
include expected improvement (Jones, Schonlau, and Welch
1998), knowledge gradient (Frazier, Powell, and Dayanik 2009),
and entropy search (Hennig and Schuler 2012).

In this work, we propose an active learning approach (QS-
learning) for experiments with QS factors. It includes a novel
mapping-based additive Gaussian process (MaGP) model for
prediction and uncertainty quantification, a sequential scheme
that uses efficient global optimization algorithms (QS-EGO),
and a new class of optimal experimental designs (QS-design)
for collecting initial data points. A flowchart of the proposed
QS-learning method is presented in Figure 1. The proposed
method targets experiments with budget constraints in which
practitioners prefer fewer runs. For cases with large data, we
develop a variant of QS-learning for computational efficiency.

The key contributions of this work are summarized as fol-
lows. First, our proposed MaGP model enables the use of the
Gaussian process (GP) in analyzing quantitative and sequence
factors, providing desirable predictions and uncertainty quan-
tification. Notably, the classic GP method has been widely used
for modeling data with only quantitative factors (Rasmussen
and Williams 2006; Kleijnen 2009). Some recent developments
have enabled it for both quantitative and qualitative factors
(Qian, Wu, and Wu 2008; Deng et al. 2017; Zhang et al. 2019;
Xiao et al. 2021). However, this method cannot be easily adapted

for modeling data with QS factors due to the semi-discrete
nature of sequence input. Second, we develop a new algorithm
(QS-EGO) for efficiently optimizing the expected improvement
(EI) acquisition function (Jones, Schonlau, and Welch 1998),
which is nontrivial for QS factors. To address a complex solution
space with both continuous and semi-discrete characteristics,
the proposed QS-EGO combines a genetic algorithm and a new
space-filling threshold-accepting (SFTA) algorithm. We derive
analytical gradients for model estimation and acquisition func-
tion optimization to facilitate computation. Third, we develop a
new class of optimal designs (QS-designs) for collecting initial
data in the proposed active learning. QS-designs can reduce
the number of required sequential runs while simultaneously
improving performance. New design criteria are established to
search for QS-designs with flexible sizes. We also develop an
algebraic construction for QS-designs with certain sizes and
prove their desirable properties. In the current experimental
design literature, researchers have focused on either quantitative
(Wu and Hamada 2021; Joseph 2016) or sequence (Mee 2020;
Voelkel 2019; Lin and Peng 2019; Yang, Sun, and Xu 2021)
factors, while the proposed QS-designs consider both factors
simultaneously.

The remainder of this article is organized as follows. In
Section 2, we review several related methods in the literature.
In Section 3, we describe the formulation and estimation of the
proposed MaGP model in detail. In In Section 4, we discuss the
proposed sequential scheme along with QS-EGO. In Section 5,
we illustrate the construction of a new class of optimal designs
(i.e., QS-designs). A case study of a drug combination experi-
ment on lymphoma is reported in Section 6, and a simulation
study on the traveling salesman problem (TSP) is presented
in Section 7. We conclude this work with discussions in Sec-
tion 8. All proofs, technical details, convergence results, and
additional numerical studies are included in the supplementary
materials.

2. Brief Literature Review

QS factors are commonly observed in drug combination studies
(Wang, Xu, and Ding 2020). However, conventional methods
often consider only the effects of drug doses (quantitative input),
for example, the Hill model (Chou 2006), polynomial model
(Jaynes et al. 2013), Hill-based model (Ning et al. 2014), and
Kriging or GP model (Xiao, Wang, and Xu 2019). Some recent
studies have shown that if several drugs with fixed doses are
added in desirable sequences, then such drug combinations
will have enhanced efficacy (Ding et al. 2015). To model drug
sequences with fixed doses, two types of linear models are
proposed: the pairwise ordering (PWO) model (Van Nostrand
1995; Voelkel 2019; Mee 2020) and component-position (CP)
model (Yang, Sun, and Xu 2021). We first review the two models
and then generalize them for QS factors.

Let us consider a drug combination experiment with n runs
and k drugs. For its ith run, let xi = (xi,1, . . . , xi,k)

T be a vector
containing the doses of k drugs and αi = (αi,1, . . . , αi,k)

T be a
vector containing the sequence of applying them. For example,
if we add Drug B first, then C and finally A (k = 3), then
the sequence of adding drugs (B, C, A) is represented by the
vector αi = (2, 3, 1)T . In the PWO model, the features of αi
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Figure 1. A flow chart of QS-learning for optimization.

are represented by the precedence patterns between all
(k

2
)

pairs
of drugs. Explicitly, let S be the set of all pairs (p, q) for 1 ≤ p <

q ≤ k and define the PWO indicator between p and q for any
(p, q) ∈ S as

zp,q(αi) =
{

1 if p precedes q in αi,
−1 if q precedes p in αi.

As an illustration, for αi = (2, 3, 1)T , we have S = {(1, 2), (1, 3),
(2, 3)}, z1,2(αi) = −1, z1,3(αi) = −1, and z2,3(αi) = 1.
Based on PWO indicators, the PWO model (Van Nostrand 1995;
Voelkel 2019) is defined as

f (xT
i , αT

i ) = β0 +
∑

(p,q)∈S
zp,q(αi)βp,q + ε, (1)

where the residual ε follows the standard assumptions for linear
models and parameters β can be estimated via the least squares
method. To further capture the two-factor interactions between
PWO indicators, Mee (2020) proposed the triplet PWO model.
In this work, we consider the PWO model, which often suffices
in practice. The triplet PWO model includes as many as 1 + k +
k(k − 1)/2 + k(k − 1)(k − 2)/3 parameters, which often exceed
the total number of runs in sequential experiment considered in
this work.

Another class of linear models is CP model (Yang, Sun, and
Xu 2021), which is defined as

f (xT
i , αT

i ) = β0 +
k−1∑
j=1

k−1∑
c=1

x(j)
i,c βj,c + εi, (2)

where x(j)
i,c equals 1 if αi,j = c and 0 otherwise. That is, x(j)

i,c is
an indicator of whether Drug c is used in the ith run at the
jth position. Simply put, CP is a multivariate linear regression
model treating each position as a factor with k levels.

Both the PWO and CP models in the current literature work
only for sequence factors. In order to establish some benchmark
models, we generalize the PWO and CP models via adding
covariates for quantitative factors (e.g., doses), such that they
can work for QS factors. Both the generalized PWO and CP
models can be represented as

g(xT
i , αT

i ) =
k∑

j=1
β

′
j xi,j + f (xT

i , αT
i ), (3)

where β
′
j denotes the coefficients for quantitative factors, and

f (xT
i , αT

i ) can be either the PWO model in (1) or the CP model
in (2).

Linear models may work well under one-shot experimental
designs for prediction purposes, but they are less popular in
active learning for optimization. Compared with GP models,
linear models often perform worse in uncertainty quantification
(Smith 2013; Burnaev and Panov 2015). The GP model, where
responses are represented by random variables whose probabil-
ity distributions characterize the beliefs of experimenters about
the unknown values, provides a good probabilistic framework
for active learning (Rasmussen and Williams 2006; Kapoor et al.
2007; Frazier 2018). It enables the predictive distribution of the
outcome of the next experiment and the selection of the best one
by maximizing an acquisition function.

3. Mapping Based Additive GP Model

3.1. Model Formulation

Let us consider a QS experiment with n runs and k components
(i.e., c1, c2, . . . , ck), where the ith input is denoted as wi =
(xT

i , oT
i )T and the corresponding output is denoted as yi. Here,

xi = (xi,1, . . . , xi,k)
T is a vector of quantitative values for k

components, and oi = (oi,1, . . . , oi,k)
T is a vector that contains

the orders of components in the arrangement sequence. Notably,
xi,h and oi,h (h = 1, . . . , k and i = 1, . . . , n) are the quantita-
tive and sequence parts of the hth component ch, respectively.
Without loss of generality, we assume that o is a permutation of
the integers 1 to k. As an illustration, the third run in Table 1,
wT

3 = (xT
3 , oT

3 ), has x3 = (3.75, 95, 0.16)T and o3 = (3, 1, 2)T .
The vector o3 represents that Drug A is added in the third place,
B is added in the first place, and C is added in the second place,
that is, B → C → A. Notably, the o defined here contains
the index orders of the corresponding elements in the vector α

defined in Section 2, and they have the same practical meaning.
The order sequence is semi-discrete in nature; hence, the

relationship between output and QS input can be complicated.
To model such data, we consider the adoption of the GP model
because of its flexibility and promising prediction and uncer-
tainty quantification. For an experiment with n runs and k
components, we model the output at w = (xT , oT)T as

Y(w) = μ +
k∑

h=1
Gh(w) + ε, (4)

where G1, . . . , Gk are independent zero-mean GPs with sta-
tionary covariance functions, and ε ∼ N(0, τ 2) is a random
error. The GP component Gh (h = 1, . . . , k) corresponds to
the effect of the hth component ch on the output. For physical
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experiments, we assume homogeneous error variances τ 2 > 0
which may come from measurement errors or some environ-
mental factors. For computer experiments, we take τ 2 = 0,
because computer codes provide deterministic output (Fang, Li,
and Sudjianto 2005).

In GP models, distances between pairs of input are used to
measure their similarities when formulating covariance func-
tions. For the hth (h = 1, . . . , k) component, its sequence
input oi,h (for any i = 1, . . . , n) is ordinal. Thus, a distance
measure should be specified for sequence input to form the
covariance function in the GP component Gh. To address this
challenge, we consider mapping the order oi,h (oi,h ∈ {1, . . . , k})
to a t-dimensional latent vector (̃o(1)

i,h , . . . , õ(t)
i,h ). Given that the

sequence input o is an assignment of k components to k “fixed”
order positions, we should use the same mapping for all compo-
nents c1, . . . , ck (corresponding to GP components G1, . . . , Gk,
respectively) to quantify the effects of fixed order positions via
latent variables. In particular, the t-dimensional mapping (t =
1, . . . , k − 1) for the order of any component is defined as

c1, . . . , ck⎡⎢⎢⎣
⎤⎥⎥⎦

1
2
...
k

→

⎡⎢⎢⎢⎢⎣

õ(1) õ(2) ... õ(t)

δ
(1)
1 δ

(2)
1 . . . δ

(t)
1

δ
(1)
2 δ

(2)
2 . . . δ

(t)
2

...
...

...
...

δ
(1)

k δ
(2)

k . . . δ
(t)
k

⎤⎥⎥⎥⎥⎦
k×t

, (5)

where δ
(j)
l = 0 for all j ≥ l to avoid over-parameterization. The

interactions among different levels (i.e., orders) can be reflected
by the mapping parameters in (5), which are estimated from the
data. As all components use the same mapping, the total number
of mapping parameters is t(t + 1)/2 + (k − t − 1)t. Specifically,
when t = k−1, we call it full mapping with a total of k(k−1)/2
mapping parameters. When t = 2, we call it 2d-mapping, which
has (2k − 3) mapping parameters.

Example 1. For illustration, consider a QS experiment to find
the optimal sequence and quantity to add for k = 4 opera-
tions in a single production line with four fixed locations to be
assigned with different operations. We use the same mapping for
all four operations (c1, c2, c3, c4), which quantifies the effects due
to locations (i.e., position orders) to be assigned with operations:

full mapping
c1, c2, c3, c4⎡⎢⎣

⎤⎥⎦
order 1
order 2
order 3
order 4

→
⎡⎢⎢⎢⎣

õ(1) õ(2) õ(3)

0 0 0
δ
(1)
2 0 0

δ
(1)
3 δ

(2)
3 0

δ
(1)
4 δ

(2)
4 δ

(3)
4

⎤⎥⎥⎥⎦ ,

2d-mapping
c1, c2, c3, c4⎡⎢⎣

⎤⎥⎦
order 1
order 2
order 3
order 4

→
⎡⎢⎢⎢⎣

õ(1) õ(2)

0 0
δ
(1)
2 0

δ
(1)
3 δ

(2)
3

δ
(1)
4 δ

(2)
4

⎤⎥⎥⎥⎦ ,

where δ
(j)
l (j < l) denotes parameters to be estimated via maxi-

mum likelihood estimation (MLE).

The prespecified tuning parameter t (t ∈ {1, . . . , k−1}) con-
trols the flexibility of defining similarities between pairs of order
positions. Under full mapping (t = k−1), all pairwise distances
between order positions can be independently determined.
Then, all possible patterns in defining similarities between
sequence input can be captured. By contrast, under 1d-mapping
(t = 1), the mapping in (5) is simplified as order 1 → 0,
order 2 → δ1, . . . , order k → δk−1, or equivalently order 1 →
0, order 2 → δ

′
1, order 3 → δ

′
1 + δ

′
2, . . . , order k → ∑k−1

i=1 δ
′
i .

Evidently, only the distances between adjacent order positions
are independently determined here. For example, when t = 1,
the distance between orders 1 and 3 (determined via δ

′
1 + δ

′
2) is

dependent on the distance between orders 1 and 2 (determined
via δ

′
1) and the distance between orders 2 and 3 (determined

via δ
′
2). Such restrictive mapping works for cases where only

adjacent orders interact with one another. In this work, we
consider t ≥ 2 to allow a more general pattern of interactions.

An appropriate choice of t provides a tradeoff between model
flexibility and computational cost. When many components
are involved (i.e., large k), low-dimensional mapping (e.g., 2d-
mapping) is often a good choice. It will considerably reduce the
number of parameters in the MaGP model, facilitating model
estimation in practice. In 2d-mapping, any pairwise distance
between order positions can be partially (not fully) determined
by other pairwise distances. Thus, this type of mapping can pro-
vide certain flexibility to capturing possible patterns for defining
similarities between sequence input.

In the ith run wi = (xT
i , oT

i )T , the elements that correspond
to the hth component ch are (xi,h, oi,h), where i = 1, . . . , n
and h = 1, . . . , k. From the mapping in (5), we define the
distance between the ith and jth runs that correspond to the hth
component ch under the L2 norm as

d(h)
i,j = ||(xi,h, oi,h) − (xj,h, oj,h)||

=
√√√√θh(xi,h − xj,h)2 +

t∑
l=1

(̃o(l)
i,h − õ(l)

j,h)
2, (6)

where θh is the correlation parameter that scales the quantitative
input of ch. Here, the t-dimensional latent vectors (̃o(1)

i,h , . . . , õ(t)
i,h )

and (̃o(1)

j,h , . . . , õ(t)
j,h ) correspond to the orders oi,h in wi and oj,h in

wj, respectively, and their values are determined by the mapping
parameters in (5) (denoted as δ). Notably, there is no need
to include any correlation parameters to scale latent vectors,
because the mapping parameters (δ) are estimated from the
data.

Subsequently, we can describe the proposed covariance func-
tion for the hth GP component Gh (h = 1, . . . , k) in (4) as

φh(wi, wj|σ 2
h , θh, δ) = φh((xi,h, oi,h), (xj,h, oj,h)|σ 2

h , θh, δ)

= σ 2
h K(d(h)

i,j ), (7)

where σ 2
h is the variance parameter corresponding to the hth

component ch, and K(·) is any valid kernel function. Popular
kernels include the Matern class with a smoothness parameter
ν ∈ (0, ∞),

K(d(h)
i,j ) = 21−ν

�(ν)
(
√

2νd(h)
i,j )νkν(

√
2νd(h)

i,j ), (8)
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where kν is a modified Bessel function of the second kind.
Specifically, we focus on the case of ν → ∞, that is, the Gaussian
kernel, in this work:

K(d(h)
i,j ) = exp(−(d(h)

i,j )2). (9)

In (9), we remove a constant multiplier of 1/2 in the exponent
for re-parameterization.

By (4), (5), (6), (7), and (9), for any two input wi and wj, the
covariance function for the MaGP model in (4) can be specified
by:

φ(wi, wj) = cov(Y(wi), Y(wj))

=
k∑

h=1
φh(wi, wj|σ 2

h , θ(h), δ) + τ 21(wi = wj)

=
k∑

h=1
σ 2

h exp
{− θh(xi,h − xj,h)

2 −
t∑

l=1
(̃o(l)

i,h − õ(l)
j,h)

2}
+τ 21(wi = wj), (10)

where τ 2 � 0, and 1(·) is an indicator function. Here, the
variance parameter σ 2

h corresponds to the effect of the hth com-
ponent, and τ 2 is the variance of the error term ε ∼ N(0, τ 2)
in (4). This covariance function combines different dimensions
via addition, and the quantity part and sequence part in each
dimension via multiplication. It cannot be decomposed into the
sum or product of a covariance for purely quantitative factors
and a covariance for purely sequence factors. Thus, it is not the
separable covariance function as defined in Gneiting (2002).

Given the noise variance τ 2, the MaGP model with the
covariance function in (10) includes npar = 1 + 2k + kt − t(t +
1)/2 parameters. Specifically, the full-MaGP (t = k−1) and the
2d-MaGP (t = 2) include 1+k(k+3)/2 and 4k−2 parameters,
respectively.

Theorem 1. Given n input wi = (xT
i , oT

i )T (i = 1, . . . , n), the
covariance matrix of outputs y = (Y(w1), . . . , Y(wn))T induced
by the covariance function in (10) is positive semidefinite.

Theorem 1 holds for any w1, . . . , wn, including duplicated
input, and τ 2 can be 0. For appropriate model inference, cov(y)
must be positive definite, and the following two corollaries shed
some light on this aspect.

Corollary 1. Given n input and the noise variance τ 2 > 0, the
covariance matrix Cov(y) induced by the covariance function in
(10) is positive definite.

Corollary 2. When the noise variance τ 2 = 0, if no two runs
have the same quantitative input (i.e., xi 
= xj for i 
= j), then the
covariance matrix cov(y) induced by the covariance function in
(10) is positive definite.

Corollary 1 guarantees the validity of the covariance matrix
for modeling physical experiments. For modeling computer
experiments, if Latin hypercube designs (Lin and Tang 2015),
orthogonal arrays (Hedayat, Sloane, and Stufken 1999), or
space-filling designs (Wang, Xiao, and Xu 2018) are used as
the quantitative parts of design matrices (where all xi 
= xj for
i 
= j), then the covariance matrices in the proposed model

are positive definite by Corollary 2. In Section 5, we propose
a new class of optimal designs for QS factors that satisfies the
requirements in Corollary 2 and has more attractive properties.
Notably, if two runs have the same quantitative part but different
sequence parts, then we need to set δ

(l−1)

l 
= 0 for l = 2, . . . , k
in the model estimation to guarantee that the covariance matrix
is positive definite.

Notably, the warping technique in the literature (Snelson,
Ghahramani, and Rasmussen 2004; Xiao and Xu 2021) can be
used for ordinal factors, where an ordinal input oi,h is mapped
to a quantitative input f (oi,h) via a certain transformation func-
tion fh(·). Evidently, such a technique is a special case of, and
thus, more restrictive than the 1d-mapping used in the current
work. The warping technique frequently considers the case of
independent ordinal factors. However, the sequence factors in
QS experiments are not independent, because they are required
to form sequence input (i.e., permutations of 1, . . . , k). Zhang
et al. (2019) considered a latent approach for mapping quali-
tative input to some quantitative vectors in GP. Their method
differs from the proposed MaGP in at least two aspects. First,
they considered a single GP with a multiplicative covariance
structure wherein a single variance parameter is adopted. Such
a model structure may not distinguish the specific effects of
different qualitative factors. By contrast, the MaGP model con-
siders additive GPs, wherein each GP component has a specific
variance parameter that measures the effect of each component.
Second, Zhang et al. (2019) set different mapping matrices for
various qualitative factors. While, the MaGP model adopts the
same mapping for all components, because the order sequence
is an assignment of k components to k “fixed” order positions.

3.2. Model Estimation

For parameter estimation, the proposed MaGP model in (4)
with the covariance function in (10) contains parameters μ,
σ 2 = (σ 2

1 , . . . , σ 2
k )T , θ = (θ1, . . . , θk)

T , δ = (δ
(1)
2 , . . . , δ(t)

k )T ,
and τ 2. These parameters can be estimated via the likeli-
hood function. The covariance matrix is denoted by � =
�(σ 2, θ , δ, τ 2) = (φ(wi, wj))n×n, which follows the covariance
function in (7). With some simple algebra, the negative log-
likelihood function can be expressed as (up to a constant)

log|�| + (y − μ1)T�−1(y − μ1), (11)

where the response vector y = (Y(w1), . . . , Y(wn))T , and 1 is
an n × 1 column vector of all 1s. For given σ 2, θ , δ, and τ 2, the
MLE of μ can be obtained explicitly as

μ̂ = (1T�−11)−11T�−1y. (12)

By substituting (12) into (11), the estimation of σ 2, θ , δ, and τ 2

can be obtained by

[σ 2, θ , δ, τ 2] = argmin
{

log |�| + (yT�−1y)
− (1T�−11)−1(1T�−1y)2} . (13)

This minimization problem can be solved using some stan-
dard nonlinear optimization algorithms in Matlab or R. Dif-
ferent algorithms or the same algorithm with different ini-
tializations may lead to different parameter estimates (Erick-
son, Ankenman, and Sanchez 2018). In the current work, we
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adopt the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm with random initialization (Liu and Nocedal 1989). It
is a popular method for estimating GP models. It determines
descent direction by preconditioning the gradient with curva-
ture information. Numerical gradients can be used, but they are
approximate and are expensive to compute. In the current study,
we derive analytical gradients to facilitate fast and exact compu-
tation. We report all analytical gradients and the implementa-
tion of the optimization algorithm in supplementary materials
Sections S1.2 and S3.1, respectively.

Given all the estimated parameters, the prediction mean and
variance of the response at the target input w∗ are given by

Ŷ(w∗) = μ̂ + γ T�−1(y − μ̂1), (14)

s2(w∗) = φ(w∗, w∗) − γ T�−1γ + (1 − 1T�−1γ )2

(1T�−11)
. (15)

Here, γ is the covariance vector (φ
′
(w∗, wi))n×1, where

φ
′
(w∗, wi) = ∑k

h=1 σ 2
h exp

{ − θh(xi,h − x∗,h)
2 −∑t

l=1(̃o(l)
i,h −

õ(l)
∗,h)

2}. Notably, the estimators in (14) and (15) are commonly
used in the literature (Rasmussen and Williams 2006; Kleijnen
2009; Gramacy 2020). For an unbiased small-sample estimator
of s2(w∗), refer to Mehdad and Kleijnen (2015).

For computer experiments with τ 2 = 0, when w∗ is the
ith observed input wi, γ T is the ith row in �, and γ T�−1 is
a row vector with the ith entry being 1 and the others being 0.
Evidently, Ŷ(w∗) = Ŷ(wi) = yi, and thus (15) yields s2(w∗) =
0. Therefore, the interpolation property holds. Note that if � is
ill-conditioned, then a nugget (or noise) effect may be added,
and the interpolation property may not hold; refer to Gramacy
and Lee (2012) for details. For physical experiments, the inter-
polation property does not hold due to the presence of random
errors ε in (4). In practice, when no replicates are included
in physical experiments, the homogeneous noise variance τ 2

of random errors ε is often prespecified according to known
background information, and different small τ 2 values may not
lead to a significant difference in prediction (Xiao, Wang, and
Xu 2019). When replicates are included, τ 2 should be estimated
via MLE as shown in (13). For some basic derivations of GP
model estimation, refer to Rasmussen and Williams (2006) and
Roustant, Ginsbourger, and Deville (2012) for a survey.

4. Active Learning for Experiments with QS Factors

In this section, we first introduce a general active learning
scheme for experiments with QS factors and then discuss its
variant for computational scalability. Given the large and semi-
discrete input spaces in such experiments, adapting existing
methods for optimization is nontrivial. This issue motivates us
to develop a tailored new optimization algorithm.

4.1. EI Optimization with QS Factors

In experimentation, active learning has received considerable
attention since the expected improvement (EI) framework,
which works for quantitative factors, was proposed by Jones,
Schonlau, and Welch (1998). In this section, we adapt the EI
acquisition function to work with QS factors and develop an

efficient global optimization algorithm (QS-EGO). This new
algorithm adopts the proposed MaGP as the probabilistic model
for the input–output relationship, under which we derive the
analytical gradients for optimizing EI.

Without loss of generality, we focus on finding the optimal
solution w to minimize the “black-box” objective function y(w)

in either physical or computer experiments. Notably, any max-
imization problem can be viewed as a minimization problem
to the negative objective function −y(w). Let the improvement
function be I(w) = (y(n)

min − y(w))+ for an input w, where
a+ = max(a, 0) indicates the nonnegative part of a, and y(n)

min
is the minimum response of the n current observations. EI is
defined as E[I(w)] = ∫

I(w)fn(y|w)dy, where fn(y|w) is the
probability density function of the predictive distribution given
by the MaGP model based on the n current observations. EI at
input w = (xT , oT)T can be expressed in closed form as

EI = E[I(w)] = (y(n)
min − Ŷ(w))�

(
y(n)

min − Ŷ(w)

s(w)

)

+ s(w)ϕ

(
y(n)

min − Ŷ(w)

s(w)

)
, (16)

where �(·) and ϕ(·) denote the cumulative distribution func-
tion and probability density function of the standard normal
distribution, respectively. The prediction mean Ŷ(w) and its
standard error s(w) = √

s2(w) are provided in (14) and (15),
respectively. EI inherits a tradeoff between exploitation and
exploration (Jones, Schonlau, and Welch 1998). The first term in
(16) is maximized by the experimental point having the smallest
mean value, and thus, it can be interpreted as the exploitation
part. Meanwhile, the second term is maximized by the unex-
plored point having the largest uncertainty, and thus, it can be
interpreted as the exploration part.

As shown in Figure 1, the workflow of QS-learning includes
the following four steps.

1. Construct an optimal initial design for QS factors with n0
runs w1, . . . , wn0 . Compute (or simulate) their responses as
y1, . . . , yn0 . Then, fit the MaGP model based on these obser-
vations. Set n = n0.

2. Select the next design point wn+1 that maximizes the EI
acquisition function in (16) by using the QS-EGO (shown as
Algorithm 1), and then compute (or simulate) its response as
yn+1.

3. Re-fit the MaGP model based on observations (w1, y1), . . . ,
(wn+1, yn+1). Set n = n + 1.

4. Repeat Steps 2 and 3 until the stopping criterion is satisfied.

In Step 2, when the number of components k is small, we
can enumerate k! sequences (possibly with parallel computing)
and identify the optimal x given each sequence o that can maxi-
mize the EI function. For a large k, such an enumeration may
become prohibitively time-consuming. To address this chal-
lenge, we propose to iteratively optimize quantitative input x and
sequence input o given the other, as summarized in Algorithm 1.
In both the four-step QS-learning and Algorithm 1, we adopt the
stopping criterion used in Jones, Schonlau, and Welch (1998),
that is, that the algorithm stops when three consecutive EIs do
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Algorithm 1 An efficient optimization of EI for QS factors (QS-
EGO)

Initialize the maximum number of rounds Nround.
Initialize the current input wc = (xc, oc). Set the current
optimal input wopt = wc.
Initialize an empty vector ei and a scalar eiopt = 0.
for i = 1 to Nround do

1. Given oc, find the quantitative input x that maximizes
EI via a genetic optimization algorithm. Set xc = x.
2. Given xc, find the sequence input o that maximizes EI
via the SFTA method in Algorithm 2. Set oc = o.
3. Set wc = (xc, oc) and evaluate E[I(wc)] defined in (16).

if E[I(wc)] > eiopt,
then set eiopt = E[I(wc)] and wopt = wc.

Set ei[i] = eiopt, where ei[i] denotes the ith element of ei.

if the stopping criterion is satisfied,
then break.

end for
Return wopt.

not produce more than α (α ∈ [0.1%, 1%]) improvement over
the current best output.

In Algorithm 1, to optimize the quantitative input x given
the sequence input oc, we adopt a BFGS method in a hybrid
genetic optimization algorithm (Mebane, Jr. and Sekhon 2011).
Numerical gradients suffice for small cases, but they can be slow
for large ones. In this study, we derive the analytical gradients
for EI maximization under the proposed MaGP model. These
gradients are exact and fast to compute. See supplementary
materials Section S1.3 for details.

In Algorithm 1, optimizing the sequence input o given the
quantitative input xc is nontrivial, because its solution space
is semi-discrete and can be extremely large. To address this
issue, we propose the so-called space-filling threshold accepting
(SFTA) algorithm for a large k. As detailed in Algorithm 2,
the proposed SFTA algorithm includes two phases. The first
phase seeks space-filling points that are far from one another
to achieve robustness (Johnson, Moore, and Ylvisaker 1990).
The second phase inherits from the classic threshold-accepting
(TA) algorithm (Dueck and Scheuer 1990), which balances
exploration and exploitation.

Specifically, Phase I of SFTA starts from the current optimal
sequence input o0 with the smallest f (o) value in the observed
data, where the objective function f (o) is the negative EI value
for o given x. Then, the algorithm iteratively accepts a random
sequence oi (i = 1, . . . , n(1)) for evaluation with probability
P(oi) = Hmin(oi)/k, where Hmin(oi) is the minimum pair-
wise Hamming distance between the sequence vector oi and all
observed sequence vectors o1, . . . , oi−1. The Hamming distance
is the number of positions at which corresponding symbols are
different in two vectors. If a candidate oi is far from the observed
o1, . . . , oi−1 under the Hamming distance, then it has a high
probability of being included for evaluation. Phase II of SFTA
starts from the optimal solution oc = oopt with the smallest f (o)

value in Phase I. We define the neighbor solution as N(oc) by
randomly exchanging two elements of the sequence vector oc

Algorithm 2 SFTA algorithm for optimizing o given xc

Initialize n(1)
step (number of steps) in SFTA Phase I.

Initialize nseq (number of iterations to compute the thresh-
old sequence), nrounds (number of rounds), and n(2)

steps (num-
ber of steps) in SFTA Phase II.
Initialize a starting solution o0, set current optimal oopt =
o0, and let Oobs = [oT

0 ]T .
while i � n(1)

step do
Generate a random sequence oi.
if Hmin(oi, Oobs)/k > ε (ε is drawn from Unif(0,1)),

then let i = i + 1, Oobs = [Oobs, oT
i ]T , and δ = f (oi) −

f (oopt),
if δ < 0, then let oopt = oi.

end while
Set the current solution oc = oopt.
for j = 1 to nseq do

Generate a neighbor solution N(oc), and let �j = |f (oc)−
f (N(oc))|.

end for
Compute the empirical distribution of �j , j =
1, 2, . . . , nseq, denoted as F.
for r = 1 to nrounds do

Generate threshold τr = F−1 (0.5(1 − r/nrounds))

for i = 1 to n(2)
steps do

Generate a neighbor solution N(oc), and let δ =
f (N(oc)) − f (oc).
if δ < τr , then let oc = N(oc).
if f (oc) < f (oopt), then let oopt = oc.

end for
end for
Return ostep.

(current solution). Evidently, all possible N(oc)’s have a Ham-
ming distance of 2 with oc. The threshold values for accepting
neighbor solutions are generated by empirical distributions of
increments (denoted as F) for the objective function f ; refer
to Dueck and Scheuer (1990) for details on the calculation
of threshold values. A neighbor solution is more likely to be
accepted early in the search than later in the search, because
threshold values decrease. The SFTA algorithm can avoid being
trapped at local optima and focus more on exploration in the
beginning.

When the number of allowed evaluations is considerably
fewer than the total number of possible sequences, random
initialization (and generation) of neighbor solutions may not
consistently and efficiently explore space. To address this issue,
we adopt space-filling samples in Phase I, which provide a good
initialization for TA global optimization in Phase II. When
parallel computing is available, more than one solution oopt
in Phase I can be selected as multi-starting points. Refer to
supplementary materials Section S3.2 for additional details on
Algorithms 1 and 2.

4.2. Fast QS-Learning for Large Experiments

In most literature on experimentation, the costs for estimat-
ing surrogate models and assessing acquisition functions are
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negligible compared with the costs of conducting experiments
(Frazier 2018; Gramacy 2020). In other cases, experiments may
be executed rapidly, and researchers will need a fast sequential
scheme for a large number of runs (Gramacy 2020).

Classic GP-based active learning approaches have a compu-
tational complexity of O(N4), where N is the total number of
runs. The estimation of GP models in each iteration requires
O(n3) computation, where n is the number of data points used.
Here, we propose a fast variant of QS-learning with O(N3)
computation. Suppose that the total budgets for the number
of runs and computing time are N and T, respectively. The
proposed fast QS-learning approach includes the following four
steps.

1. Construct an optimal initial design for QS factors with n0
runs w1, . . . , wn0 , evaluate their responses y1, . . . , yn0 , and fit
the MaGP model based on these observations. Set n = n0.
Record the time used for fitting the MaGP model as t. Record
the time left from the budget T as T ′ and the number of runs
left from the budget N as N ′ .

2. For the next �N ′ t/T ′ 
 iterations, fix the estimated parameters
of the MaGP model and sequentially select runs based on EI
by using the fast updating technique illustrated below. Set n =
n + �N ′ t/T ′ 
 (�a
 is the largest integer not exceeding a).

3. Refit the MaGP model (including reestimating all parame-
ters) based on observations (w1, y1), . . . , (wn, yn). Update the
time used for fitting the model as t. Record the time left from
the budget as T ′ and the number of runs left from the budget
as N ′ .

4. Repeat Steps 2 and 3 until the stopping criterion is satisfied.

In Step 2, we adopt fast updating of model fit in O(n2)
computing time given all parameters in the MaGP model. Let
�n be the covariance of the n current input. The key is to
update the model when the (n + 1)th data point arrives via
fast calculation of the covariance �n+1 and its inverse �−1

n+1.
Similar to a rank one Sherman–Morrison update (Sherman and
Morrison 1950), we have

�n+1 =
[ ]
�n γ

γ T φ(wn+1, wn+1) ,

�−1
n+1 =

[ ]
�−1

n + ggTv g
gT v−1 ,

where the covariance function φ is defined in (10), the
covariance vector γ = (φ

′
(wn+1, wi))n×1 with φ

′
(wn+1, wi) =∑k

h=1 σ 2
h exp

{−θh(xi,h−xn+1,h)
2−∑t

l=1(̃o(l)
i,h−õ(l)

n+1,h)
2} for i =

1, . . . , n, v = φ(wn+1, wn+1) − γ T�−1γ and g = −v−1�−1
n γ .

Here, the update on the covariance inverse requires O(n2) time,
and thus, the updates to all relevant quantities for each model
fit are of O(n2) (Gramacy 2020). The total cost of updating
with sequential runs from n = n0, . . . , N demands flops in
O(N3). Compared with the general QS-learning that reestimates
parameters for every sequential run, the fast QS-learning
method reestimates them much less frequently, and thus, saves
computations for large experiments. Refer to supplementary
materials Section S3.3 for details on the stopping criterion and
parameter tuning.

Notably, small-sample performance is often more important
and relevant than the convergence rate in experimentation,
because only a small number of trials are frequently allowed in
practice (Fang, Li, and Sudjianto 2005). Asymptotic guarantees
may provide minimal information about the practical effective-
ness of the method (Sutton and Barto 2018). The discussion of
convergence for learning QS experiments is included in Sec-
tion S2 of the supplementary materials.

5. Optimal Initial Designs for QS-Learning

Desirable initial designs are important in active learning. They
may save the total number of runs and lead to better solutions.
In this section, we propose a new class of optimal designs for
QS factors, called QS-design, which exhibits space-filling and
pair-balanced properties. We first propose a general approach
for constructing QS-designs with flexible sizes in Section 5.1,
and then provide a deterministic algebraic construction for QS-
designs with certain sizes in Section 5.2.

5.1. General Construction

The design for QS factors is denoted as D = (X, O) where X is
the quantitative part, and O is the sequence part. Both parts use
components as columns. To construct a desirable design D, we
will first construct a good sequence design O, and then construct
a good quantitative design X in combination with O.

Sequence designs have two equivalent representations: one
with components as columns (denoted as O), and the other with
order positions as columns (denoted as O′). Designs O consist
of runs o defined in Section 3, and designs O′ consist of runs α

defined in Section 2. For illustration, the following two designs
have the same practical meaning:

O =
⎛⎝

A B C
1 2 3
2 1 3
2 3 1

⎞⎠⇔ O
′ =

⎛⎝
1 2 3

A B C
B A C
C A B

⎞⎠.

To identify the optimal sequence design O, we first find the
optimal O′ by minimizing the following νp criterion:

νp =

⎛⎜⎜⎜⎝ρ1

k∑
i=1

k∑
j=1

i 
=j

1
(ti,j + 1)p + ρ2

n∑
i=2

i−1∑
j=1

1
(hi,j + 1)p

⎞⎟⎟⎟⎠
1
p

,

(17)
where ti,j is the number of appearances of the subsequence “(i
j)” in rows of O′ ; hi,j is the Hamming distance between the ith
and jth rows in O′ ; and ρ1, ρ2, and p are tuning parameters.
A design is called pair-balanced if it has the same ti,j value for
all subsequences (i.e., pairs) of (i, j), where we use {1, 2, . . . , }
to denote the levels {A, B, . . .}. A pair-balanced design assigns
equal importance to all pairwise interactions among compo-
nents. It also accounts for different precedence patterns where
pairs (i, j) and (j, i) are different. It is similar to the “balance”
idea in crossover designs (Dean et al. 2015). To find (near)
pair-balanced designs, we propose to maximize designs’ min-
imum ti,j values, which is equivalent to minimizing the term
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∑∑
1/(ti,j+1)p in (17) for a sufficiently large tuning parameter

p. In practice, p = 15 often suffices. In the denominators, we
add 1 to ti,j (and hi,j) to avoid numerical problems when they
are equal to 0.

The term
∑∑

1/(hi,j +1)p in (17) considers designs’ space-
filling properties. Here, we adopt the popular maximin distance
criterion (Johnson, Moore, and Ylvisaker 1990), which seeks to
scatter design points over the experimental domain such that
the minimum pairwise distance between points is maximized.
The Hamming distance is used here because the elements in
O′ are categorical. Analogous to the scalar criterion in Morris
and Mitchell (1995), minimizing the term

∑∑
1/(hi,j + 1)p

is asymptotically equivalent to the maximin Hamming distance
criterion as p goes toward infinity, where p = 15 often suffices. A
space-filling O′ benefits the exploration of the response surface
and is a robust choice for initial points (Frazier 2018). In this
study, we set weights ρ1 = 0.2 and ρ2 = 0.8 in (17) emphasizing
more on the design’s space-filling property.

Example 2. Consider a drug combination experiment consist-
ing of four drug components. Two designs O′

A and O′
B shown

below are compared, and they have the same Hamming distance
structure. Their ti,j pairs are listed in Table 2. Given the pos-
sibility of synergistic or antagonistic interactions between two
drugs, the order in which they are administered is important.
For example, if Drugs A and B exhibit a strong synergistic
effect, then they should be administered in adjacent order. By
contrast, if they exhibit a strong antagonistic effect, then their
order of administration should be well separated in time. Fur-
thermore, drugs may have different (i.e., immediate, delayed,
or cumulative) time course effects (Al-Sallami et al. 2009), and
thus, their precedence patterns matter. For example, consider
that Drugs A and B have a synergistic interaction, where the
effect of A is immediate, whereas the effect of B appears delayed
with respect to the concentration–time profile. In such case, B
should be added before A to maximize the synergistic effect,
because B requires more time to fully exert its work with A.
Evidently, subsequences (A, B) and (B, A) may lead to different
outcomes in this study. Considering all of the above, it is clear
that the pair-balanced design O′

B is better than O′
A, as all possible

adjacent pairs in O′
B appear the same number of times in the

experiment (i.e., all ti,j values are equal). Finally, we should use
OB, the equivalent form of O′

B, to be the sequence part of the
QS-design D.

O
′
A =

⎛⎜⎜⎝
1 2 3 4

A B C D
B C D A
C D A B
D A B C

⎞⎟⎟⎠,

O
′
B =

⎛⎜⎜⎝
1 2 3 4

A B C D
B D A C
C A D B
D C B A

⎞⎟⎟⎠⇔ OB =

⎛⎜⎜⎝
A B C D
1 2 3 4
3 1 4 2
2 4 1 3
4 3 2 1

⎞⎟⎟⎠.

To search for optimal designs O′ , we adopt a standard TA
algorithm (Dueck and Scheuer 1990; Xiao and Xu 2018) by

Table 2. Comparison of designs’ ti,j pairs.

ti,j pairs AB AC AD BA BC BD CA CB CD DA DB DC

O′
A 3 0 0 0 3 0 0 0 3 3 0 0

O′
B 1 1 1 1 1 1 1 1 1 1 1 1

using the criterion νp in (17) as the objective function. The algo-
rithm starts with a random design O′ and defines its neighbor
design N(O′

) by exchanging two random levels in a random
row. It can be implemented with the R package “NMOF” (Gilli,
Maringer, and Schumann 2019).

After obtaining the optimal O′ , we propose to construct the
optimal D′ = (X, O′

) minimizing the following Cp criterion,
which measures a design’s space-filling property.

Cp =
⎛⎝ n∑

i=2

i−1∑
j=1

1
(ρ

′
1di,j + ρ

′
2hi,j + 1)p

⎞⎠
1
p

, (18)

where di,j =
√∑k

l=1(xil − xjl)2 is the L2-distance between the
rows xi, and xj in X and hi,j is the Hamming distance between
the rows o′

i and o′
j in O′ . Here, we adopt weights ρ

′
1 = ρ

′
2 = 0.5

and the tuning parameter p = 15.
To search for the optimal D′ given O′ , we adopt the same

TA algorithm. It starts from a design D′
c = (Xc, O′

), where Xc
is the maximin distance Latin hypercube design (LHD) found
by the R package “SLHD” (Ba, Myers, and Brenneman 2015) or
“LHD” (Wang, Xiao, and Mandal 2020). Notably, the maximin
distance LHD is a popular type of space-filling design, which
has been proved to be robust for model misspecification and can
minimize the theoretical prediction variance of fitted GP models
(Gramacy 2020). Here, the Cp criterion in (18) is used as the
objective function, and neighbor designs N(D′

c) are defined by
exchanging two randomly chosen rows of Xc. Finally, we convert
the optimal D′ to its equivalent form, that is, the QS-design D.
In practice, we may need to normalize quantitative designs X to
[0, 1] range.

5.2. Algebraic Construction Method

We develop an algebraic construction for QS-designs whose
component sizes k and run sizes n are pr −1, where pr is any odd
prime number. Denote the n×n good lattice point design (Zhou
and Xu 2015) as Dglp, whose ith row is h×i mod pr , where vector
h = (1, . . . , n) and i = 1, . . . , n. Design Dglp is a Latin square
whose rows and columns are both permutations of 1, . . . , n. To
construct D′ = (X, O′

), we propose to use O′ = Dglp and X as
any column permutation of Dglp. For illustration, design O′

b in
Example 2 is a 4×4 Dglp, where we treat A as 1, B as 2, and so on.

Theorem 2. Let n = k = pr − 1, where pr is any odd prime
number. Then, the n-run sequence design O′ = Dglp has the
following properties (for any 1 ≤ i 
= j ≤ n):
(i) O′ is the maximin Hamming distance design, where all
hi,j = n;
(ii) O′ is the pair-balanced design, where all ti,j = 1;
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(iii) O′ is optimal under the νp criterion defined in (17) for any
positive weights ρ1 and ρ2, and it has a νp value of:

νp(O
′
) =

{
n(n − 1)

(
ρ1

2(n + 1)p + ρ2
2p

)} 1
p

. (19)

Theorem 3. Let n = k = pr − 1 (pr is any odd prime number),
and D′ = (X, O′

), where O′ = Dglp and X is any column
permutation of Dglp. D′ has the following properties:
(i) the minimum row-pairwise L2-distance in X is√

n(n + 1)(n + 2)/12;
(ii) it has a upper bound of Cp as defined in (18), that is,
Cp(D′

) ≤ n
1
p C(ρ

′
1, ρ ′

2, p), where

C(ρ
′
1, ρ

′
2, p) =

⎛⎜⎜⎜⎝ n/2 − 1[
ρ

′
1
( 1

12 n(n + 1)(n + 2)
) 1

2 + nρ
′
2 + 1

]p

+ 1

2
[
ρ

′
1
( 1

3 n
(
n2 − 1

)) 1
2 + nρ

′
2 + 1

]p

⎞⎟⎟⎟⎠
1
p

is a constant that only depends on adopted weights ρ
′
1 and ρ

′
2 in

the Cp criterion.

Corollary 3. Let n = k = pr − 1 (pr is any odd prime number),
and X be any column permutation of Dglp. Then, the minimum
row-pairwise L2-distance in X, denoted as d(X), satisfies

d(X)

dupper
=
√

n + 2
2n

>

√
2

2
,

where dupper = n
√

(n + 1)/6 is the upper bound of d(X).

Theorem 2 shows that the proposed sequence design O′ is
optimal under both the space-filling and pair-balanced crite-
ria. Theorem 3 shows that the constructed D′ = (X, O′

), or
equivalently the QS-design D = (X, O), has the best space-
filling property, that is, the minimized Cp value. Corollary 3
shows that the proposed quantitative design X also exhibits good
space-filing property, because it has a large minimum pairwise
L2-distance. Corollary 3 can easily be obtained on the basis
of Theorem 3 in Zhou and Xu (2015) along with the proofs
for Theorems 2 and 3 in this work. Notably, the upper bound
dupper = n

√
(n + 1)/6 may not be achievable for all design

sizes.
Although the minimum run size of an initial design in active

learning can be as small as 2, many researchers have recom-
mended using initial designs with moderate sizes (Jones, Schon-
lau, and Welch 1998; Loeppky, Sacks, and Welch 2009; Frazier
2018). We would remark that the run size of QS-design can be
flexibly determined. One recommended run size is the number
of parameters in the GP part, for example, 4k − 3 for 2d-
MaGP and k(k + 3)/2 for full-MaGP. When a larger number
of runs is allowed, we recommend a rule-of-thumb run size of
2+k(k+3)/2 for any t-dimensional MaGP for simplicity, which
is one more than the total number of parameters in full-MaGP.

For the special case, when k = pr−1 and pr is any odd prime, we
find that the k-run QS-design proposed in this section performs
very well, as illustrated in Sections S5 and S6 of supplementary
materials.

6. Case Study

Lymphoma is cancer that begins in infection-fighting cells of the
immune system, called lymphocytes. When a patient has lym-
phoma, lymphocytes change and grow out of control. In a recent
pioneering work (Wang, Xu, and Ding 2020), the researchers
conducted a series of drug experiments on lymphoma treat-
ment. Among them, a 24-run in vitro experiment of three Food
and Drug Administration (FDA) approved chemotherapeutics,
namely, paclitaxel, doxorubicin, and mitoxantrone (denoted as
Drugs A, B, and C, respectively), was included. This experiment
considered the doses and sequences of drugs. In this experi-
ment, all six sequences of the three drugs were enumerated. For
each sequence, two dose levels for A (Level 0: 2.8 μM; Level 1:
3.75 μM) and B (Level 0: 70 nM; Level 1: 95 nM), and a fixed
dose level for C (0.16 μM) were considered. The experiment
was performed on Raji cells, a human lymphoma cell line. In any
treatment (run), each drug was added every 6 hr in a sequence
into the Raji cell culture, and the inhibition percentages (the
larger, the better the response) were measured 6 hr after the
addition of the last drug. The four largest responses in this
experiment are 47.18, 44.87, 44.38, and 44.33.

Here, we run the proposed QS-learning to determine if we
can use fewer runs (compared with the original 24 runs) to
identify the optimal treatment in this experiment. Notably, 2d-
MaGP and full-MaGP are the same for k = 3 components.
Given that the GP part of the model has eight parameters, we
construct an eight-run QS-design to collect the initial data. The
proposed QS-learning selects seven sequential runs until the
stopping rule is satisfied, that is, the last three EIs are all less than
1% of the current best output. Figure 2 shows the plots for EIs
and the cumulative maximum responses of the seven sequential
runs. The true maximum response, that is, 47.18, is found, along
with the third and fourth largest responses, 44.38 and 44.33,
respectively. Notably, the initial QS-design does not include
settings that lead to the largest four responses. The proposed
QS-learning requires 15 runs (8 initial runs plus 7 follow-up
runs) to identify the optimal treatment of the original 24-run
experiment, saving 37.5% of the budget. Refer to supplementary
materials Section S4.1 for the complete data and more details
regarding the analysis.

To further evaluate the proposed QS-learning compared
with other approaches, we consider three benchmark methods:
the random sampling approach (BM1), sequential generalized
PWO approach (BM2), and sequential generalized CP approach
(BM3). Here, the BM1 method considers a random sampling of
15 runs out of the original 24 runs, which is the same total run
size used above under QS-learning. Proving that the probability
of including the optimal treatment in such a random sample is
only 62.5% will be straightforward. The BM2 and BM3 methods
consider sequential experiments based on the generalized PWO
and CP approaches, respectively, introduced in Section 2. Both
methods will start from 8 initial runs, and then choose the
setting with the optimal prediction to be the next experiment
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Figure 2. Plots for (a) EIs and (b) cumulative maximum responses from the QS-learning approach in the case study.

Figure 3. Histograms of the largest response values identified by (a) sequential generalized PWO approach and (b) sequential generalized CP approach in the case study.

trial until no further improvement is achieved. Specifically,
when the BM2 and BM3 methods start from the QS-design,
the largest response identified is only 43.93. In addition, when
they start from random designs, we present the plots of their
largest responses found from 1000 replications in Figure 3.
The probability of successfully identifying the optimal solution
(47.18) for BM2 and BM3 is less than 50%, and many results are
not good in Figure 3.

This 24-run real experiment (Wang, Xu, and Ding 2020)
on doses and sequences is a pioneering work in the literature.
It serves as a good example to demonstrate the importance of
such experiments. Nevertheless, it also has limitations. First,
only two dose levels for Drugs A and B are considered, which
does not support the estimation of any curvature effect. In
addition, only one dose level for Drug C is used, and we cannot
estimate its effect. When doses are not restricted to only a few
levels and more drugs are included, QS-learning is expected to
perform better.

7. Simulation Study

In this section, we evaluate the performance of the proposed QS-
learning and its fast variant through a traveling salesman prob-
lem (TSP, Applegate et al. (2007)). In Sections S5 and S6 of the
supplementary materials, we provide two additional simulations
of arranging the four mathematical operations problem (Mee
2020; Yang, Sun, and Xu 2021) and the single machine schedul-
ing problem (Allahverdi, Gupta, and Aldowaisan 1999; Wan and
Yuan 2013). These additional results illustrate the advantages of
QS-designs (particularly for those from algebraic construction),
the superior predictive power of the MaGP model, the difference
between 2d-MaGP and full-MaGP, and the general applicability
of QS-learning.

TSP is a well-known nonpolynomial-hard problem in com-
binatorial optimization (Tan et al. 2000; Applegate et al. 2007).
Here, we consider a modified TSP that involves the optimization
of quantitative input and sequence input. We regard it as a com-
puter experiment wherein the simulator is assumed to be black-
box and expensive to evaluate (Fang, Li, and Sudjianto 2005).
The cost for evaluating runs is assumed to be considerably
higher than that for estimating surrogate models or assessing
acquisition functions.

Suppose a salesman needs to travel to k cities to sell products,
indexed as Cities 1, . . . , k. All cities are available for visiting at
time zero, and the salesman must visit all cities one by one. The
time to travel from City i to City j (i 
= j) is si,j days, and si,j can
be different from sj,i. The salesman will stay in City i for xi days
to sell products. He has a due date to complete the business in
City i, denoted as di. If he misses the due date, then a penalty
rate of f dollars per day will be charged. After completing his
business in each city, he will earn a fixed income of a dollars and
a variable income of e dollars per day when staying in the city.
During his entire trip, the expense is b dollars per day. In this
problem, the target is to identify the optimal traveling schedule
that can maximize the profit.

Let us define α = (α1, . . . , αk) as the sequence of cities vis-
ited, and the corresponding order sequence is o = (o1, . . . , ok),
where City αi is visited at order oαi = i (i = 1, . . . , k). α0 = 0 is
defined to be the starting point at time 0. The completion time
of the business in City αi is C(x, αi) =∑i

l=1(sαl−1,αl + xαl), and
the tardiness (days passed the due time) for City αi is T(x, αi) =
max(0, C(x, αi)−dαi). Thus, the profit function that involves the
days-staying-in-cities x and the sequence-of-cities-visited α (or
equivalently o) is

F(x, α) = ka + e
k∑

i=1
xi − bC(x, αk) − f

k∑
j=1

T(x, αj).
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Figure 4. Plots for (a) EIs and (b) cumulative maximum responses from the QS-learning approach under 2d-MaGP in Example 3.

Figure 5. Plots for (a) cumulative maximum responses from the fast QS-learning approach and (b) maximum responses in random samples of 96 trials in Example 3.

Example 3. Consider the above TSP with k = 8 cities. Here, we
set a = 20, e = 10, b = 2, f = 15, due dates (d1, . . . , d8) =
(26, 10, 42, 23, 25, 12, 44, 10), and staying days xi ∈ [1, 4] for i =
1, . . . , 8. The traveling time si,j (i < j) is sampled from a uniform
distribution U(0.5, 3), and set sj,i = (1 + 0.1 × εji)si,j, where
εji is sampled from the standard normal distribution. Refer to
Section S4.2 of supplementary materials for additional details
of this simulation.

Such a TSP does not have a known analytical solution. We
consider the proposed QS-learning to identify the (nearly) opti-
mal setting that will maximize the profit function via a few
experimental trials. It starts from the 46-run (the rule-of-thumb
run size illustrated in Section 5.2) QS-design and selects 42
sequential runs under the 2d-MaGP model before the stopping
criterion is satisfied. The maximum response identified is 336,
which is found at the 41th sequential run. The optimal setting
includes x∗ = (1.14, 3.44, 2.48, 2.86, 3.78, 4.00, 3.11, 4.00) and
o∗ = (8, 6, 2, 1, 4, 5, 3, 7). Figure 4 displays EIs and cumu-
lative maximum responses of sequential runs. After the 10th
sequential run, the ordinal parts in all the runs are either o =
(8, 6, 2, 1, 4, 5, 3, 7) or o = (8, 6, 2, 1, 4, 5, 7, 3), both of which
are good candidates. Such an observation indicates the stability
of QS-EGO (i.e., Algorithm 1 in Section 4.1). In practice, 2d-
MaGP is preferred over full-MaGP when many components are
involved, because it is more computationally efficient.

To make comparisons, we first consider the random sampling
approach (BM1), which uses a large random sample of 4,032,000
observations, where a random Latin hypercube design is used
for the quantitative part and a hundred replicates of all possi-

ble sequences are used for the sequence part. The maximum
response found is 325, which is clearly worse than that identified
by the QS-learning by using only 88 runs. Next, we consider the
sequential generalized PWO (BM2) and CP (BM3) approaches
starting from random initial designs with the required sizes (i.e.,
37 and 38 runs, respectively). We replicate BM2 and BM3 1000
times. Their average results are 254 and 264, and their best
results are 321 and 324, respectively. Their performances are
clearly inferior.

Finally, we evaluate the performance of the fast QS-learning
approach introduced in Section 4.2. It starts from the same
QS-design as above, and we set a total time budget of 1 hr. It
includes 96 runs in total, where the adopted 2d-MaGP model is
estimated for only 12 times. Its cumulative maximum responses
are reported in Figure 5(a). On average, each sequential run
takes about 1 min, while the general QS-learning takes about
4 min in this example. The maximum response found here is
313, which is still much better than the average results of BM2
and BM3 (i.e., 254 and 264, respectively). In addition, we show
the histogram of maximum responses found from 1000 random
samples of 96 trials in Figure 5(b), where the average value is
208 and the largest value is 309. Evidently, the fast QS-learning
approach appears to exhibit reasonably good performance.

8. Discussion

In this work, we propose an active learning approach to iden-
tify (nearly) optimal solutions for experiments with QS fac-
tors. Analyzing such experiments is challenging due to their
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semi-discrete and possibly extremely large solution spaces and
complex input–output relationships. The proposed QS-learning
includes a novel MaGP surrogate model, an efficient sequential
scheme (QS-EGO), and a new class of optimal experimental
designs (QS-designs), providing a systematic solution for ana-
lyzing QS experiments. The theoretical properties of the pro-
posed method are investigated, and techniques for optimization
by using analytical gradients are developed. A case study on
lymphoma treatment and several simulations are presented to
illustrate the advantages of the proposed method.

In this work, we focus on the widely used EI framework,
which works well empirically. In the current literature, the upper
confidence bound (UCB) is another popular framework for
working with GP models in active learning, particularly for
purely discrete input spaces (Srinivas et al. 2012; Djolonga,
Krause, and Cevher 2013; Berkenkamp, Schoellig, and Krause
2019; Vakili, Picheny, and Durrande 2020). Results on conver-
gence rates have been established for GP-UCB and its variants.
For example, Srinivas et al. (2012) proved a cumulative regret
bound of n(ν+d(d+1))/(2ν+d(d+1)) by using a Matern kernel of
smoothness ν on a d-dimensional space. Vakili, Picheny, and
Durrande (2020) further improved the bound to O(n(d−ν)/d) for
d > ν, O(log(n)) for d = ν, and some constants for d < ν. All
these results require finite or general compact input spaces, but
the space in the QS-experiment (a joint one of continuous and
sequence spaces) does not satisfy this requirement. Considering
QS-learning under the UCB framework and studying its conver-
gence rate will be interesting topics for future research.

Embedding some of the currently popular non-separable
covariance functions (Gneiting 2002) into the MaGP model is
also interesting. For example, one may consider

cov(Y(xi, oi), Y(wj, oj)) = σ 2

ψ(||oi − oj||2)1/d ϕ

( ||xi − xj||2
ψ(||oi − oj||2)

)
,

where || · || is the L2 norm (or other norms), ϕ(·) is a completely
monotonic function (e.g., ϕ(t) = exp(−ctγ )), and ψ(t) is a
positive function with a completely monotonic derivative (e.g.,
ψ(t) = (atα +1)β). Such a structure may have an interpretation
for certain choices of ϕ and ψ (Haslett and Raftery 1989). A
planned future study can investigate the appropriate choices for
ϕ and ψ and their parameters to explain QS experiments.

In active learning and other nonsequential learning methods,
optimal designs for experiments with QS factors are important
but not well addressed. In this work, we propose criteria
for QS-designs that consider designs’ space-filling and pair-
balanced properties. The current literature presents various
types of space-filling designs, including maximin distance
designs (Johnson, Moore, and Ylvisaker 1990; Xiao and Xu
2017), minimax distance designs (Chen et al. 2015), uniform
designs (Fang and Lin 2003), MaxPro designs (Joseph, Gul,
and Ba 2015) and uniform projection designs (Sun, Wang,
and Xu 2019), which can all be used as the quantitative part
in the QS-design. For the sequence part, desirable properties
beyond the pair balance can be studied analogous to component
orthogonal arrays (Yang, Sun, and Xu 2021), order-of-addition
orthogonal arrays (Voelkel 2019) and optimal fractional PWO
designs (Peng, Mukerjee, and Lin 2019; Chen, Mukerjee, and
Lin 2020). Moreover, some desirable structures that connect

the quantitative and sequence parts of QS-designs can be
investigated (Deng, Hung, and Lin 2015).
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