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1. Introduction

Analyses of coauthorship and citation networks offer a fertile ground for studying
research and collaboration patterns of scientific communities. Ji and Jin’s efforts
of collecting, cleaning and summarizing in various ways citation and coauthor-
ship networks for statisticians is a great step forward to provide the community
with a first such data set for self-study. They perform several descriptive analy-
ses of the underlying networks to extract interesting patterns: they study trends
of productivity over time, extract most prolific authors and research areas using
various centrality measures, and find communities in these networks. We look
forward to seeing this dataset serving as a yardstick for fitting social network
models to large datasets. Perhaps more interestingly, we see it as raising new
research questions from the modeling, data representation and computational
points of view and becoming a standard testbed for evaluating network models
– both old and new – and testing scalability of inference procedures. In this
regard, it is with great pleasure that we write this comment.

Here we take a model-based approach and consider the effects of various
types of author interactions on the analysis and inference about the citation
and coauthorship datasets. We are generally interested in three types of ques-
tions, two of which we discuss here: what are well-fitting models for the data?
Is a simple network representation is best for answering questions we ask, or
should we be considering alternative representations? How can we scale existing
network model fitting and goodness-of-fit testing procedures to networks of this
size, as well as larger networks that the authors intend to collect? These forth-
coming data sets should reduce sampling bias, but of course come at a price
of a dramatic increase in network size and computational cost. We expect that
availability of the datasets Ji and Jin have provided the community will encour-
age methodological research to push the limits of performing non-asymptotic
inference in large and sparse networks.
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We became aware of their data collection effort at a time when we were de-
veloping a basic exponential family model for hypergraphs, placing probabilities
on occurrence of connected groups of nodes of arbitrary size instead of pairs of
nodes in a random graph. Indeed, in Stasi et al. (2014), a mock example of a
coauthorship dataset is used as a motivation for the new model. Subsequently,
we introduced an ERGM that is based on a summary of a global connectivity
structure called k-core decomposition (Karwa et al.). Hence, we reconsider Ji
and Jin’s data through the lens of these two network models, but first let us
begin with some more classical models.

2. Fitting dyad-independent models based on node degrees

The data collected by Ji and Jin contains two key datasets: (1) a bipartite graph
of authors and papers where a link exists from node i to node j if author i wrote
paper j; (2) a network of citations of papers where a link exists from node i to
node j if paper i cites paper j. From these two datasets, Ji and Jin extract two
networks whose nodes are authors: two coauthorship networks and one citation
network. In the “Coauthorship network A” there is an undirected edge between
nodes i and j if author i coauthored at least 2 papers with author j. In the
“Coauthorship network B” there is an undirected edge between nodes i and j
if author i coauthored at least 1 paper with author j. In the citation network
of authors, there is a directed edge from author i to author j if i has cited at
least 1 paper by j.

It is important to note that, strictly speaking, the number of citations be-
tween authors and the number of coauthors are counts greater than 1. They
are converted to a binary network by using thresholding, a popular technique
in network analysis used to avoid multiple edges. Moreover, in the citation net-
work of authors, the self citations are set to 0 to avoid loops in the network
representation, so that the result is a desirable simple graph.

Once a network representation is extracted from the data, there are many
ways to analyze it using descriptive statistics. For instance, Ji and Jin con-
sider degree centrality of these extracted networks to measure the importance
of nodes. In the coauthorship network, they use node degrees to identify most
collaborative authors, while in the citation network of authors, they use the num-
ber of citers – the in-degree of the corresponding directed graph – to identify top
authors. From the point of view of modeling, it is natural to ask whether degree-
based analysis is sufficient for these networks; in particular, models based on
degrees exhibit dyadic independence and we question whether such an assump-
tion is valid. In other words, when a statistic is used to summarize a dataset,
we see it as a sufficient statistic of some model and then ask what that model
is and how well it fits the data.

We investigate the above question for node degrees of both citation and
coauthorship networks. The simplest but nicely interpretative model for ran-
dom directed graphs whose sufficient statistics are the node in- and out-degrees
is the p1 model (Holland and Leinhardt, 1981). The model assumes that dyads
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(i.e., citation pairs) are independent and assigns probabilities to four types of
citations: outgoing, incoming, reciprocated, and none, represented by i → j,
i← j, i↔ j, and i 6∼ j, respectively. Node-specific parameters represent attrac-
tiveness and expansiveness, and there is an additional parameter for the overall
tendency of the network to reciprocate citations. This parameter can be set to
be zero or a nonzero constant; Holland and Leinhardt consider both versions
of the model. Fienberg and Wasserman (1981) represent p1 in log-linear form,
turning networks into 0/1 contingency tables, and extend the model to allow for
the differential reciprocity effect by including dyad-specific reciprocation param-
eters. (The model was later extended to fit within the block model framework;
see Fienberg, Meyer and Wasserman (1985).) For undirected graphs such as the
coauthorship network, p1 reduces to the β model (Blitzstein and Diaconis, 2010)
that has had a long history in various literatures.

The log-linear representation allows the use of tools from algebraic statistics
introduced in Diaconis and Sturmfels (1998) to fit the p1 model and perform a
non-asymptotic goodness-of-fit test; see Petrović, Rinaldo and Fienberg (2010)
for the basic theoretical results for the p1 model and Gross, Petrović and Stasi
(2015) for generalizations and implementation.

Results of goodness-of-fit tests. We perform an exact test of model fit for the
p1 model with dyad-dependent reciprocation (the most general version) to the
largest connected component of the citation network of authors. The test is
done by running the Markov chain from Gross, Petrović and Stasi (2015). After
n = 100000 steps, the resulting p-value is 0.007194245. This result indicates
that the p1 model does not fit the citation network of authors.

The lack of fit of the p1 model suggests that the network of citations may
have tendencies to be transitive and the dyads may not be independent. While
counting citations is a natural way to perform rankings, such a count – cor-
responding to the directed degree sequence of the citation network – does not
offer a good summary statistic for the citation network data. Instead, we need
to look for other more complex measures of centrality, for example those that
are also able to capture triadic or transitive effects.

Another comment is in order. The variants of the p1 model are naturally set
up to test the reciprocation effect: do authors reciprocate citations? That is, if
author i cites author j, is author j likely to cite a paper by author i? The lack
of fit of the model that captures the reciprocation effect means that the answer
to this question is ‘no’, however, it does not directly imply that there are no
transitive effects of other kinds that we are unable to test at the moment.

Similarly, we perform an exact test of model fit of the β model to the largest
connected component of the coauthorship network A. The p-value from the
goodness-of-fit test obtained by running the Markov chain on n = 100000 steps
is 0.997, indicating a pretty good fit. The dyads in the coauthorship network
can be assumed to be independent, and the network does not have any triadic
closure effects; i.e., if author i wrote a paper with author j, and author j wrote
a paper with author k, then it is not necessary that author i has written a paper
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with author k. This result is somewhat surprising since experience suggests that
collaborators of an author i may tend to collaborate with each other, including
i. On a closer look, perhaps it is less surprising: forgetting the structure of the
original data set and converting it to the underlying graph (by recording only
the dyadic relationships) results in independence and node degrees being a good
summary of the graph.

3. What lies beyond node degrees?

As we saw above, the p1 model based on node degrees does not fit the citation
network and, hence, degree-based analyses may be of suspect. It is well-known
that, in general, degree-based models may fail to capture certain vital connec-
tivity information about the network. In applications such as the present one,
we may be interested in the type of global connectedness effectively captured by
the cores decomposition of a graph introduced by Seidman (1983) (see Karwa
et al. for statistical considerations). For the directed citation network, we com-
pute the k-core using the in-degree which measures the number of times an
author is cited. Intuitively, the k-core captures the innermost core of “highly
cited” authors. To be in the innermost core, it is not sufficient to have the high-
est number of citations, but one must receive citations from authors who are
themselves cited by many.

To convert the citation counts between authors to a directed network of
author citations, we use varying threshold values c. A directed edge exists from
node i to node j if author i cites author j at least c times. We consider c =
{1, 2, 3, 4, 5}, providing 5 different networks. Table 1 shows results of selecting
the top 5 highly cited authors based on their degree in the respective cores.

Table 1
Top 5 authors selected using the k-core decomposition with different values of c

1 2 3 4 5
Jianqing Fan Jianqing Fan Jianqing Fan Jianqing Fan Peter Hall
Hui Zou Hui Zou Hui Zou Hui Zou Hans-Georg Muller
Ming Yuan Peter Buhlmann Peter Hall Runze Li Raymond J Carroll
Peter Buhlmann Cun-Hui Zhang Runze Li Peter Hall Fang Yao
Runze Li Runze Li Raymond J Carroll Hans-Georg Muller Jianqing Fan

Compare the results of Table 1 to Column 3 of Table 2, where Ji and Jin
identified the top 3 most cited authors,“Jianqing Fan”, “Hui Zou”, “Peter Hall”,
using the in-degree. When c ∈ {1, 2, 3, 4} “Jianqing Fan” and “Hui Zou” appear
as the top 2 authors, and Peter Hall appears in the third place only when c = 3.
However, when c = 5, Peter Hall is the most cited author. Our goal here is to
simply illustrate the point the results depend on the type of centrality measure
chosen, and the threshold used to create the network.

As an illustration, Figure 1 shows the innermost core of the citation network
of authors when c = 4.

The k-core decomposition of the coauthorship network is also instructive.
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Fig 1: The innermost core of the citation network where an edge exists if there
are at least 4 citations.
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Fig 2: The innermost core of coauthorship network A.

For this case, we perform a core decomposition of the coauthorship network A.
Figure 2 shows the inner most core of the coauthorship network. The innermost
core of the coauthorship network consists of two connected components and
every node has degree 9! In other words, the innermost core consists of 2 cliques
of size 10. On further exploration, it turns out that the two cliques correspond
to two papers, Bayarri et al. (2007) and Zhu et al. (2009), each with 10 authors.
This example illustrates that a network representation of the coauthorship data
can be misleading: it is not possible to distinguish between the cases of authors
writing many joint papers and when many authors writing one.
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4. Need for new models and representations

Both of the previous two sections motivate recording higher-order interactions
from the data. In addition, Table 1 suggests the thresholding is not good as it
looses information. There are several ways to represent the data, two common
structures being a network (undirected, directed or bipartite) and a contingency
table, each allowing for different analyses to be carried out. That is, the type of
model that can be fitted to the data depends on the representation.

Contingency table representation. For I authors, J research areas and K jour-
nals, consider an I × I × J × K contingency table where the (i, i′, j, k) entry
counts the number of times author i cites author i′ in research area j and jour-
nal k. A similar representation can be obtained for the coauthorship network,
where we count the number of times author i and author j wrote a joint paper.
These representations preserve the citation and coauthorship count data. We
can then collapse the table to an I × I author-by-author table and fit log linear
models to the citation counts. In essence, we seek to avoid thresholding, as in
the generalized β model discussed by Rinaldo, Petrović and Fienberg (2013) for
weighted networks represented in table form.

Hypergraph representation. Coauthorship networks may not be measuring what
they intend to measure; recall illustrative examples above. To prevent informa-
tion loss and model higher-order interactions, we represent the raw coauthorship
data via a hypergraph, which is simply a generalization of a graph. For exam-
ple, a hyperedge (for simplicity also called an edge) of size k containing nodes
i1, . . . , ik exists if authors i1, . . . , ik wrote a joint paper. Stasi et al. (2014) in-
troduce β models for random hypergraphs. Figures 3, 4, and Table 2 highlight
different aspects of the data that can be extracted from the hypergraph repre-
sentation.

Clearly, more complex statistical models for random hypergraphs – random
occurrence of groups of nodes of arbitrary size – are necessary, as the degree-
based β model is sure to have similar shortcomings on hypergraphs as it did on
graphs. In addition, Figure 4 suggests placing heterogeneous weights on hyper-
graph degrees with respect to edge size. Furthermore, we may wish to preserve
edge multiplicities representing multiple joint papers by same groups in contin-
gency table form here as well.

Table 2
Top 3 authors that have k ∈ {1, 2, 3, 4, 5} or more collaborators (including themselves),

based on the hypergraph representation

1 2 3 4 5
Peter Hall Peter Hall Raymond J Carroll Raymond J Carroll Joseph G Ibrahim
Raymond J Carroll Raymond J Carroll Peter Hall Joseph G Ibrahim Raymond J Carroll
Jianqing Fan Jianqing Fan Jianqing Fan Hongtu Zhu Hongtu Zhu
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Fig 3: The graph and hypergraph representation of a subnetwork of the co-
authorship network A. The comparison clearly shows the loss of information in
representing a hyperegde by edges in the network.
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