A Bayesian Approach for Envelope Models

Subhadip Pal

Department of Biostatistics and Bioinformatics, Emory University Collaborator: Kshitij Khare and Zhihua Su

Envelope Approach for Multivariate Regression

Standard multivariate linear regression model: $Y_i = \mu + \beta X_i + \varepsilon_i$, $i = 1, 2, \dots, n$

$\mathbf{Y} \in \mathbb{R}^{r}, \mathbf{X} \in \mathbb{R}^{p}, \boldsymbol{\mu} \in \mathbb{R}^{r}, \boldsymbol{\beta} \in \mathbb{R}^{r \times p}, \boldsymbol{\varepsilon} \in \mathbb{R}^{r}$

Envelopes arise by re-parametrization of the SLM in terms of the smallest subspace $\mathcal{E} \subseteq \mathbb{R}^r$ such that ($P_{\mathcal{E}}$ is projection onto the space \mathcal{E} and $Q_{\mathcal{E}} = I - P_{\mathcal{E}}$)

 $\mathbf{Q}_{\mathcal{E}}\mathbf{Y} \mid \mathbf{X} \sim \mathbf{Q}_{\mathcal{E}}\mathbf{Y}$ and $\mathbf{P}_{\mathcal{E}}\mathbf{Y} \perp \mathbf{Q}_{\mathcal{E}}\mathbf{Y} \mid \mathbf{X}$

Impact of X on Y is concentrated in $P_{\mathcal{E}}Y$. Informally we refer

 $Q_{\mathcal{E}}Y$: immaterial part of Y and $P_{\mathcal{E}}Y$: material part of Y

Posterior Distribution

 $\pi((\boldsymbol{\mu},\boldsymbol{\eta},(\boldsymbol{\Gamma},\boldsymbol{\Gamma}_{0}),\boldsymbol{\omega},\boldsymbol{\omega}_{0}) \mid \boldsymbol{\mathbb{Y}}) \propto (2\pi)^{-(nr)/2} |\boldsymbol{\Omega}|^{-n/2} |\boldsymbol{\Omega}_{0}|^{-n/2} e^{-\frac{1}{2}\operatorname{tr}\left\{(\boldsymbol{\mathbb{Y}}-\mathbf{1}_{n}\boldsymbol{\mu}^{T}-\boldsymbol{\mathbb{X}}\boldsymbol{\eta}^{T}\boldsymbol{\Gamma}^{T})(\boldsymbol{\Gamma}\boldsymbol{\Omega}\boldsymbol{\Gamma}^{T}+\boldsymbol{\Gamma}_{0}\boldsymbol{\Omega}_{0}\boldsymbol{\Gamma}_{0}^{T})^{-1}(\boldsymbol{\mathbb{Y}}-\mathbf{1}_{n}\boldsymbol{\mu}^{T}-\boldsymbol{\mathbb{X}}\boldsymbol{\eta}^{T}\boldsymbol{\Gamma}^{T})^{T}\right\}}$ $\times |\Omega|^{-p/2} e^{-\frac{1}{2} \operatorname{tr} \left(\Omega^{-1} (\eta - \Gamma^{T} \mathbf{e})^{T} \right)} e^{-\frac{1}{2} \operatorname{tr} \left(\mathbf{D}^{-1} \mathbf{O}^{T} \mathbf{G} \mathbf{O} \right)} \prod^{u} \omega_{i}^{-\alpha - 1} e^{-\frac{\lambda}{\omega_{i}}} \prod^{r-u} \omega_{0,i}^{-\alpha_{0} - 1} e^{-\frac{\lambda_{0}}{\omega_{0,i}}}$

Theorem

- The posterior density in (3) is proper under either of the following conditions.
- $n > \max(r, p + 3)$
- $n + 2\alpha > 1$, λ , $\lambda_0 > 0$ and **C** is positive definite

The conditions $\mathbf{Q}_{\mathcal{E}}\mathbf{Y} \mid \mathbf{X} \sim \mathbf{Q}_{\mathcal{E}}\mathbf{Y}$ and $\mathbf{P}_{\mathcal{E}}\mathbf{Y} \perp \mathbf{Q}_{\mathcal{E}}\mathbf{Y} \mid \mathbf{X}$ hold if and only if (Cook 2010) • \mathcal{E} envelopes $\mathcal{B} = span\{\boldsymbol{\beta}\}$, i.e. $\mathcal{B} \subseteq \mathcal{E}$ • \mathcal{E} is reducing subspace of Σ , i.e. $\Sigma = P_{\mathcal{E}}\Sigma P_{\mathcal{E}} + Q_{\mathcal{E}}\Sigma Q_{\mathcal{E}}$

The intersection of all subspace \mathcal{E} with the above properties is called Σ -Envelope of \mathcal{B} and denoted by $\mathcal{E}_{\Sigma}(\mathcal{B})$ with $u = dim(\mathcal{E}_{\Sigma}(\mathcal{B}))$

Coordinate representation of Envelope model

 $\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\Gamma} \boldsymbol{\eta} \mathbf{X} + \boldsymbol{\varepsilon}$, where $\boldsymbol{\beta} = \boldsymbol{\Gamma} \boldsymbol{\eta}, \boldsymbol{\Sigma} = \boldsymbol{\Gamma} \boldsymbol{\Omega} \boldsymbol{\Gamma}^{T} + \boldsymbol{\Gamma}_{0} \boldsymbol{\Omega}_{0} \boldsymbol{\Gamma}_{0}^{T} \boldsymbol{\Omega}, \boldsymbol{\Omega}_{0} > 0$

 Γ and Γ_0 be a basis for the space $\mathcal{E}_{\Sigma}(\mathcal{B})$ and $\mathcal{E}_{\Sigma}^{\perp}(\mathcal{B})$. Note that the choice of Γ and Γ_0 are not unique.

How Envelope Model Works? Toy Example

Consider the multivariate linear regression model with response Y_1 , Y_2 and one predictor variable X with two label 0 and 1.

 $\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} + \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} X + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix}$ (1)

> $\mu_1 = E(Y_1 \mid X = 0), \ \beta_1 = E(Y_1 \mid X = 1) - E(Y_1 \mid X = 0)$ $\mu_2 = E(Y_2 | X = 0), \quad \beta_2 = E(Y_2 | X = 1) - E(Y_2 | X = 0)$

Schematic representation: standard model	Sc
α –	

Sampling Scheme

Generalized Bingham distribution

A random matrix $\mathbf{Z} = [\mathbf{Z}_1 : \mathbf{Z}_2]$ is defined to have a generalized matrix Bingham distribution on $S_{2,2}$ with parameters A_1 and A_2 ($GB_{2,2}(A_1, A_2)$) if the probability density function of Z (w.r.t the Haar measure on $S_{2,2}$) is proportional to $e^{-Z_1^T A_1 Z_1 - Z_2^T A_2 Z_2}$. An efficient algorithm has been de-

• $\mu \mid ((\Gamma, \Gamma_0), \eta, \omega, \omega_0, \mathbb{Y})$ is Normal and $\eta \mid ((\Gamma, \Gamma_0), \omega, \omega_0, \mathbb{Y})$ is Multivariate normal • $\omega_i \mid (\Gamma, \Gamma_0), \omega^{-i}, \omega_0, \mathbb{Y}$ and $\omega_{0,i} \mid (\Gamma, \Gamma_0), \omega, \omega_0^{-i}, \mathbb{Y}$ are Truncated-Inverse-Gamma • Sampling of O involves samling from $GB_{2,2}$ distribution

We start at a given initial value of the parameters, and repeat the following steps.

• Sampling from $((\Gamma, \Gamma_0), \omega, \omega_0) \mid \mathbb{Y}$ \rightarrow For $i = 1, 2, \cdots, u$, update ω_i

 \rightarrow For $i = 1, 2, \cdots, r - u$, update $\omega_{0,i}$

The corresponding MC is Harris ergodic.

veloped to sample from $GB_{2,2}$.

(3)

 \rightarrow For every pair or randomly chosen pair (i, j) such that $1 \le i < j \le r$, update \mathbf{O}_{i} and \mathbf{O}_{j}

• Sample from full conditional distribution for $\eta \mid ((\Gamma, \Gamma_0), \omega, \omega_0), \mathbb{Y}$ and $\mu \mid \mathbb{Y}$

Model Selection: DIC Criteria

• Need to select $u \in 0, 1, \ldots, r$ • $\theta := (\mu, \eta, (\Gamma, \Gamma_0), \omega, \omega_0)$ be the parameter vector • For each *u* construct the appropriate Markov chain

Bayesian Envelope Model

Features that a Bayesian approach would offer are

- Comprehensive uncertainty characterization through the posterior distribution
- A framework to incorporate prior information
- Ability to deal with the case when n < r

A reparameterization of Envelope model

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\Gamma} \boldsymbol{\eta} \mathbf{X} + \boldsymbol{\varepsilon}, \qquad \mathbf{\Sigma} = \boldsymbol{\Gamma} \boldsymbol{\Omega} \boldsymbol{\Gamma}^{T} + \boldsymbol{\Gamma}_{0} \boldsymbol{\Omega}_{0} \boldsymbol{\Gamma}_{0}^{T},$$

(2)

• $\boldsymbol{\beta} = \boldsymbol{\Gamma}\boldsymbol{\eta}$, $\boldsymbol{\Gamma} \in S^+_{\boldsymbol{\Gamma},\boldsymbol{\mu}}$, $\boldsymbol{\Gamma}_0 \in S^+_{\boldsymbol{\Gamma},\boldsymbol{\Gamma}-\boldsymbol{\mu}}$ with $\boldsymbol{\Gamma}_0^T \boldsymbol{\Gamma} = 0$, $\boldsymbol{\eta} \in M_{\boldsymbol{\mu},\boldsymbol{p}}$.

• Ω and Ω_0 are diagonal matrices with diagonal entries arranged in decreasing order

• To estimate $(\mu, \eta, (\Gamma, \Gamma_0), \omega, \omega_0)$

If u = r, envelope model (2) is equivalent to the standard model by the one to one transformation $(\Gamma, \eta, \Omega) \rightarrow (\beta = \Gamma \eta, \Sigma = \Gamma \Omega \Gamma')$

 $\to \{\theta^{(i)}\}_{i=1}^M$ the samples from the relevant posterior distribution (after an appropriate burn-in) $\rightarrow \text{Calculate } D/C = \bar{D} + \frac{1}{2(M-1)} \sum_{i=1}^{M} \left(D\left(\theta^{(i)}\right) - \bar{D} \right)^2 \text{ where}$ $D(\theta) := -2 \log L(\theta) \text{ and } \bar{D} := \sum_{i=1}^{M} D\left(\theta^{(i)}\right) / M.$

• Select the value of *u* which corresponds to the minimum DIC.

Application: Analysis of Wheat Protein Data

A brief summary of the Wheat protein data, (Cook 2010) can be summarized as follows

- Consists of r = 6 responses, which measure the log infrared reflectance at six different wavelengths for 50 ground wheat samples
- The predictor is a binary indicator, taking 0 or 1 if a sample has high or low protein content
- There are 26 samples with high protein content, and 24 samples with low protein content

Model selection: DIC scores								
	u	Uniform	Emperical					
	0	1257.7	1254.5					
	1	1201.9	1197.5					
	2	1206.3	1374.3					
	3	1208	1245.8					
	4	1209.3	1266.2					
	5	1211.1	1333					

1668.1

1216

6

Para	meter	estima	atic
		CJUIII	JU

	Coefficient	Bayesian envelope model		Bayesian standard model		
		Post. mean	Post. SD	Post. mean	Post. SD	
-	β_1	-1.039	0.378	2.934	10.479	
	β_2	4.406	0.498	7.745	8.630	
	β_3	3.630	0.417	7.219	9.273	
	eta_4	-5.880	0.644	-2.395	10.157	
	eta_5	0.594	0.224	2.799	14.601	
	$oldsymbol{eta}_6$	-1.610	0.904	0.410	5.759	

Extensive simulation has been conducted for: model selection accuracy, comparison with non-Bayesian envelope model and different versions of standard Bayesian models

Prior Specification

• $\pi(\mu) \propto 1$

• $\eta \mid (\Gamma, \Gamma_0), \omega, \omega_0 \sim \mathcal{MN}_{u,p}(\Gamma^T \mathbf{e}, \Omega, \mathbf{C}^{-1})$ $\Omega := diag(\omega)$

• $\mathbf{O} \sim B_{r,r}(\mathbf{G}, \mathbf{D}^{-1})$ $\mathbf{O} := [\Gamma, \Gamma_0]$

The **prior mode for O** is an appropriately permuted version of the eigenvectors of **G**

- ($\boldsymbol{\omega}, \boldsymbol{\omega}_0$) and **O** are apriori independent \rightarrow The entries of ω : order statistics of u i.i.d. observations from the Inverse-Gamma(α, λ) dis-
- tribution
- \rightarrow The entries of ω_0 : order statistics of r u i.i.d observations from the Inverse-Gamma(α_0, λ_0) distribution

Uniform improper prior The joint improper prior corresponding to uniform improper prior is given by $\pi(\mu, \eta, (\Gamma, \Gamma_0), \omega, \omega_0) \propto 1$

This corresponds to following hyperparameter choices

• e = 0, C = 0, G = 0• $\alpha = -(1 + \frac{p}{2}), \lambda = 0, \ \alpha_0 = -1, \lambda_0 = 0$

Emperical prior

 $(\boldsymbol{\eta}^*, (\boldsymbol{\Gamma}^*, \boldsymbol{\Gamma}^*_0), \boldsymbol{\omega}^*, \boldsymbol{\omega}^*_0)$ obtained by a naive method • Set $\mathbf{e} = \Gamma^* \eta^*$ and $\mathbf{C} = \mathbf{0}$

• α , λ and α_0 , λ_0 : estimated by moment estimator using values ω^* and ω_0^* • **D** diagonal with diagonal elements (ω^* , ω_0^*) • we employ a procedure to ensured that O^* is the prior mode of **O**

Summary

- We developed a comprehensive Bayesian framework for estimation and model selection is in the context of envelope model
- A parameterization available for Bayesian analysis has been introduced
- Class of priors introduced has desirable proprieties:
- \rightarrow flexible
- \rightarrow sensible interpretation as well as specification of hyperparameters
- \rightarrow easy to sample from the corresponding posterior
- conditions for posterior propriety have been investigated
- A new distribution $GB_{2,2}$ along with efficient sampling scheme is developed
- R package "BENV" is developed for data analysis
- The method is applied successfully on simulated and real datasets

References

- Khare K., Pal S. and Su Z. A Bayesian Approach for Envelope Models, Submitted to (and tentatively Accepted in) Annals of Statistics.
- Cook, R.D., Li, B. and Chiaromonte, F. (2010). Envelope Models for Parsimonious and Efficient Multivariate Linear Regression, Statistica Sinica, 20, 927–960.