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Standard multivariate linear regression model: Yi = µ + βXi + εi, i = 1, 2, · · · , n
Y ∈ Rr,X ∈ Rp,µ ∈ Rr,β ∈ Rr×p,ε ∈ Rr

Envelopes arise by re-parametrization of the SLM in terms of the smallest subspace E ⊆ Rr suchthat (PE is projection onto the space E and QE = I− PE )
QEY | X ∼ QEY and PEY ⊥ QEY | XImpact of X on Y is concentrated in PEY. Informally we refer

QEY: immaterial part of Y and PEY: material part of Y

The conditions QEY | X ∼ QEY and PEY ⊥ QEY | X hold if and only if (Cook 2010)
• E envelopes B = span{β}, i.e. B ⊆ E
• E is reducing subspace of Σ, i.e. Σ = PEΣPE + QEΣQE

The intersection of all subspace E with the above properties is called Σ-Envelope of B and denotedby EΣ(B ) with u = dim(EΣ(B ))

Y = µ + ΓηX + ε, where β = Γη,Σ = ΓΩΓT + Γ0Ω0ΓT0 Ω,Ω0 > 0
Coordinate representation of Envelope model

Envelope Approach for Multivariate Regression

Γ and Γ0 be a basis for the space EΣ(B ) and E⊥Σ (B ). Note that the choice of Γ and Γ0 are not unique.

Consider the multivariate linear regression model with response Y1, Y2 and one predictor variable
X with two label 0 and 1.

Y = (Y1
Y2
) = (µ1

µ2
)+ (β1

β2
)
X + (ε1ε2

) (1)
µ1 = E (Y1 | X = 0), β1 = E (Y1 | X = 1)− E (Y1 | X = 0)
µ2 = E (Y2 | X = 0), β2 = E (Y2 | X = 1)− E (Y2 | X = 0)

Schematic representation: standard model
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Schematic representation: envelope model
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How Envelope Model Works? Toy Example

Features that a Bayesian approach would offer are
• Comprehensive uncertainty characterization through the posterior distribution
• A framework to incorporate prior information
• Ability to deal with the case when n < r

Y = µ + ΓηX + ε, Σ = ΓΩΓT + Γ0Ω0ΓT0 , (2)
• β = Γη , Γ ∈ S+

r,u, Γ0 ∈ S+
r,r−u with ΓT0 Γ = 0, η ∈ Mu,p.

•Ω and Ω0 are diagonal matrices with diagonal entries arranged in decreasing order
• To estimate (µ,η, (Γ,Γ0),ω,ω0)

A reparameterization of Envelope model

Bayesian Envelope Model

If u = r, envelope model (2) is equivalent to the standard model bythe one to one transformation (Γ,η,Ω)→ (β = Γη,Σ = ΓΩΓT ).

• π(µ) ∝ 1
• η | (Γ,Γ0),ω,ω0 ∼MNu,p(ΓTe,Ω,C−1) Ω := diag(ω)
•O ∼ Br,r(G, D−1) O := [Γ,Γ0]
• (ω,ω0) and O are apriori independent
→ The entries of ω: order statistics of u i.i.d. observations from the Inverse-Gamma(α, λ) dis-tribution
→ The entries of ω0: order statistics of r − u i.i.d observations from the Inverse-Gamma(α0, λ0)distribution

Uniform improper priorThe joint improper prior correspondingto uniform improper prior is given by
π(µ,η, (Γ,Γ0),ω,ω0) ∝ 1
This corresponds to following hyperpa-rameter choices
• e = 0,C = 0, G = 0
• α = −(1+ p2), λ = 0, α0 = −1, λ0 = 0

Emperical prior(η∗, (Γ∗,Γ∗0),ω∗,ω∗0) obtained by a naive method
• Set e = Γ∗η∗ and C = 0
• α , λ and α0 , λ0: estimated by moment esti-mator using values ω∗ and ω∗0
•D diagonal with diagonal elements (ω∗,ω∗0)
•we employ a procedure to ensured that O∗ isthe prior mode of O

Prior Specification

The prior mode for O is an appropriately per-muted version of the eigenvectors of G

π((µ,η, (Γ,Γ0),ω,ω0) | Y) ∝ (2π)−(nr)/2|Ω|−n/2|Ω0|−n/2e−12 tr{(Y−1nµT−XηTΓT )(ΓΩΓT+Γ0Ω0ΓT0 )−1(Y−1nµT−XηTΓT )T}
×|Ω|−p/2e−12 tr(Ω−1(η−ΓTe)C(η−ΓTe)T )e−12 tr(D−1OTGO) u∏

i=1 ω
−α−1
i e−

λ
ωi

r−u∏
i=1 ω

−α0−10,i e−
λ0
ω0,i (3)

The posterior density in (3) is proper under either of the following conditions.
• n > max(r, p+ 3)
• n+ 2α > 1, λ, λ0 > 0 and C is positive definite
Theorem

Posterior Distribution

A random matrix Z = [Z1 : Z2] is defined to have a generalized matrix Bingham distribution on
S2,2 with parameters A1 and A2 (GB2,2(A1,A2)) if the probability density function of Z (w.r.t theHaar measure on S2,2) is proportional to e−ZT1 A1Z1−ZT2 A2Z2.

Generalized Bingham distribution

• µ | ((Γ,Γ0),η,ω,ω0,Y) is Normal and η | ((Γ,Γ0),ω,ω0,Y) is Multivariate normal
•ωi | (Γ,Γ0),ω−i,ω0,Y and ω0,i | (Γ,Γ0),ω,ω−i0 ,Y are Truncated-Inverse-Gamma
• Sampling of O involves samling from GB2,2 distribution
We start at a given initial value of the parameters, and repeat the following steps.
• Sampling from ((Γ,Γ0),ω,ω0) | Y
→ For i = 1, 2, · · · , u, update ωi
→ For i = 1, 2, · · · , r − u, update ω0,i
→ For every pair or randomly chosen pair (i, j) such that 1 ≤ i < j ≤ r, update O·i and O·j

• Sample from full conditional distribution for η | ((Γ,Γ0),ω,ω0),Y and µ | Y

Sampling Scheme

An efficient algorithm has been de-veloped to sample from GB2,2.

The corresponding MC is Harris ergodic.

•Need to select u ∈ 0, 1, . . . , r
• θ := (µ,η, (Γ,Γ0),ω,ω0) be the parameter vector
• For each u construct the appropriate Markov chain
→{θ(i)}Mi=1 the samples from the relevant posterior distribution (after an appropriate burn-in)
→ Calculate DIC = D̄ + 12(M−1)∑M

i=1 (D (θ(i))− D̄)2 where
D(θ) := −2 log L(θ) and D̄ :=∑M

i=1D (θ(i)) /M .
• Select the value of u which corresponds to the minimum DIC.

Model Selection: DIC Criteria

A brief summary of the Wheat protein data, (Cook 2010) can be summarized as follows
• Consists of r = 6 responses, which measure the log infrared reflectance at six different wave-lengths for 50 ground wheat samples
• The predictor is a binary indicator, taking 0 or 1 if a sample has high or low protein content
• There are 26 samples with high protein content, and 24 samples with low protein content
Model selection: DIC scoresu Uniform Emperical0 1257.7 1254.51 1201.9 1197.52 1206.3 1374.33 1208 1245.84 1209.3 1266.25 1211.1 13336 1216 1668.1

Parameter estimationCoefficient Bayesian envelope model Bayesian standard modelPost. mean Post. SD Post. mean Post. SD
β1 -1.039 0.378 2.934 10.479
β2 4.406 0.498 7.745 8.630
β3 3.630 0.417 7.219 9.273
β4 -5.880 0.644 -2.395 10.157
β5 0.594 0.224 2.799 14.601
β6 -1.610 0.904 0.410 5.759

Application: Analysis of Wheat Protein Data

Extensive simulation has been conducted for: model selection accuracy, comparisonwith non-Bayesian envelope model and different versions of standard Bayesian models

•We developed a comprehensive Bayesian framework for estimation and model selection is in thecontext of envelope model
• A parameterization available for Bayesian analysis has been introduced
• Class of priors introduced has desirable proprieties:
→ flexible
→ sensible interpretation as well as specification of hyperparameters
→ easy to sample from the corresponding posterior
• conditions for posterior propriety have been investigated
• A new distribution GB2,2 along with efficient sampling scheme is developed
•R package “BENV" is developed for data analysis
• The method is applied successfully on simulated and real datasets

Summary
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