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Design Problem

Our goal is to design experiments to obtain parameter estimates for the
k factor model taking binary response

logit(µ) = β0 +

k∑
i=1

βixi. (1)

D-optimal designs aim to minimize the area of the confidence ellip-
soid for the parameter estimates, which corresponds to maximizing the
determinant of the Fisher information matrix. The Fisher information
matrix for an approximate design ξ is given by

Iξ =

m∑
i=1

piΨ(XTβ)XiX
T
i . (2)

where for the logit link Ψ(XTβ) = 1
2+eXTβ+e−XTβ

= eX
Tβ

(1+eXTβ)2
, pi is

the proportion of observations assigned to experimental setting i, and
Xi is the ith row of the design matrix, i = 1, . . . ,m.

Identifying optimal designs for generalized linear models is difficult
because the information matrix depends on the model parameters. An
optimal design at one set of parameter values may perform quite poorly
at another set. To deal with this problem we use the local optimality
approach and take an assumed set of values for the model parameters
to construct designs.

Theoretical results are not yet available for experiments with mixed
factors. Instead the continuous factors are often treated as discrete,
which can result in a large loss of efficiency. Numerical methods such
as the popular Fedorov-Wynn type algorithms generally require a set
of candidate points or an explicit objective function. As the number of
factors increases an explicit objective function often cannot be found
and the set of candidate points quickly becomes prohibitively large.
We propose the use of Particle Swarm Optimization (PSO) to handle
generating D-optimal designs without either of these requirements.

.

Particle Swarm Optimization

• Particle swarm optimization is a metaheuristic optimization algo-
rithm based on animal behavior first introduced by Kennedy and
Eberhart in 1995. While popular in other areas such as engineering,
PSO is not yet commonly used to identify optimal designs.

•Goal: replicate the behavior of a swarm of birds as they search for
food. Each member of the swarm, known as a particle, represents a
candidate solution to the problem, and the food represents the value
obtained at this solution.

• Each member of the swam has an idea of where the best solution is
based on its previous positions. Each member also has knowledge of
the best position any particle has achieved, known as the global best
position. At each iteration each particle is pulled in the direction of
these two positions.

•Algorithm implementation is written in C++ and called from R

.

PSO for Optimal Design of Experiments
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Results

Structure of 22 Designs
We construct D-optimal designs for the model

logit(µ) = β0 + β1x1 + β2x2, (3)

where x1 ∈ {−1, 1} and x2 ∈ [−1, 1]. Our goal is to identify re-
gions where minimally supported designs can be constructed as well
as to identify regions in which designs can be constructed on the factor
boundaries.

Simulation 1 Setup

• PSO settings: 25 particles, 100 maximum iterations, 500 maximum
resets, convergence tolerance 0.0001, and minimum lower efficiency
bound 99.9%
•Nominal values of β0 ∈ {1, 1.5, 2}, and a grid of resolution 0.01

over β1 ∈ [−1.5, 1.5], and β2 ∈ [−3, 3]

• Total of 180,901 optimal designs at each β0

Simulation 1 Results

The black curvilinear areas in the first 3 panels of Figure 1 show pa-
rameter values for β1 and β2 for which minimally supported designs
could be constructed with β0 = {1, 1.5, 2}

The final panel in Figure 1 provides the region in which non-minimally
supported designs can be constructed using only points on the bound-
ary. The lines correspond to the boundaries within which 4 point de-
signs could be constructed with x2 ∈ {−1, 1}.
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Figure 1: Minimally supported designs with β0 = 1, 1.5, 2 and locations in which
designs could be constructed using points only on the boundary.

Simulation 2: Loss of Efficiency

While the logit link is commonly used in practice, in some cases it
may not be correct. Simulation 2 investigates the performance of logit-
based designs when true link is not logit.

Simulation 2 Setup

•Nominal value β0 = 1, search grid of resolution 0.01 over β1 ∈
[−1.5, 1.5], β2 ∈ [−3, 3].

• For each combination of parameter values use PSO to identify D-
optimal design using logit, probit, log-log, and complementary log-
log links.

• Compare the relative efficiency of the logit-based design to the de-
sign identified using the correct link function.

Simulation 2 Results

True Link

Quantile Probit Log-log C-log-log
0.99 1.0000 1.0000 1.0000
0.95 1.0000 1.0000 0.9900
0.90 1.0000 1.0000 0.9488
0.80 0.9900 0.9737 0.8692
0.70 0.9670 0.9106 0.7925

Table 1: Relative efficiencies of designs constructed assuming the logit link when
the true link was probit, log-log, and complementary log-log.

Relative Efficiency When Probit is True Link
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Relative Efficiency When Log−Log is True Link
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Relative Efficiency When c−Log−Log is True Link
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Figure 2: Relative efficiencies of the logit design to the design obtained using correct
link function.

Irregular Design Regions

•Hypothetical plastic molding experiment similar to the one in (An-
derson and Whitcomb, 2004).

• 2 continuous factors, temperature and pressure constrained to
5600 ≤ 10× Temperature + Pressure ≤ 5800

.
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Figure 3: Plot of identified designs over the design space. The red diamonds corre-
spond to the design that ignores the constraint, and the black dots correspond to the
design that conforms to the constraint.

Temp Pressure pi
450 1100.00 0.334
460 1200.00 0.335
460 1000.00 0.331

Temp Pressure pi
450 1000.00 0.3220
450 1265.56 0.1899
460 1000.00 0.3214
460 1262.13 0.1667

Table 2: D-optimal designs obtained with (left) and without (right) conforming to
the constraint.

Conclusions

• Particle swarm optimization is a powerful tool for identifying D-
optimal designs for mixed factor experiments taking a binary re-
sponse.

• For 2 factor experiments, minimally supported designs are often
available. For those designs which are not minimally supported,
it is often not optimal to place all experimental units at the factor
boundaries (as is often done when the continuous factors are treated
as discrete).

• The designs obtained by PSO are generally highly robust against
misspecification of the link function.
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