Motivation

Design a nonparametric change-point detection method (M-statistic) in both the offline and online setting.

- Distribution Free: kernel approaches are distribution free as they provide consistent results over larger classes of data distributions. • Efficient to compute: split data to compute the offline M-statistics in a novel structured way; update M-statistics recursively in the online setting.
- Analytical way to obtain threshold: accurately characterize the tail probability of the M-statistics under null hypothesis in both offline and online setting.
- Powerful: numerically demonstrate that our algorithm is more powerful and more robust compared to conventional parametric approaches (e.g., Hoteling's T^2).

MMD

Assume there are two sets with n observations from a domain \mathcal{X} , where $X = \{x_1, x_2, \ldots, x_n\}$ are drawn iid from distribution P, and $Y = \{y_1, y_2, \ldots, y_n\}$ are drawn iid from distribution Q. The maximum mean discrepancy (MMD) is defined as [1] $\mathsf{MMD}_0[\mathcal{F}, P, Q] := \sup_{f \in \mathcal{T}} \left\{ \mathbb{E}_x[f(x)] - \mathbb{E}_y[f(y)] \right\}.$ - An unbiased estimate of MMD_0^2 can be obtained using U-statistic $\mathsf{MMD}_{u}^{2}[\mathcal{F}, X, Y] = \frac{1}{n(n-1)} \sum_{i,j=1, i\neq j}^{n} h(x_{i}, x_{j}, y_{i}, y_{j}),$

where $h(\cdot)$ is the kernel of the U-statistic defined as

 $h(x_i, x_j, y_i, y_j) = k(x_i, x_j) + k(y_i, y_j) - k(x_i, y_j) - k(x_j, y_j).$ Intuitively, the empirical test statistic MMD_{μ}^2 is expected to be small (close to zero) if P = Q, and large if P and Q are far apart.

Offline *M*-statistic

Figure: Illustration of (a) offline case: data are split into blocks of size B_{\max} , indexed backwards from time t, and we consider blocks of size B, $B=2,\ldots,B_{\max}.$

M-Statistic for Kernel Change-Point Detection

Georgia Institute of Technology

- Search for a location B ($2 \le B \le B_{\max}$) for a change-point.
- $Z_B := \frac{1}{N} \sum_{i=1}^{N} \mathsf{MMD}_u^2(X_i^{(B)}, Y^{(B)})$ $= \frac{1}{NB(B-1)} \sum_{i=1}^{N} \sum_{j,l=1, j \neq l}^{B} h(X_{i,j}^{(B)}, X_{i,l}^{(B)}, Y_j^{(B)}, Y_l^{(B)}).$
- Detect a change-point whenever the M-statistic exceeds the threshold b > 0:

 $M := \max_{B \in \{2, 3, \dots, B_{\max}\}} Z_B / \sqrt{\operatorname{Var}[Z_B]} > b.$ {offline change-point detection}

Online M-statistic

••••	Pool of refer
	sample
••••	Pool of refe
	samp

(b): sequential

Figure: Illustration of (b) online case. Assuming we have large amount of reference or background data that follows the null distribution.

• Fixed block size B_0 .

a pre-determined threshold b > 0:

Recursive update:

Figure: Recursively update the Gram matrix when calculating the online M-statistics.

Examples of M-Statistics

Shuang Li, Yao Xie, Hanjun Dai, Le Song

$Z_{B_0,t} := \frac{1}{N} \sum_{i=1}^{N} \mathsf{MMD}_u^2(X_i^{(B_0,t)}, Y^{(B_0,t)}).$

Detect a change-point whenever the normalized B-statistic exceeds

 $T = \inf\{t : Z_{B_0,t} / \sqrt{\operatorname{Var}[Z_{B_0}]} > b\}. \quad \{\text{online change-point detection}\}$

Tail Probability Approximation under H_0

where the special function

respectively.

and Skewness Correction(SC).

	$B_{\rm max} = 10$		$B_{\rm max} = 20$		$B_{\rm max} = 50$				
α	b (sim)	<i>b</i> (th3)	<i>b</i> (SC)	b (sim)	<i>b</i> (th3)	<i>b</i> (SC)	b (sim)	<i>b</i> (th3)	<i>b</i> (SC)
0.10	2.29	2.40	2.65 (0.10)	2.47	2.60	2.90 (0.12)	2.70	2.80	3.14 (0.17)
0.05	2.72	2.72	3.02 (0.12)	2.88	2.90	3.25 (0.14)	3.15	3.08	3.46 (0.19)
0.01	3.74	3.30	3.71 (0.16)	3.68	3.46	3.87 (0.16)	4.08	3.62	4.02 (0.19)

(a): $B_0 = 10$ (b): $B_0 = 200$ Figure: In online case, for a range of ARL values, comparison b obtained from simulation, from Theorem 2, and from skewness correction under various null distributions.

M-stat Hotelling GL

[1] A Kernel Two-Sample Test. (Gretton, A., et.al. JMLR 2012)

• Theorem 1. Significance Level Approximation. When

 $b \to \infty$ and $b/\sqrt{B_{\max}} \to c$ for some constant c, the significant level of the offline M-statistic is given by

$$\frac{Z_B}{\sqrt{\text{Var}[Z_B]}} > b \bigg\} = b^2 e^{-\frac{1}{2}b^2} \cdot \sum_{B=2}^{B_{\text{max}}} \frac{(2B-1)}{2\sqrt{2\pi}B(B-1)}$$

$$\nu \left(b \sqrt{\frac{2B-1}{B(B-1)}} \right) + o(1),$$
I function

$$\nu(u) \approx \frac{(2/u)(\Phi(u/2) - 0.5)}{(u/2)\Phi(u/2) + \phi(u/2)},$$

 ϕ is the pdf and $\Phi(x)$ is the cdf of the standard normal distribution,

Comparison of thresholds, determined by simulation, Theorem 1,

• Theorem 2. Average Run Length (ARL) Approximation. When $b \to \infty$ and $b/\sqrt{B_0} \to c'$ for some constant c', the average

run length (ARL) of the stopping time T is given by

Power Analysis

Table: Power, offline, thresholds for all methods are calibrated so that $\alpha = 0.05$.

	Case 1	Case 2	Case 3	Case 4	Case 5
tistic	0.71	1.00	0.26	1.00	0.44
g's T^2	0.18	0.88	0.07	0.87	0.03
R	0.03	0.05	0.07	0.12	0.04
A I	<u> </u>	• •	$\langle \circ \tau \rangle$		- - - - - - - - - -

Note: Case 1 to 4, change from $\mathcal{N}(0, I)$ to $\mathcal{N}(0.1, I)$, $\mathcal{N}(0.2, I)$, $\mathcal{N}(0,\Sigma), \mathcal{N}(0.2,\Sigma), respectively.$

Case 5, change from $\mathcal{N}(0, 1)$ to Laplace(0,1).