Motivation

Design a nonparametric change-point detection method (M-statistic) in both the offline and online setting.

- **Distribution Free:** kernel approaches are distribution free as they provide consistent results over larger classes of data distributions.
- **Efficient to compute:** split data to compute the offline M-statistics in a novel structured way; update M-statistics recursively in the online setting.
- **Analytical way to obtain threshold:** accurately characterize the tail probability of the M-statistics under null hypothesis in both offline and online setting.
- **Powerful:** numerically demonstrate that our algorithm is more powerful and more robust compared to conventional parametric approaches (e.g., Hotelling’s T²).

MMD

Assume there are two sets with n observations from a domain X, where \(X = \{x_1, x_2, \ldots, x_n\} \) are drawn iid from distribution \(P \), and \(Y = \{y_1, y_2, \ldots, y_n\} \) are drawn iid from distribution \(Q \).

The **maximum mean discrepancy** (MMD) is defined as [1]

\[
\text{MMD}_{X,Y}^2 = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} h(x_i, x_j) - h(y_i, y_j),
\]

where \(h(\cdot) \) is the kernel of the U-statistic defined as

\[
h(x_i, x_j, y_i, y_j) = k(x_i, x_j) + k(y_i, y_j) - k(x_i, y_j) - k(x_j, y_i).
\]

Intuitively, the empirical test statistic \(\text{MMD}^2 \) is expected to be small (close to zero) if \(P = Q \), and large if \(P \) and \(Q \) are far apart.

Offline M-statistic

Examples of M-Statistics

- Search for a location \(B (2 \leq B \leq B_{max}) \) for a change-point.

\[
Z_B := \frac{1}{N} \sum_{i=1}^{N} \text{MMD}^2(x_i(B), y_i(B)) = \frac{1}{NB(B-1)} \sum_{i=2}^{B} \left(\sum_{j=1}^{i-1} h(x_i(B), x_j(B), y_i(B), y_j(B)) \right)
\]

- Detect a change-point whenever the M-statistic exceeds the threshold \(b > 0 \):

\[
M := \max_{B \in [2, \ldots, B_{max}]} Z_B / \sqrt{\text{Var}(Z_B)} > b.
\]

Online M-statistic

Theorem 1. Significance Level Approximation. When \(b \to \infty \) and \(b/\sqrt{B_{max}} \to c \) for some constant \(c \), the significant level of the offline M-statistic is given by

\[
P \{ \text{MMD} > b \} \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(2B-1)/\sqrt{2(2B-1)}} e^{-u^2/2} du + o(1),
\]

where the special function

\[
\nu(u) \approx \frac{1}{2\alpha} \Phi(\alpha/2) - 0.5
\]

is the pdf and \(\Phi(x) \) is the cdf of the standard normal distribution, respectively.

Theorem 2. Average Run Length (ARL) Approximation. When \(b \to \infty \) and \(b/\sqrt{B_{max}} \to c' \) for some constant \(c' \), the average run length (ARL) of the stopping time \(T \) is given by

\[
E_T[\nu(u)] = \frac{2}{\sqrt{\nu(0)}} \nu(u/2) \Phi(u/2) + o(1).
\]

Power Analysis

<table>
<thead>
<tr>
<th>Case</th>
<th>M-statistic</th>
<th>Hotelling’s T²</th>
<th>GLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.71</td>
<td>0.18</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>0.88</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>0.26</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>0.87</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>0.44</td>
<td>0.12</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Note: Case 1 to 4, change from \(N(0, I) \) to \(N(0.1, I) \), \(N(0.2, I) \), \(N(0, \Sigma) \), \(N(0.2, \Sigma) \), respectively.

Case 5, change from \(N(0, I) \) to Laplace(0,1).
