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Related Resources
• An R Markdown document in HTML format called EDANotes.html

accompanies these slides and is available at https://tinyurl.com/2s4fkuas
and via the QR code below.

• The talk will be given from this document as well as from
EDANotes.html, the document linked above.
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Goals of EDA

• Identifying the scale of each variable. Determining the location, spread,
and distributional shape of each variable.

• Detecting gross outliers, invalid data. Verifying the data import.
• Determining the extent and pattern of missingness.
• Detecting nonlinear relationships. Suggesting transformations.
• Detecting bivariate associations, potential interactions.
• For categorical data, finding categories with few observations that

perhaps should be combined with others.
• Suggesting zero-inflation.

Not a goal:
• Normality is best assessed from the residuals of a model, not on a

univariate distribution.
• Inference. EDA suggests; formal analysis confirms.

4/26



Goals of EDA

• Identifying the scale of each variable. Determining the location, spread,
and distributional shape of each variable.

• Detecting gross outliers, invalid data. Verifying the data import.
• Determining the extent and pattern of missingness.
• Detecting nonlinear relationships. Suggesting transformations.
• Detecting bivariate associations, potential interactions.
• For categorical data, finding categories with few observations that

perhaps should be combined with others.
• Suggesting zero-inflation.

Not a goal:
• Normality is best assessed from the residuals of a model, not on a

univariate distribution.
• Inference. EDA suggests; formal analysis confirms.

4/26



Goals of EDA

• Identifying the scale of each variable. Determining the location, spread,
and distributional shape of each variable.

• Detecting gross outliers, invalid data. Verifying the data import.
• Determining the extent and pattern of missingness.
• Detecting nonlinear relationships. Suggesting transformations.
• Detecting bivariate associations, potential interactions.
• For categorical data, finding categories with few observations that

perhaps should be combined with others.
• Suggesting zero-inflation.

Not a goal:
• Normality is best assessed from the residuals of a model, not on a

univariate distribution.
• Inference. EDA suggests; formal analysis confirms.

4/26



Goals of EDA

• Identifying the scale of each variable. Determining the location, spread,
and distributional shape of each variable.

• Detecting gross outliers, invalid data. Verifying the data import.
• Determining the extent and pattern of missingness.
• Detecting nonlinear relationships. Suggesting transformations.
• Detecting bivariate associations, potential interactions.
• For categorical data, finding categories with few observations that

perhaps should be combined with others.
• Suggesting zero-inflation.

Not a goal:
• Normality is best assessed from the residuals of a model, not on a

univariate distribution.
• Inference. EDA suggests; formal analysis confirms.

4/26



Goals of EDA

• Identifying the scale of each variable. Determining the location, spread,
and distributional shape of each variable.

• Detecting gross outliers, invalid data. Verifying the data import.
• Determining the extent and pattern of missingness.
• Detecting nonlinear relationships. Suggesting transformations.
• Detecting bivariate associations, potential interactions.
• For categorical data, finding categories with few observations that

perhaps should be combined with others.
• Suggesting zero-inflation.

Not a goal:
• Normality is best assessed from the residuals of a model, not on a

univariate distribution.
• Inference. EDA suggests; formal analysis confirms.

4/26



Goals of EDA

• Identifying the scale of each variable. Determining the location, spread,
and distributional shape of each variable.

• Detecting gross outliers, invalid data. Verifying the data import.
• Determining the extent and pattern of missingness.
• Detecting nonlinear relationships. Suggesting transformations.
• Detecting bivariate associations, potential interactions.
• For categorical data, finding categories with few observations that

perhaps should be combined with others.
• Suggesting zero-inflation.

Not a goal:
• Normality is best assessed from the residuals of a model, not on a

univariate distribution.
• Inference. EDA suggests; formal analysis confirms.

4/26



Goals of EDA

• Identifying the scale of each variable. Determining the location, spread,
and distributional shape of each variable.

• Detecting gross outliers, invalid data. Verifying the data import.
• Determining the extent and pattern of missingness.
• Detecting nonlinear relationships. Suggesting transformations.
• Detecting bivariate associations, potential interactions.
• For categorical data, finding categories with few observations that

perhaps should be combined with others.
• Suggesting zero-inflation.

Not a goal:
• Normality is best assessed from the residuals of a model, not on a

univariate distribution.
• Inference. EDA suggests; formal analysis confirms.

4/26



Goals of EDA

• Identifying the scale of each variable. Determining the location, spread,
and distributional shape of each variable.

• Detecting gross outliers, invalid data. Verifying the data import.
• Determining the extent and pattern of missingness.
• Detecting nonlinear relationships. Suggesting transformations.
• Detecting bivariate associations, potential interactions.
• For categorical data, finding categories with few observations that

perhaps should be combined with others.
• Suggesting zero-inflation.

Not a goal:
• Normality is best assessed from the residuals of a model, not on a

univariate distribution.
• Inference. EDA suggests; formal analysis confirms.

4/26



Goals of EDA

• Identifying the scale of each variable. Determining the location, spread,
and distributional shape of each variable.

• Detecting gross outliers, invalid data. Verifying the data import.
• Determining the extent and pattern of missingness.
• Detecting nonlinear relationships. Suggesting transformations.
• Detecting bivariate associations, potential interactions.
• For categorical data, finding categories with few observations that

perhaps should be combined with others.
• Suggesting zero-inflation.

Not a goal:
• Normality is best assessed from the residuals of a model, not on a

univariate distribution.
• Inference. EDA suggests; formal analysis confirms.

4/26



Looking at the Data File
Unless the data set is very large, it is always a good idea to look at the file
containing the data.
We typically want to learn. . .

• how the data are organized;
• what types of variables are there (e.g., character, numeric, date);
• does the data file have a header with variable names;
• are there extra rows or columns of non-data (e.g., comments, tables);
• how have missing values been coded;
• how have categorical variables/non-numeric data been coded;
• how have dates been formatted (12/27/1966, 27-12-66, etc.);
• are there inconsistencies in the organization or formatting of data;
• if relevant, are the data in “wide” or “tall” format;
• are the data delimited (and what’s the delimiter?), in fixed-width

columns, or something else.

Often we have a data dictionary or documentation file of some sort. But you
don’t know if such documentation is accurate until you look at the data!
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Reading Data into R

• read.table() for space delimited,
• read.delim() for tab delimited,
• read.csv() for comma-delimited,
• read.fwf() for data in fixed-width columns.
• readr package (part of the tidyverse) has alternate versions of the

functions above (e.g., read_table()) that offer speed advantage, other
minor improvements.

• haven package has read_sas(), read_spss(), read_stata().
• readxl::read_excel() for reading data from Excel files.
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Naming Variables

Data files often have headers with variable names.
• This is convenient, but those names are not always good choices.
• Renaming the variables will avoid much inconvenient typing and/or

confusion from non-descriptive variable names.

Names should be
• short and easy to type (no spaces, not in all CAPS);
• suggestive of the variable content

• dead better than status;
• never use x1, x2,. . . .

• consistent
• insPlan, dataSource, ageGroup
• not InsurancePlan, data.source, AGE_GROUP.
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Naming Variables
Factors:

• For factors, keep two versions: a numeric or character version, and a
factor. Name them appropriately. E.g., ageGroupNum and ageGroupFac.

• For factors with ordered levels, use levels= to put them in proper order.
• There is an ordered factor class, but it is rarely needed. Use it sparingly.

• Use labels= to attach labels to a factor whose levels are not
self-explanatory.

# suppose we have opinions from a survey with the following responses from n=5 subjects:
opinNum <- c(1,3,3,2,1)
(opinFac <- factor(opinNum,levels=1:3,labels=c("disagree","neutral","agree")))

[1] disagree agree agree neutral disagree
Levels: disagree neutral agree

• Avoid creating factors “on the fly” in function calls and model formulas,
but do take transformations on the fly.

# Don't do this:
m1 <- lm(y~factor(trt)+logAge,data=myData)
# Do this:
myData$trtFac <- factor(myData$trt,levels=1:3,labels=c("Ctrl","A","B"))
m1 <- lm(y~trtFac+log(Age),data=myData)
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Summary Statistics

There are many functions in R that produce summary statistics for many
variables quickly.

• Running functions like mean() and fivenum() on each variable
separately is too slow and doesn’t produce compact results for a report.

Better tools:
1. base::summary()

• Not just for summarizing models.
• Applied to a data frame, it produces a compact summary of each

variable.
• For numeric variables it gives a five-number summary, the mean, and a

count of NAs (if any).
• For factors it gives a frequency distribution and a count of NAs (if any).
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Summary Statistics

2. DescTools::Desc()

• Like summary(), this function is generic and is useful for several classes
of R objects.

• When applied to a data frame, it gives a more extensive summary of the
data frame and each variable than does summary().

• By default, a plot is produced for each variable, but these plots can be
suppressed (use plotit=FALSE).

• The results of Desc() are excellent, but too voluminous for some
purposes.
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Summary Statistics

3. skimr::skim()

• Compactly summarizes a data frame and each variable in it.
• Different summaries depending on variable class.
• Yields a data frame that can be further processed.
• Works well with tidyverse methods.
• Prints nicely in documents rendered by knitr (e.g., R Markdown

documents).
• Chunk option skimr_include_summary=FALSE can be used to suppress the

summary of the data frame (used in some cases below).
• Customizable.
• Default summaries for numeric variables include spark plots that don’t

render to pdf easily, so use skim_without_charts() instead of skim()
to suppress those plots.
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Summary Statistics

4. Hmisc::describe()

• Produces a compact and thorough summary of each variable, but it
includes obscure statistics and is not customizable.

5. Others:

• psych::describe() produces a very compact set of summary statistics
and will give statistics by group, but doesn’t handle factors well;

• summarytools::dfSummary() produces nice results for html and Word,
but is glacially slow when converting its results to pdf format.
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Grouped Data Summaries
Often we want summary statistics separated by the levels of one or more
grouping factors.

• E.g., we may wish to obtain summary statistics separately for male and
female respondents. That is, we want results by gender.

• Such operations are sometimes referred to as by-group processing.

There are many ways to do by-group processing in R.
• The doBy package is devoted to tasks of this sort. And the function

doBy::summaryBy is particularly useful.
• But the most powerful set of tools for by-group processing is in the

dplyr package, part of the tidyverse.
• Currently, dplyr handles by-group processing through the use of grouped

data frames.
• These are of class grouped_df and can be created using the

dplyr::group_by() function.
• See vignette("grouping",package="dplyr") for details, but we illustrate

with several examples in EDANotes.html.
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Plotting the Data

There is much to say about the design and implementation of effective
graphics, but here we concentrate on the main types of plots to use when
doing EDA and how to construct them in R.
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Univariate plots:

• Produce univariate plots of each continuous variable. All of the following
are useful:

• Box plots
• Density plots
• Histograms
• Frequency polygons
• Dot plots

• For factors, univariate plots of the frequency distribution (e.g., bar
charts) are nice, but often add little over a numeric frequency
distribution.

• For the latter, use DescTools::PercTable() and include percentages
instead of just getting counts with base::table().

• Functions like DescTools::Desc make it easy to get univariate plots
quickly, but you may want to re-plot some variables differently or with
more polish.

• See examples in EDANotes.html.
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Bivariate plots:
• If there is a Y vs X distinction, plot the response variable versus each X

variable in a pair-wise manner. Repeat for additional responses if present.
• The most useful bivariate plots depend on the scale of the variables

involved.
• See Table 1 below and examples in EDANotes.html.

Table 1: Plots for bivariate relationships between Y (response) and X (explanatory)

Scale of Y Scale of X Plot Type(s)

Continuous Continuous Scatter plot
Continuous Categorical Side-by-side box, violin, or dot plots; Faceted histograms;

Faceted or overlaid density plots or frequency polygons
Dichotomous Continuous Conditional density plots, scatter plots with binned

averages
Dichotomous Categorical Mosaic plots
Polytomous Continuous Conditional density plots
Polytomous Categorical Mosaic plots
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Plot matrices

Scatterplot matrices are useful for getting all pairwise scatter plots between
several variables.

• The GGally::ggpairs() function extends this concept to get pairwise
plots of various types, depending on the scales of the variables involved.

• The diagonal typically shows univariate distribution plots.
• This function is customizable to control the types of plots that it produces

on the diagonal and in each triangle of the matrix.
• For small sets of variables, plot matrices are a very useful tool to plot the

data quickly and compactly.
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Plots for visualizing conditional association

Bivariate relationships often differ across the levels of one or more additional
variables.

• A two-way relationship can be stronger or weaker—or even qualitatively
different—depending on a third variable.

• When this is the case, a bivariate plot may be simplistic or misleading.

When we suspect that the Y vs X relationship depends on Z, plotting the
conditional relationship may give us important insight. This arises most
commonly when Z is a factor.

• In this case, we can stratify the Y by X plot into different panels
corresponding to the values of Z. This is known as faceting.

• Alternatively, we can use different plotting symbols at each level of Z
(e.g., scatter plots) or examine the distribution of Y at combinations of
the levels of X and Z (e.g., grouped side-by-side box plots, mosaic plots)

• See Table 2 below and examples in EDANotes.html.
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Plots for visualizing conditional association

Table 2: Plots for bivariate relationships between Y and X, conditional on Z

Scale of Y Scale of X Scale of Z Plot Type(s)

Continuous Continuous Categorical Scatter plots with different plotting symbols
and different fits, faceted scatter plots

Continuous Categorical Categorical Grouped or faceted side-by-side box, violin, or
dot plots; doubly-faceted histograms, density
plots, or frequency polygons; faceted and
superimposed density plots or frequency
polygons

Categorical Continuous Categorical Faceted conditional density plots, scatter plots
with binned averages, or mosaic plots with
binned values of X

Categorical Categorical Categorical Mosaic plots or faceted mosaic plots
Continuous Bin Z and use one of the methods above
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Plotting correlations
Correlation heatmaps are a good way to summarize pairwise correlations
between variables. An example can be found in EDANotes.html.

• Such plots can be produced with, e.g.„ corrplot::corrplot.mixed().
• It is easier to quickly understand patterns, magnitudes, and directions of

association from such plots than from numeric correlation matrices.

Warnings:
• Don’t rely on heatmaps without examining scatter plots with, e.g.,

ggpairs().
• If variables are related nonlinearly, transform to linearity before

computing Pearson correlations or use Spearman (rank) correlations.
• Spearman correlations and partial correlations can also be summarized

with heatmaps.
• Do not include variables for which correlations are

inappropriate.
• E.g., correlations are inappropriate for dichotomous and nominal

polytomous variables, so leave them out of the heatmap.
• Ordinal polytomous variables can be included, but use Spearman

correlations in that case.
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Plots for exploring missingness

• Plots of the extent and pattern of missingness in a data set are often
helpful.

• Which variables have missing data and how much?
• How many cases have missing data on at least one variable?
• Which pairs or groups of variables tend to be missing together?

• Good tools for addressing these questions can be found in the visdat,
naniar, mice and VIM packages.

• See vignette("using_visdat",package="visdat"),
vignette("naniar-visualization",package="naniar"), and
vignette("VisualImp",package="VIM") for details.

• Examples can be found in EDANotes.html.
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R Packages Used in the Talk
library(tidyverse) # ggplot2, forcats, dplyr, tidyr, etc.
library(DescTools) # Desc() function for univariate summaries
library(skimr) # descriptive stats
library(Hmisc) # describe() function for descriptives.
library(doBy) # by-group processing
library(car) # for brief() function
library(ggmosaic) # mosaic plots with gpplot2
library(gridExtra) # grid.arrange() puts multiple ggplots on a page
library(GGally) # for ggpairs()
library(corrplot) # correlation heatmaps
library(naniar) # for missing data visualizations and stats
library(visdat) # for missing data visualizations
library(VIM) # for missing data visualizations
library(kableExtra)# nice tables

General R Programming and Graphics:
• tidyverse includes many packages developed by Hadley Wickham and

the team at Posit. W.r.t. this talk, its most important packages are
• ggplot2 Graphics. See my SCC Seminar on ggplot2.
• forcats a collection of useful tools for working with factors in R. See my

SCC Seminar on factors.
• dplyr various tools for programming in R.
• magrittr the incredibly useful pipe operator (%>%).
• tidyr tools for organizing data sets in R.
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R Packages Used in the Talk

Descriptive Statistics:
• DescTools Many tools for descriptive statistics, EDA, categorical data

analysis, and one- and two-sample inference. The function Desc() is
featured here.

• skimr Contains skim() function and others useful for obtaining
univariate summary statistics.

• Hmisc Mentioned here for the describe() function that reports
univariate summaries.

• doBy Contains summaryBy() and other functions for by-group processing.
Useful and simple, but newer tools in dplyr are more powerful.
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R Packages Used in the Talk

Graphics:
• ggmosaic tools for producing mosaic plots with ggplot2.
• gridExtra Used here for the grid.arrange() function for displaying

multiple ggplots on a page.
• GGally Used here for the ggpairs() function that produces a nice

matrix of pairwise bivariate plots.
• corrplot For correlation heatmaps.
• naniar, visdat, and VIM for visualizing missingness.

Miscellaneous:
• car Has many tools for working with regression results. Used here for

the brief() function that gives a compact print-out of a data frame.
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Thanks

• If you need assistance with EDA or with any statistical design or analysis
task, please contact the SCC.

• www.stat.uga/consulting
• We can help!

Thank you!
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