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Abstract

Biomarkers play a crucial role in the design and analysis of clinical trials for personal-
ized medicine. One major goal of these trials is to derive an optimal treatment scheme
based on each patient’s biomarker level. Although completely randomized trials may be
employed, a more efficient design can be attained when patients are adaptively allo-
cated to different treatments throughout the trial using biomarker information. Therefore,
we propose a new adaptive allocation method based on using multiple regression mod-
els to study treatment-biomarker interactions. We show that this perspective simplifies
the derivation of optimal allocations. Moreover, when implemented in real clinical trials,
our method can integrate all the covariates which may not be related to the treatment-
biomarker interaction into a single mode for a joint analysis. Our general idea can be
applied to diverse models to derive optimal allocations. Simulation results show that both
the optimal allocation and the proposed design can lead to a more efficient trial.

1. Problem

Consider the following model

Yi = β0 + β1Zi1 + . . . + βKZiK + βTTi + βZi1Ti + εi, i = 1, . . . , n, (1)

• Yi: Treatment response with independent errors εi ∼ N(0, σ2
i )

•Zi1, . . . , ZiK: Covariates.
• Ti: Treatment assignment taking value 1 or 0 for two treatments.
• (β0, β1, . . . , βK, βT , β): Unknown parameters.

Aim: To find the optimal allocation of patients to two treatments to maximize the power of
testing the following hypothesis

H0 : β = 0 versus H1 : β 6= 0. (2)

and implement it through a randomized sequential design.
Remarks:
•We are interested in the interaction between treatments and a certain biomarker (Z1)

and its practical meaning in the context of personalized medicine that patients with dif-
ferent prognostic factors may respond to treatments differently.
•Z1 is required to be a binary covariate, which may indicate the mutation status (widetype

or mutated) of a gene or the expression level (high or low) of a gene or protein.
•Z2, . . . , ZK are expected to have influence on responses.
• The model could be either homoscedastic or heteroscedastic.

2. Optimal Allocations

(1) Homoscedastic models without interaction term.
We start with a simpler model:

Yi = β0 + β1Zi1 + . . . + βKZiK + βTTi + εi, i = 1, . . . , n, (3)

H0 : βT = 0 versus H1 : βT 6= 0. (4)

The data is naturally divided into two groups based on treatment assignments,

E(Y 1
i ) = Z1

iβ
′ + βT , i = 1, . . . , n1

and
E(Y 2

i ) = Z2
iβ
′, i = 1, . . . , n2

• Y ji , j = 1, 2: Responses for two independent groups 1 and 2.

•Zji = (Z
j
i1, . . . , Z

j
iK)T : Covariate vector for the ith patient in group j.

• nj: The number of patients in group j.

• β′ = (β0, β1, . . . , βK)T : Regression coefficients.
Idea: Maximize efficiency by minimizing the number of groups to be compared.
Intuition: If the mean value of the covariate part in group 1 is the same as that in group
2, i.e.,

n1∑
i=1

Z1
iβ
′/n1 =

n2∑
i=1

Z2
iβ
′/n2 = µ, (5)

testing hypothesis (4) is equivalent to testing whether the mean (ȳ1) of the samples in
group 1 equals to that (ȳ2) in group 2, i.e. µ + βT = µ. In other words, we are performing
the hypothesis test by comparing the means of two groups. On the contrary, if condition
(5) is not satisfied, we have to test the hypothesis by comparing more groups of data, so
that the power is likely lowered.
Theorem 1 Consider model (3) and hypothesis (4), the optimal allocation for maximizing
the power requires both of the following two conditions hold

(A)
∑n1
i=1Z

1
iβ
′/n1 =

∑n2
i=1Z

2
iβ
′/n2,

(B) n1 = n2.

(2) Heteroscedastic models with interaction term
For model (1), we naturally divide the data into the following four groups,

E(Y 1
i ) = β0 + β2Z

1
i2 + . . . + βKZ

1
iK + β1 + βT + β

= Z1
iβ
′′ + β1 + βT + β, i = 1, . . . , n1,

(6)

E(Y 2
i ) = β0 + β2Z

2
i2 + . . . + βKZ

2
iK + βT

= Z2
iβ
′′ + βT , i = 1, . . . , n2,

(7)

E(Y 3
i ) = β0 + β2Z

3
i2 + . . . + βKZ

3
iK + β1

= Z3
iβ
′′ + β1, i = 1, . . . , n3,

(8)

E(Y 4
i ) = β0 + β2Z

4
i2 + . . . + βKZ

4
iK

= Z4
iβ
′′, i = 1, . . . , n4,

(9)

• Y ji , j = 1, 2, 3, 4: Responses for these four independent groups.

•Zji = (1, Z
j
i2, . . . , Z

j
iK)T .

• nj: The number of patients in group j.

• β′′ = (β0, β2, . . . , βK)T .

• V ar(εji ) = σ2
j ,

Theorem 2 Consider model (1) with specified variance of error as above and hypothesis
(2), the optimal allocation for maximizing the power requires both of the following condi-
tions hold

(A)
∑n1
i=1Z

1
iβ
′′/n1 =

∑n2
i=1Z

2
iβ
′′/n2 =

∑n3
i=1Z

3
iβ
′′/n3 =

∑n4
i=1Z

4
iβ
′′/n4,

(B) n1
n1+n3

= σ1
σ1+σ3

and n2
n2+n4

= σ2
σ2+σ4

3. Design

Suppose patients come to clinical trial sequentially and n data points
(yi, zi1, . . . , ziK, Ti, i = 1, . . . , n) have been observed. When the (n + 1)th patient with co-
variates (z(n+1)1, . . . , z(n+1)K) enters the trial, we take the following steps in assigning the
current patient to one of the two treatments.

(A) Obtain the estimator β̂′′n of parameter β′′ = (β0, β2, . . . , βK) and the estimator σ̂i, i =
1, 2, 3, 4 of standard deviations for the four groups by least squares.

(B) Count the number of patients in each of the four groups, i.e. (n1, n2, n3, n4).
(C) Assume the (n+ 1)th patient is assigned to treatment 1. Calculate the variance (V AR1)

of the four items (
∑
Z1
i β̂
′′
n

n1
,
∑
Z2
i β̂
′′
n

n2
,
∑
Z3
i β̂
′′
n

n3
,
∑
Z4
i β̂
′′
n

n4
).

(D) Suppose the (n + 1)th patient is assigned to treatment 2. Calculate the corresponding
variance (V AR2) in the same way as in step (C). If z(n+1)1 = 1, go to step (E1), otherwise
go to step (E2).

(E1) Calculate D = w1(V AR1 − V AR2) + w2( n1
n1+n3

− σ̂1
σ̂1+σ̂3

), where w1, w2 > 0.

(E2) Calculate D = w1(V AR1 − V AR2) + w2( n2
n2+n4

− σ̂2
σ̂2+σ̂4

).

(F) Assign the next patient to treatment 1 with the following probability

ψ =
p D < 0

0.5 D = 0
1− p D > 0

, (10)

where 0.5 < p < 1.

4. Simulations

• Sample size: n = 1000.
• (β0, β1, β2, β3, βT ) = (1, 10, 5, 3, 8).
•Zi, i = 1, 2, 3 ∼ Bernoulli(0.5).
• (σ1, σ2, σ3, σ4) = (1, 1, 2, 2).
•weight w1 = 1, w2 = 1.
• p = 0.8.
•Randomization: Complete Randomization (CR), Proposed Method (PM), Atkinson’s

(1982)
• All the results are based on 1000 replications.

Table 1: Comparisons of various designs in the heteroscedastic case with all binary covariates

Randomization β power β̂ VAR ρ1 = n1
n1+n3

ρ2
n2

n2+n4

CR 0.5 0.705 0.504 0.035 0.500 0.500
(0.201) (0.028) (0.022) (0.023)

PM 0.5 0.748 0.498 0.012 0.334 0.335
(0.190) (0.014) (0.014) (0.014)

Atkinson 0.5 0.702 0.495 0.034 0.500 0.499
(0.196) (0.028) (0.022) (0.021)

CR 0.6 0.848 0.600 0.035 0.500 0.501
(0.204) (0.028) (0.023) (0.023)

PM 0.6 0.890 0.598 0.012 0.335 0.334
(0.180) (0.014) (0.015) (0.015)

Atkinson 0.6 0.856 0.608 0.034 0.500 0.500
(0.201) (0.028) (0.022) (0.022)

5. Conclusion

Both the derived optimal allocation and the proposed design are contributing factors for
increasing the efficiency of clinical trials.
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