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The Big Question

If subjects drop out early in an experiment, would
an optimal crossover design still be optimal? If
not, what could be an alternative choice?”

Statistical Model

In a crossover design with p periods, t treatments,
and n subjects the response is typically modeled as

Yapu = p+ Th + Su + Taghw) + Vah—1.0) + Ekus (1)
where {er,, 1 < k < p,1 < u < n} are indepen-
dent with mean zero and variance 0. Here, Yyi,
denotes the response from subject u in period £ to
which treatment d(k,u) € {1,2,...,t} was assigned
by design d. Furthermore, p is the general mean,
. 1s the kth period effect, ¢, is the uth subject
effect, 4% ) is the (direct) treatment effect of treat-
ment d(k, ), and vg—1 ) is the carryover effect of
treatment d(k — 1, u) that subject u received in the
previous period (by convention 7g( ) = 0).
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Yss=pu+m3+ G+ 1+ v+ €35 (2)

Model in Matrix Form

Let Yd — (Yd117Yd217°”7

the model could be written in matrix form as
Yi=l,pn+Zr +Us+ Tyt + Fyy +¢, (3)

where € ~ (0,0°1,,). Here 7 = (7,....,7) is
the parameter of interest while v = (1, ...,7),
™ = (7,...,my)", and ¢ = (¢, ...,,)" are nuisance
parameters. The matrices Z and U are fixed while
T, and F,; depend on the choice of design d. Also
we have the decompositions Ty = (17, ..., T, ... T")
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and Fy = (F{,...., F ..., F") such that
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Information Matrix

The information matrix for 7 is
Co = Typr ([Lp| Z|U | ) T,
prlG = [ — G(G’G)_G',

Universal Optimality

(Kiefer, 1975) A design d is said to be universally
optimal if it maximizes ®(Cy) for any functional ®
satistying

(C.1) P is concave.
(C.2)D(b1Cy) > P(bCy) for any scaler by > by > 0.
(C.3) ®(Cu)

= $(SCyS’) for any permutation matrix

S.

Dropout Mechanism

Assumption 1: Once a subject drop out of the
study, the probability that the subject reenter the
study is zero.

By above assumption, we are able to define [,, 1 <
u < n to be the total number of periods that Subject
u stayed in the experiment. Further assume
Assumption 2: The drop out mechanism is inde-
pendent of the choice of design d as well as the out-
come of the experiments. Moreover {l,,1 < u < n}
are iid.

Let I = (ly,...,1,) and Z(1),U(l), Ty(l), F4(l) be the
matrices derlved from Z,U,1,, F,; by deleting the
rows corresponding to missing observations. The
information matrix for 7 is

Ca(l) = (Ty(1)) pr-(Z()IU )| Fa(D) )(Tu(l))

= Ca11(1) — Ca12(1)[Caa ()] Can (1) (4)
where
Cunn(1) = TyIYOT(1) Cors(l) = Ty(1YOF(I)
Ca1(l) = Cara(l)’ Caoa(l) = Fy(1) O Fy(1)

O = pr-(Z()|U(1))

Define ¢(d) =

LD (Cy(1)), where the expectation
is taken with respect to [. Our target is to maxi-

mize ¢y(d) for any ¢ satisfying (C.1) — (C.3).

Surrogate Target

Lemma 1: The Schur complement of a matrix
(G > 0 is a concave nondecreasing function of G

G G
(; =
(G21 GZQ)

Gi1o = G — G12G2_2G21 is a Schur COmpl. of 4.
By (C.1), (C.2), and Lemma 1, we have

po(d) < ¢1(d) = P(Cy)
Cd — Cdll — Cd120d220d21
Cdz'j — 400!@](071 < Z,] < 2
Define the ¢;-efficiency, ¢+ = 0,1, of a design d as
ei(d) = ¢;(d)/¢;(dr), where df is an optimal design
under ¢;. Then we have
eo(d) > ei(d)g(d)
where g(d) = ¢o(d)/@1(d) is the gap function of d.

A design d is ¢i-universally optimal, ie. ¢-
optimal for all ® satisfying (C.1) — (C.3), iff
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where

= ps 1s the proportion of sequence s.
= QA = P(ll = k’), and Qi = Zk_

Day + afjly — a?;? ).

* Ok = Qg + Q107 — Qpay 1, 1 < k< p.
. B]’j is a p X p matrix with the upper left corner
filled with I}, — Ji/k.(Convention B, = B}.)
= Zizl Oszk > ().
— 21]321 ﬁkBk > 0.

-T. =T.B, and F. = F.B,
@n_rmlfmﬂ+ﬂmﬂ
312 = T/< AQ)FS -+ T;Alﬁs
322 = F/( AQ)FS -+ ﬁS/Alﬁ’s
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An Example

Low, Lewis, and Prescott (1999) worked on the
same framework through direct search among Latin
squares. When p =t = 4 and n = 16, they pro-
posed a design which consists of two copies of two
distinct 4 x 4 Latin squares which is denoted as
d; here. By our theorem, the dropout mechanism
a=(0,0,1/2,1/2) yields d as follows:
2123343211124443
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Po(d2) Vo(dz) éi(da) glda) L(dy)
0.7058/0.05266 0.9989 0.9748 0.9738
0.70940.05129 0.9991 0.9796 0.9788
0.6337/0.06979 0.9848 0.8877 0.8743
0.7130]0.050050.9993 0.9843 0.9837
Table 1: Performance of dy under @ = (0,0,1/2,1/2).
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The first two columns for d; are 0.665, 0.675, 0.553,

0.685 and 0.0722, 0.0678, 0.0904, 0.0633 respec-
tively.

Conclusions

« The mechanism of subject dropout is formulated
and the universally optimal design is derived in
approximate design theory:.

« It can be used to identify designs for any
combination of n, p,t and any dropout
probability distribution.

« Open problem: The algorithm to find the exact
design is not applicable when |7 is too large, i.e.
when p or/and t is large.
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