The Big Question

If subjects drop out early in an experiment, would an optimal crossover design still be optimal? If not, what could be an alternative choice?

Statistical Model

In a crossover design with p periods, t treatments, and n subjects the response is typically modeled as

 $Y_{dku} = \mu + \pi_k + \varsigma_u + \tau_{d(k,u)} + \gamma_{d(k-1,u)} + \varepsilon_{ku}, (1) \quad (C.1)$ where $\{\varepsilon_{ku}, 1 \leq k \leq p, 1 \leq u \leq n\}$ are indepen- (C.2) dent with mean zero and variance σ^2 . Here, Y_{dku} (C.3) denotes the response from subject u in period k to which treatment $d(k, u) \in \{1, 2, ..., t\}$ was assigned by design d. Furthermore, μ is the general mean, π_k is the kth period effect, ς_u is the uth subject effect, $\tau_{d(k,u)}$ is the (direct) treatment effect of treatment d(k, u), and $\gamma_{d(k-1,u)}$ is the carryover effect of treatment d(k-1, u) that subject u received in the previous period (by convention $\gamma_{d(0,u)} = 0$). For example:

$$4 4 4 2 3 1 2 3 1$$

$$1 2 3 4 4 4 1 2 3$$

$$2 3 1 1 2 3 4 4 4$$

$$Y_{35} = \mu + \pi_3 + \varsigma_5 + \tau_2 + \gamma_4 + \varepsilon_{35}$$
(2)

Model in Matrix Form

Let $Y_d = (Y_{d11}, Y_{d21}, ..., Y_{dp1}, Y_{d12}, ..., Y_{dpn})'$, then the model could be written in matrix form as

 $Y_d = 1_{np}\mu + Z\boldsymbol{\pi} + U\boldsymbol{\varsigma} + T_d\boldsymbol{\tau} + F_d\boldsymbol{\gamma} + \boldsymbol{\varepsilon}, \quad (3)$ where $\boldsymbol{\varepsilon} \sim (0, \sigma^2 I_{np})$. Here $\boldsymbol{\tau} = (\tau_1, ..., \tau_t)'$ is the parameter of interest while $\gamma = (\gamma_1, ..., \gamma_t)'$, $\boldsymbol{\pi} = (\pi_1, ..., \pi_p)'$, and $\boldsymbol{\varsigma} = (\varsigma_1, ..., \varsigma_n)'$ are *nuisance* parameters. The matrices Z and U are fixed while T_d and F_d depend on the choice of design d. Also we have the decompositions $T_d = (T'_1, ..., T'_u, ..., T'_n)'$ and $F_d = (F'_1, ..., F'_n, ..., F'_n)'$, such that $\left(0 0 1 0 \right)$ $\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right)$

$$\begin{array}{c} 3 \\ 1 \\ 2 \end{array} \rightarrow T_u = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, F_u = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Universally Optimal Crossover Designs under Subject Dropout

Wei Zheng

Department of Mathematics, Indiana University-Purdue University Indianapolis (IUPUI)

Т	r	, •		•
n	orm	ation	Ma	trix

The information matrix for $\boldsymbol{\tau}$ is $C_d = T'_d p r^{\perp} ([1_{np} Z U F_d]) T_d,$ $p r^{\perp} G = I - G (G'G)^{-} G',$			
Universal Optimality	G_1		
(Kiefer, 1975) A design d is said to be <i>universally</i> optimal if it maximizes $\Phi(C_d)$ for any functional Φ satisfying	By		
1) Φ is concave.			
2) $\Phi(b_1C_d) \ge \Phi(b_2C_d)$ for any scaler $b_1 \ge b_2 \ge 0$. 3) $\Phi(C_d) = \Phi(SC_dS')$ for any permutation matrix S .	De $e_i(e_i)$ une		

Dropout Mechanism

Assumption 1: Once a subject drop out of the study, the probability that the subject reenter the study is zero.

By above assumption, we are able to define l_u , $1 \leq l_u$ $u \leq n$ to be the total number of periods that Subject u stayed in the experiment. Further assume

Assumption 2: The drop out mechanism is independent of the choice of design d as well as the outcome of the experiments. Moreover $\{l_u, 1 \leq u \leq n\}$ are iid.

Let $l = (l_1, ..., l_n)$ and $Z(l), U(l), T_d(l), F_d(l)$ be the matrices derived from Z, U, T_d, F_d by deleting the rows corresponding to missing observations. The information matrix for τ is

$$C_{d}(l) = (T_{d}(l))' pr^{\perp} (Z(l)|U(l)|F_{d}(l))(T_{d}(l))$$

$$= C_{d11}(l) - C_{d12}(l)[C_{d22}(l)]^{-}C_{d21}(l) \quad (4)$$

where

$$C_{d11}(l) = T_{d}(l)'OT_{d}(l) \quad C_{d12}(l) = T_{d}(l)'OF_{d}(l)$$

$$C_{d21}(l) = C_{d12}(l)' \quad C_{d22}(l) = F_{d}(l)'OF_{d}(l)$$

$$O = pr^{\perp}(Z(l)|U(l))$$

The Target

Define $\phi_0(d) = \mathbb{E}\Phi(C_d(l))$, where the expectation is taken with respect to l. Our target is to maximize $\phi_0(d)$ for any Φ satisfying (C.1) - (C.3).

Surrogate Target

emma 1: The Schur complement of a matrix ≥ 0 is a concave nondecreasing function of G.

$$G = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}$$

 $G_{11.2} = G_{11} - G_{12}G_{22}^{-}G_{21}$ is a Schur compl. of G. y (C.1), (C.2), and Lemma 1, we have

$$\phi_0(d) \le \phi_1(d) = \Phi(C_d) \\ C_d = C_{d11} - C_{d12}C_{d22}^- C_{d21} \\ C_{dij} = \mathbb{E}C_{dij}(l), 1 \le i, j \le 2$$

efine the ϕ_i -efficiency, i = 0, 1, of a design d as $(d) = \phi_i(d) / \phi_i(d_i^*)$, where d_i^* is an optimal design nder ϕ_i . Then we have

$$e_0(d) \ge e_1(d)g(d)$$

where $g(d) = \phi_0(d)/\phi_1(d)$ is the gap function of d.

ϕ_1 -Universal Optimality

A design d is ϕ_1 -universally optimal, i.e. ϕ_1 optimal for all Φ satisfying (C.1) - (C.3), iff

$$\sum_{s \in \mathcal{T}} p_s[\check{C}_{s11} + x^*\check{C}_{s12}B_t] = \frac{y^*}{t-1}B_t$$
$$\sum_{s \in \mathcal{T}} p_s[\check{C}_{s21} + x^*\check{C}_{s22}B_t] = 0$$
$$\sum_{s \in \mathcal{T}} p_s A_2(\hat{T}_s + x^*\hat{F}_s) = 0$$
$$\sum_{s \in \mathcal{T}} p_s = 1$$
$$p_s = 0, \quad s \notin \mathcal{T}$$

where

• p_s is the proportion of sequence s. • $a_k = P(l_1 = k)$, and $a_{jk} = \sum_{i=j}^k a_i$. • $\alpha_k = n^{-1} \left((n+1)a_k + a_{1k-1}^{n+1} - a_{1k}^{n+1} \right).$ • $\beta_k = a_k + a_{k+1,p} a_{1k}^n - a_{kp} a_{1k-1}^n, 1 \le k \le p.$ • B_p^k is a $p \times p$ matrix with the upper left corner filled with $I_k - J_k/k$.(Convention $B_p = B_p^p$.) • $A_1 = \sum_{k=1}^p \alpha_k B_p^k \ge 0.$ • $A_2 = \sum_{k=1}^p \beta_k B_p^k \ge 0.$ • $\hat{T}_s = T_s B_t$ and $\hat{F}_s = F_s B_t$ $\check{C}_{s11} = T'_{s}(A_1 - A_2)T_s + \hat{T}'_{s}A_1\hat{T}_s$ $\check{C}_{s12} = T'_{s}(A_1 - A_2)F_s + \hat{T}'_{s}A_1\hat{F}_s$ $\check{C}_{s22} = F'_s (A_1 - A_2) F_s + \hat{F}'_s A_1 \hat{F}_s$

tively.

Low, J.L., Lewis, S.M. and Prescott, P. (1999). Statistics and Computing. Kushner H.B. (1997). Annals of Statistics. Zheng, W. (2012). Under Review.

An Example

Low, Lewis, and Prescott (1999) worked on the same framework through direct search among Latin squares. When p = t = 4 and n = 16, they proposed a design which consists of two copies of two distinct 4×4 Latin squares which is denoted as d_1 here. By our theorem, the dropout mechanism $\vec{a} = (0, 0, 1/2, 1/2)$ yields d_2 as follows:

> 2 1 2 3 3 4 3 2 1 1 1 2 4 4 4 3 4 4 3 4 1 1 2 1 2 2 3 4 3 3 2 1 $3\ 2\ 1\ 1\ 2\ 3\ 4\ 4\ 3\ 3\ 4\ 1\ 2\ 2\ 1\ 4$ d_2 : 3 2 1 1 2 3 4 4 4 4 2 3 1 1 3 2

$\left[\Phi \right]$	$\phi_0(d_2)$	$V_{\Phi}(d_2)$	$\widetilde{e}_1(d_2)$	$g(d_2)$	$\ell(d_2)$			
A	A 0.7058	0.05266	0.9989	0.9748	0.9738			
	0.7094	0.05129	0.9991	0.9796	0.9788			
E	D 0.6337	0.06979	0.9848	0.8877	0.8743			
	0.7130	0.05005	0.9993	0.9843	0.9837			
	able 1: Performance of d_2 under $\vec{a} = (0, 0, 1/2, 1/2)$							

The first two columns for d_1 are 0.665, 0.675, 0.553, 0.685 and 0.0722, 0.0678, 0.0904, 0.0633 respec-

Conclusions

• The mechanism of subject dropout is formulated and the universally optimal design is derived in approximate design theory.

• It can be used to identify designs for any combination of n, p, t and any dropout probability distribution.

• Open problem: The algorithm to find the exact design is not applicable when $|\mathcal{T}|$ is too large, i.e. when p or/and t is large.

References

