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The Big Question.

.

.

.

If subjects drop out early in an experiment, would
an optimal crossover design still be optimal? If
not, what could be an alternative choice?

Statistical Model
. .

In a crossover design with p periods, t treatments,
and n subjects the response is typically modeled as

Ydku = µ + πk + ςu + τd(k,u) + γd(k−1,u) + εku, (1)
where {εku, 1 ≤ k ≤ p, 1 ≤ u ≤ n} are indepen-
dent with mean zero and variance σ2. Here, Ydku

denotes the response from subject u in period k to
which treatment d(k, u) ∈ {1, 2, ..., t} was assigned
by design d. Furthermore, µ is the general mean,
πk is the kth period effect, ςu is the uth subject
effect, τd(k,u) is the (direct) treatment effect of treat-
ment d(k, u), and γd(k−1,u) is the carryover effect of
treatment d(k − 1, u) that subject u received in the
previous period (by convention γd(0,u) = 0).
For example:

4 4 4 2 3 1 2 3 1
1 2 3 4 4 4 1 2 3
2 3 1 1 2 3 4 4 4

Y35 = µ + π3 + ς5 + τ2 + γ4 + ε35 (2)

Model in Matrix Form
. .

Let Yd = (Yd11, Yd21, ..., Ydp1, Yd12, ..., Ydpn)′, then
the model could be written in matrix form as

Yd = 1npµ + Zπ + Uς + Tdτ + Fdγ + ε, (3)
where ε ∼ (0, σ2Inp). Here τ = (τ1, ..., τt)′ is
the parameter of interest while γ = (γ1, ..., γt)′,
π = (π1, ..., πp)′, and ς = (ς1, ..., ςn)′ are nuisance
parameters. The matrices Z and U are fixed while
Td and Fd depend on the choice of design d. Also
we have the decompositions Td = (T ′

1, ..., T ′
u, ..., T ′

n)′

and Fd = (F ′
1, ..., F ′

u, ..., F ′
n)′, such that

3
1
2

−→ Tu =


0 0 1 0
1 0 0 0
0 1 0 0

 , Fu =


0 0 0 0
0 0 1 0
1 0 0 0



Information Matrix
. .

The information matrix for τ is
Cd = T ′

dpr⊥([1np|Z|U |Fd])Td,

pr⊥G = I − G(G′G)−G′,

Universal Optimality
. .

(Kiefer, 1975) A design d is said to be universally
optimal if it maximizes Φ(Cd) for any functional Φ
satisfying

(C.1) Φ is concave.
(C.2) Φ(b1Cd) ≥ Φ(b2Cd) for any scaler b1 ≥ b2 ≥ 0.
(C.3) Φ(Cd) = Φ(SCdS

′) for any permutation matrix
S.

Dropout Mechanism
. .

Assumption 1: Once a subject drop out of the
study, the probability that the subject reenter the
study is zero.
By above assumption, we are able to define lu, 1 ≤
u ≤ n to be the total number of periods that Subject
u stayed in the experiment. Further assume
Assumption 2: The drop out mechanism is inde-
pendent of the choice of design d as well as the out-
come of the experiments. Moreover {lu, 1 ≤ u ≤ n}
are iid.
Let l = (l1, ..., ln) and Z(l), U(l), Td(l), Fd(l) be the
matrices derived from Z, U, Td, Fd by deleting the
rows corresponding to missing observations. The
information matrix for τ is

Cd(l) = (Td(l))′pr⊥(Z(l)|U(l)|Fd(l))(Td(l))
= Cd11(l) − Cd12(l)[Cd22(l)]−Cd21(l) (4)

where
Cd11(l) = Td(l)′OTd(l) Cd12(l) = Td(l)′OFd(l)
Cd21(l) = Cd12(l)′ Cd22(l) = Fd(l)′OFd(l)

O = pr⊥(Z(l)|U(l))
.

.
The Target.

.

.

.

Define ϕ0(d) = EΦ(Cd(l)), where the expectation
is taken with respect to l. Our target is to maxi-
mize ϕ0(d) for any Φ satisfying (C.1) − (C.3).

Surrogate Target
. .

Lemma 1: The Schur complement of a matrix
G ≥ 0 is a concave nondecreasing function of G.

G =
G11 G12

G21 G22


G11.2 = G11 − G12G

−
22G21 is a Schur compl. of G.

By (C.1), (C.2), and Lemma 1, we have
ϕ0(d) ≤ ϕ1(d) = Φ(Cd)

Cd = Cd11 − Cd12C
−
d22Cd21

Cdij = ECdij(l), 1 ≤ i, j ≤ 2
Define the ϕi-efficiency, i = 0, 1, of a design d as
ei(d) = ϕi(d)/ϕi(d∗

i ), where d∗
i is an optimal design

under ϕi. Then we have
e0(d) ≥ e1(d)g(d)

where g(d) = ϕ0(d)/ϕ1(d) is the gap function of d.
.

.
ϕ1-Universal Optimality.

.

.

.

A design d is ϕ1-universally optimal, i.e. ϕ1-
optimal for all Φ satisfying (C.1) − (C.3), iff∑

s∈T
ps[Čs11 + x∗Čs12Bt] = y∗

t − 1
Bt∑

s∈T
ps[Čs21 + x∗Čs22Bt] = 0
∑
s∈T

psA2(T̂s + x∗F̂s) = 0∑
s∈T

ps = 1

ps = 0, s /∈ T
where

• ps is the proportion of sequence s.
• ak = P (l1 = k), and ajk = ∑k

i=j ai.
• αk = n−1 (

(n + 1)ak + an+1
1,k−1 − an+1

1k

)
.

• βk = ak + ak+1,pa
n
1k − akpa

n
1,k−1, 1 ≤ k ≤ p.

• Bk
p is a p × p matrix with the upper left corner

filled with Ik − Jk/k.(Convention Bp = Bp
p.)

• A1 = ∑p
k=1 αkB

k
p ≥ 0.

• A2 = ∑p
k=1 βkB

k
p ≥ 0.

• T̂s = TsBt and F̂s = FsBt

Čs11 = T ′
s(A1 − A2)Ts + T̂ ′

sA1T̂s

Čs12 = T ′
s(A1 − A2)Fs + T̂ ′

sA1F̂s

Čs22 = F ′
s(A1 − A2)Fs + F̂ ′

sA1F̂s

An Example
. .

Low, Lewis, and Prescott (1999) worked on the
same framework through direct search among Latin
squares. When p = t = 4 and n = 16, they pro-
posed a design which consists of two copies of two
distinct 4 × 4 Latin squares which is denoted as
d1 here. By our theorem, the dropout mechanism
a⃗ = (0, 0, 1/2, 1/2) yields d2 as follows:

d2 :

2 1 2 3 3 4 3 2 1 1 1 2 4 4 4 3
4 4 3 4 1 1 2 1 2 2 3 4 3 3 2 1
3 2 1 1 2 3 4 4 3 3 4 1 2 2 1 4
3 2 1 1 2 3 4 4 4 4 2 3 1 1 3 2

Φ ϕ0(d2) VΦ(d2) ẽ1(d2) g(d2) ℓ(d2)
A 0.7058 0.05266 0.9989 0.9748 0.9738
D 0.7094 0.05129 0.9991 0.9796 0.9788
E 0.6337 0.06979 0.9848 0.8877 0.8743
T 0.7130 0.05005 0.9993 0.9843 0.9837

Table 1: Performance of d2 under a⃗ = (0, 0, 1/2, 1/2).

The first two columns for d1 are 0.665, 0.675, 0.553,
0.685 and 0.0722, 0.0678, 0.0904, 0.0633 respec-
tively.

Conclusions
. .

• The mechanism of subject dropout is formulated
and the universally optimal design is derived in
approximate design theory.

• It can be used to identify designs for any
combination of n, p, t and any dropout
probability distribution.

• Open problem: The algorithm to find the exact
design is not applicable when |T | is too large, i.e.
when p or/and t is large.
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