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A motivating example: Hamada and Nelder (1997)

Two-level factors: (A) poly-film thickness, (B) oil mixture
ratio, (C ) material of gloves, and (D) condition of metal
blanks.

Response: the windshield molding was good or not.

Row A B C D Replicates good molding

1 + + + + 1000 338
2 + + − − 1000 826
3 + − + − 1000 350
4 + − − + 1000 647
5 − + + − 1000 917
6 − + − + 1000 977
7 − − + + 1000 953
8 − − − − 1000 972

Question: Can we do something better?



Introduction Locally D-optimal Designs EW D-optimal Designs Robustness Example

Preliminary setup

Consider an experiment with m fixed and distinct design points:

X =


x′1
x′2
...
x′m

 =


x11 x12 · · · x1d

x21 x22 · · · x2d

· · · · · · · · · · · ·
xm1 xm2 · · · xmd


For example, a 2k factorial experiment with main-effects model
implies m = 2k , d = k + 1, xi1 = 1, and xi2, . . . , xid ∈ {−1, 1}.

Exact design problem: Suppose n is given.
Consider “optimal” ni ’s such that ni ≥ 0 and

∑m
i=1 ni = n.

Approximate design problem: Let pi = ni/n.
Consider “optimal” pi ’s such that pi ≥ 0 and

∑m
i=1 pi = 1.
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Generalized linear model: single parameter

Consider independent univariate responses Y1, . . . ,Yn:

Yi ∼ f (y ; θi ) = exp{yb(θi ) + c(θi ) + d(y)}

For example,

exp
{

y log θ
1−θ + log(1− θ)

}
, Bernoulli(θ)

exp {y log θ − θ − log y !} , Poisson(θ)

exp
{

y −1
θ − k log θ + log yk−1

Γ(k)

}
, Gamma(k, θ), fixed k > 0

exp
{

y θ
σ2 − θ2

2σ2 − y2

2σ2 − 1
2 log(2πσ2)

}
, N(θ, σ2), fixed σ2 > 0

Generalized linear model (McCullagh and Nelder 1989, Dobson 2008): ∃
link function g and parameters of interest β = (β1, . . . , βd)′, such that

E (Yi ) = µi and ηi = g(µi ) = x′iβ.
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Information matrix and D-optimal design

Recall that there are m distinct predictor combinations x1, . . . , xm
with numbers of replicates n1, . . . , nm, respectively.

The maximum likelihood estimator of β has an asymptotic
covariance matrix that is the inverse of the information matrix

I = nX ′WX

where X = (x1, . . . , xm)′ is an m × d matrix, and

W = diag(p1w1, . . . , pmwm) with wi = 1
var(Yi )

(
∂µi
∂ηi

)2
.

A D-optimal design is the p = (p1, . . . , pm)′ which maximizes

|X ′WX |

with given w1, . . . ,wm.
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w as a function of β

Suppose the link function g is one-to-one and differentiable.
Suppose further µi itself determines var(Yi ).
Then wi = ν(ηi ) = ν (xi

′β) for some function ν.

Binary response, logit link: ν(η) = 1
2+eη+e−η .

Poisson count, log link: w = ν(η) = exp{η}.
Gamma response, reciprocal link: w = ν(η) = k/η2.

Normal response, identity link: w = ν(η) ≡ 1/σ2.
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wi = ν(ηi ) = ν(xi
′β) for binary response
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Example: 22 experiment with main-effects model

X =


1 −1 −1
1 −1 +1
1 +1 −1
1 +1 +1

 ,W =


w1p1 0 0 0

0 w2p2 0 0
0 0 w3p3 0
0 0 0 w4p4


The optimization problem maximizing

∣∣X ′WX
∣∣ = 16w1w2w3w4L(p),

where vi = 1/wi and

L(p) = v4p1p2p3 + v3p1p2p4 + v2p1p3p4 + v1p2p3p4
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General case: order-d polynomial

For general case, X is an m × d matrix with distinct rows,
W = diag(p1w1, . . . , pmwm).

Based on González-Dávila, Dorta-Guerra and Ginebra (2007) and
Yang, Mandal and Majumdar (2012b), we have

Lemma

Let X [i1, i2, . . . , id ] be the d × d sub-matrix consisting of the i1th,
. . ., id th rows of the design matrix X . Then

f (p) = |X ′WX | =
∑

1≤i1<···<id≤m
|X [i1, . . . , id ]|2 · pi1wi1 · · · pid wid .
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Characterization of locally D-optimal designs

For each i = 1, . . . ,m, 0 ≤ x < 1, we define

fi (x) = f

(
1− x

1− pi
p1, . . . ,

1− x

1− pi
pi−1, x ,

1− x

1− pi
pi+1, . . . ,

1− x

1− pi
pm

)
= ax(1− x)d−1 + b(1− x)d

If pi > 0, b = fi (0), a = f (p)−b(1−pi )d

pi (1−pi )d−1 ; otherwise, b = f (p),

a = fi
(

1
2

)
· 2d − b.

Theorem

Suppose f (p) > 0. Then p is D-optimal if and only if for each
i = 1, . . . ,m, one of the two conditions below is satisfied:

(i) pi = 0 and fi
(

1
2

)
≤ d+1

2d
f (p);

(ii) 0 < pi ≤ 1
d and fi (0) = 1−pid

(1−pi )d
f (p).
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Saturated designs

Theorem

Let I = {i1, . . . , id} ⊂ {1, . . . ,m} satisfying |X [i1, . . . , id ]| 6= 0.
Then pi1 = pi2 = · · · = pid = 1

d is D-optimal if and only if for each
i /∈ I, ∑

j∈I

|X [{i} ∪ I \ {j}]|2

wj
≤ |X [i1, i2, . . . , id ]|2

wi
.

22 main-effects model: p1 = p2 = p3 = 1/3 is D-optimal if
and only if v1 + v2 + v3 ≤ v4, where vi = 1/wi .

23 main-effects model: p1 = p4 = p6 = p7 = 1/4 is D-optimal
if and only if v1 + v4 + v6 + v7 ≤ 4 min{v2, v3, v5, v8}.
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Saturated designs: more example

2× 3 factorial design: Suppose the design matrix

X =



1 1 1 1
1 1 0 −2
1 1 −1 1
1 −1 1 1
1 −1 0 −2
1 −1 −1 1

 .

p1 = p2 = p3 = p4 = 1/4 is D-optimal if and only if
v1 + v2 + v4 ≤ v5 and v1 + v3 + v4 ≤ v6.

p2 = p3 = p4 = p5 = 1/4 is D-optimal if and only if
v2 + v4 + v5 ≤ v1 and v2 + v3 + v5 ≤ v6.

p3 = p4 = p5 = p6 = 1/4 is D-optimal if and only if
v3 + v4 + v6 ≤ v1 and v3 + v5 + v6 ≤ v2.
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Saturation condition in terms of β: logit link, 22 design

For fixed β0, a pair (β1, β2) satisfies the saturation condition if and
only if the corresponding point is above the curve labelled by β0.
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Lift-one algorithm (Yang, Mandal and Majumdar, 2012b)

Given X and w1, . . . ,wm, search for p = (p1, . . . , pm)′ maximizing
f (p) = |X ′WX |:

1◦ Start with arbitrary p0 = (p1, . . . , pm)′ satisfying 0 < pi < 1,
i = 1, . . . ,m and compute f (p0).

2◦ Set up a random order of i going through {1, 2, . . . ,m}.
3◦ For each i , determine fi (z). In this step, either fi (0) or fi

(
1
2

)
needs to be calculated.

4◦ Define

p
(i)
∗ =

(
1−z∗
1−pi p1, . . . ,

1−z∗
1−pi pi−1, z∗,

1−z∗
1−pi pi+1, . . . ,

1−z∗
1−pi p2k

)′
,

where z∗ maximizes fi (z), 0 ≤ z ≤ 1. Here f (p
(i)
∗ ) = fi (z∗).

5◦ Replace p0 with p
(i)
∗ , f (p0) with f (p

(i)
∗ ).

6◦ Repeat 2◦ ∼ 5◦ until convergence, that is, f (p0) = f (p
(i)
∗ ) for

each i .
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Comments on lift-one algorithm

The basic idea of the lift-one algorithm is that, for randomly
chosen i ∈ {1, . . . ,m}, we update pi to p∗i and all the other

pj ’s to p∗j = pj ·
1−p∗i
1−pi .

The major advantage of the lift-one algorithm is that in order
to determine an optimal p∗i , we need to calculate |X ′WX |
only once.

This algorithm is motivated by the coordinate descent
algorithm (Zangwill, 1969).

It is also in spirit similar to the idea of one-point correction in
the literature (Wynn, 1970; Fedorov, 1972; Müller, 2007),
where design points are added/adjusted one by one.
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Convergence of lift-one algorithm

Modified lift-one algorithm:
(1) For the 10mth iteration and a fixed order of i = 1, . . . ,m we

repeat steps 3◦ ∼ 5◦. If p
(i)
∗ is a better allocation found by the

lift-one algorithm than the allocation p0, instead of updating p0 to

p
(i)
∗ immediately, we obtain p

(i)
∗ for each i , and replace p0 with the

best p
(i)
∗ only.

(2) For iterations other than the 10mth, we follow the original
lift-one algorithm update.

Theorem

When the lift-one algorithm or the modified lift-one algorithm
converges, the converged allocation p maximizes |X ′WX | on the
set of feasible allocations. Furthermore, the modified lift-one
algorithm is guaranteed to converge.
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Performance of lift-one algorithm: comparison

Table: CPU time in seconds for 100 simulated β
Algorithms

Nelder-Mead quasi-Newton conjugate simulated lift-one
gradient annealing

22 Designs 0.77 0.41 4.68 46.53 0.17
23 Designs 46.75 63.18 925.5 1495 0.46
24 Designs 125.9 NA NA NA 1.45
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Performance of lift-one algorithm: number of nonzero pi ’s

Under 2k main-effects model, binary response, logit link, βi ’s iid
from Uniform(-3,3):
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Performance of lift-one algorithm: time cost

Under 2k main-effects model, binary response, logit link, we
simulate βi ’s iid from a uniform distribution and check the time
cost in seconds by lift-one algorithm:
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EW D-optimal designs

For experiments under generalized linear models, we may need
to specify the βi ’s, which gives us the wi ’s, to get D-optimal
designs, known as local D-optimality.

An EW D-optimal design is an optimal allocation of p that
maximizes |X ′E (W )X |. It is one of several alternatives
suggested by Atkinson, Donev and Tobias (2007).

EW D-optimal designs are often approximately as efficient as
Bayesian D-optimal designs.

EW D-optimal designs can be obtained easily using the
lift-one algorithm.

In general, EW D-optimal designs are robust.
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EW D-optimal design and Bayesian D-optimal design

Theorem

For any given link function, if the regression coefficients
β0, β1, . . . , βd are independent with finite expectation, and
β1, . . . , βd all have a symmetric distribution about 0 (not
necessarily the same distribution), then the uniform design is an
EW D-optimal design.

A Bayes D-optimal design maximizes E (log |X ′WX |) where the
expectation is taken over the prior distribution of βi ’s. Note that,
by Jensen’s inequality,

E
(
log |X ′WX |

)
≤ log |X ′E (W )X |

since log |X ′WX | is concave in w. Thus an EW D-optimal design
maximizes an upper bound to the Bayesian D-optimality criterion.
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Example: 22 main-effects model

Suppose β0, β1, β2 are independent, β0 ∼ U(−1, 1), and β1, β2 ∼ U[0, 1).

Under the logit link, the EW D-optimal design is
pe = (0.239, 0.261, 0.261, 0.239)′.

The Bayes optimal design, which maximizes φ(p) = E log |X ′WX | is
po = (0.235, 0.265, 0.265, 0.235)′. The relative efficiency of pe with
respect to po is

exp

{
φ(pe)− φ(po)

k + 1

}
× 100% = 99.99%

for logit link, or 99.94% for probit link, 99.77% for log-log link, and
100.00% for complementary log-log link.

The time cost for EW is 0.11 sec, while it is 5.45 secs for maximizing
φ(p).

It should also be noted that the relative efficiency of the uniform design
pu = (1/4, 1/4, 1/4, 1/4)′ with respect to po is 99.88% for logit link, and
is 89.6% for complementary log-log link.
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Example: 23 main-effects model

Suppose β0, β1, β2, β3 are independent, and the experimenter has
the following prior information for the parameters: β0 ∼ U(−3, 3),
and β1, β2, β3 ∼ U[0, 3).

For the logit link the uniform design is not EW D-optimal.

In this case, EW solution is
pe = (0, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 0)′, while

po = (0.004, 0.165, 0.166, 0.165, 0.165, 0.166, 0.165, 0.004)′

which maximizes φ(p).

The relative efficiency of pe with respect to po is 99.98%.

On the other hand, the relative efficiency of the uniform
design with respect to po is 94.39%.

It takes about 2.39 seconds to find an EW solution while it
takes 121.73 seconds to find po . The difference in
computational time is even more prominent for 24 case (24
seconds versus 3147 seconds).
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Robustness for misspecification of w

Denote the D-criterion value as

ψ(p,w) = |X ′WX |

for given w = (w1, . . . ,wm)′ and p = (p1, . . . , pm)′.

Define the relative loss of efficiency of p with respect to w as

R(p,w) = 1−
(
ψ(p,w)

ψ(pw ,w)

) 1
d

,

where pw is a D-optimal allocation with respect to w.

Define the maximum relative loss of efficiency of a given
design p with respect to a specified region W of w by

Rmax(p) = max
w∈W

R(p,w).
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Robustness of uniform design: 22 main-effects model

Yang, Mandal and Majumdar (2012a) showed that under 22

experiment with main-effects model, if wi ∈ [a, b],
i = 1, 2, 3, 4, 0 < a ≤ b, then the uniform design
pu = (1/4, 1/4, 1/4, 1/4)′ is the most robust one in terms of
the maximum of relative loss of efficiency.

On the other hand, if the experimenter has some prior
knowledge about the model parameters, for example, if one
believes that β0 ∼ Uniform(−1, 1), β1, β2 ∼ Uniform[0, 1) and
β0, β1, β2 are independent, then the theoretical Rmax of
uniform design is 0.134, while the theoretical Rmax of design
given by p = (0.19, 0.31, 0.31, 0.19)′ is 0.116. That is,
uniform design may not be the most robust one.
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Robustness of uniform design: 24 main-effects model

Simulate β0, . . . , β4 for 1000 times and calculate the corresponding
w’s. For each ws , we obtain a D-optimal allocation ps .

Percentages
β0 ∼ U(−3, 3) U(−1, 1) U(−3, 0) N(0, 5)
β1 ∼ U(−1, 1) U(0, 1) U(1, 3) N(0, 1)
β2 ∼ U(−1, 1) U(0, 1) U(1, 3) N(2, 1)
β3 ∼ U(−1, 1) U(0, 1) U(−3,−1) N(−.5, 2)
β4 ∼ U(−1, 1) U(0, 1) U(−3,−1) N(−.5, 2)

(I) (II) (III) (I) (II) (III) (I) (II) (III) (I) (II) (III)
R99 .35 .35 .35 .15 .11 .11 .50 .27 .30 .65 .86 .73
R95 .30 .30 .30 .13 .09 .09 .50 .25 .26 .62 .79 .67
R90 .27 .27 .27 .12 .08 .09 .49 .24 .23 .59 .74 .63

Note: (I) = R100α(pu), uniform design;
(II) = min

1≤s≤1000
R100α(ps), best among 1000;

(III) = R100α(pe), EW design.
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Windshield experiment: revisited (Yang, Mandal and
Majumdar, 2012b)

Based on the data presented in Hamada and Nelder (1997),
β̂ = (1.77,−1.57, 0.13,−0.80,−0.14)′ under logit link.

The efficiency of the original 24−1
III design pHN is 78% of the

locally D-optimal design if β̂ were the true value.

It might be reasonable to consider an initial guess of
β = (2,−1.5, 0.1,−1,−0.1)′. This will lead to the locally
D-optimal half-fractional design pa with relative efficiency
99%.

Another reasonable option is to consider a range, for example,
β0 ∼ Unif(1, 3), β1 ∼ Unif(−3,−1), β2, β4 ∼ Unif(−0.5, 0.5),
and β3 ∼ Unif(−1, 0), the relative efficiency of the EW
D-optimal half-fractional design pe is 98%.
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Windshield experiment: optimal half-fractional design

Row A B C D η π pHN pa pe

5 +1 −1 +1 +1 -0.87 0.295 0.044 0.184
1 +1 +1 +1 +1 -0.61 0.352 0.125 0.178 0.011
6 +1 −1 +1 −1 -0.59 0.357 0.125 0.178 0.011
2 +1 +1 +1 −1 -0.33 0.418 0.059 0.184
7 +1 −1 −1 +1 0.73 0.675 0.125 0.163
3 +1 +1 −1 +1 0.99 0.729 0.195
8 +1 −1 −1 −1 1.01 0.733 0.195
4 +1 +1 −1 −1 1.27 0.781 0.125 0.147

13 −1 −1 +1 +1 2.27 0.906 0.125 0.158 0.111
9 −1 +1 +1 +1 2.53 0.926

14 −1 −1 +1 −1 2.55 0.928
10 −1 +1 +1 −1 2.81 0.943 0.125 0.074 0.110
15 −1 −1 −1 +1 3.87 0.980
11 −1 +1 −1 +1 4.13 0.984 0.125
16 −1 −1 −1 −1 4.15 0.984 0.125
12 −1 +1 −1 −1 4.41 0.988
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Conclusions

We consider the problem of obtaining locally D-optimal
designs for experiments with fixed finite set of design points
under generalized linear models.

We obtain a characterization for a design to be locally
D-optimal.

Based on this characterization, we develop efficient numerical
techniques to search for locally D-optimal designs.

We suggest the use of EW D-optimal designs. These are
much easier to compute and still highly efficient compared
with Bayesian D-optimal designs.

We investigate the properties of fractional factorial designs
(not presented here, see Yang, Mandal and Majumdar,
2012b).

We also study the robustness of the D-optimal designs.
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