Introduction 000000	Locally D-optimal Designs	EW D-optimal Designs	Robustness 000	Example 00000

D-optimal Designs for Factorial Experiments under Generalized Linear Models

Jie Yang

Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago

Joint research with Abhyuday Mandal and Dibyen Majumdar

October 20, 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

- A motivating example
- Preliminary setup
- 2 Locally D-optimal Designs
 - Characterization of locally D-optimal designs
 - Saturated designs
 - Lift-one algorithm for searching locally D-optimal designs

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 3 EW D-optimal Designs
 - Definition
 - Examples

4 Robustness

- Robustness of misspecification of w
- Robustness of uniform design and EW design

5 Example

- Motivating example: revisited
- Conclusions

- Two-level factors: (A) poly-film thickness, (B) oil mixture ratio, (C) material of gloves, and (D) condition of metal blanks.
- Response: the windshield molding was good or not.

Row	А	В	С	D	Replicates	good molding
1	+	+	+	+	1000	338
2	+	+	—	—	1000	826
3	+	_	+	_	1000	350
4	+	_	_	+	1000	647
5	_	+	+	_	1000	917
6	_	+	_	+	1000	977
7	_	_	+	+	1000	953
8	_	_	_	_	1000	972

• Question: Can we do something better?

Introduction ○●0000	Locally D-optimal Designs	EW D-optimal Designs	Robustness 000	Example 00000
Preliminary	y setup			

• Consider an experiment with *m* fixed and distinct design points:

$$X = \begin{pmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \vdots \\ \mathbf{x}_m' \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \cdots & \cdots & \cdots & \cdots \\ x_{m1} & x_{m2} & \cdots & x_{md} \end{pmatrix}$$

For example, a 2^k factorial experiment with main-effects model implies $m = 2^k$, d = k + 1, $x_{i1} = 1$, and $x_{i2}, \ldots, x_{id} \in \{-1, 1\}$.

- Exact design problem: Suppose n is given.
 Consider "optimal" n_i's such that n_i ≥ 0 and ∑_{i=1}^m n_i = n.
- Approximate design problem: Let p_i = n_i/n. Consider "optimal" p_i's such that p_i ≥ 0 and ∑_{i=1}^m p_i = 1.

Introduction	Locally D-optimal Designs	EW D-optimal Designs	Robustness	Example
00000		0000	000	00000
Generalized	d linear model:	single parameter		

Consider independent univariate responses Y_1, \ldots, Y_n :

$$Y_i \sim f(y; \theta_i) = \exp\{yb(\theta_i) + c(\theta_i) + d(y)\}$$

For example,

$$\begin{split} &\exp\left\{y\log\frac{\theta}{1-\theta} + \log(1-\theta)\right\}, & \text{Bernoulli}(\theta) \\ &\exp\left\{y\log\theta - \theta - \log y!\right\}, & \text{Poisson}(\theta) \\ &\exp\left\{y\frac{-1}{\theta} - k\log\theta + \log\frac{y^{k-1}}{\Gamma(k)}\right\}, & \text{Gamma}(k,\theta), \text{ fixed } k > 0 \\ &\exp\left\{y\frac{\theta}{\sigma^2} - \frac{\theta^2}{2\sigma^2} - \frac{y^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2)\right\}, & \mathcal{N}(\theta, \sigma^2), \text{ fixed } \sigma^2 > 0 \end{split}$$

Generalized linear model (McCullagh and Nelder 1989, Dobson 2008): \exists link function g and parameters of interest $\beta = (\beta_1, \ldots, \beta_d)'$, such that

$$E(Y_i) = \mu_i$$
 and $\eta_i = g(\mu_i) = \mathbf{x}'_i \boldsymbol{\beta}$.

Recall that there are *m* distinct predictor combinations $\mathbf{x}_1, \ldots, \mathbf{x}_m$ with numbers of replicates n_1, \ldots, n_m , respectively.

The maximum likelihood estimator of β has an asymptotic covariance matrix that is the inverse of the *information matrix*

 $\mathbf{I}=nX'WX$

where $X = (\mathbf{x}_1, \dots, \mathbf{x}_m)'$ is an $m \times d$ matrix, and $W = \operatorname{diag}(p_1 w_1, \dots, p_m w_m)$ with $w_i = \frac{1}{\operatorname{var}(Y_i)} \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2$.

A *D*-optimal design is the $\mathbf{p} = (p_1, \dots, p_m)'$ which maximizes

|X'WX|

with given w_1, \ldots, w_m .

Introduction 000000	Locally D-optimal Designs	EW D-optimal Designs	Robustness 000	Example 00000
w as a fu	unction of β			

Suppose the link function g is one-to-one and differentiable. Suppose further μ_i itself determines $var(Y_i)$. Then $w_i = \nu(\eta_i) = \nu(\mathbf{x}_i'\beta)$ for some function ν .

- Binary response, logit link: $\nu(\eta) = \frac{1}{2+e^{\eta}+e^{-\eta}}$.
- Poisson count, log link: $w = \nu(\eta) = \exp{\{\eta\}}$.
- Gamma response, reciprocal link: $w = \nu(\eta) = k/\eta^2$.

• Normal response, identity link: $w = \nu(\eta) \equiv 1/\sigma^2$.

 $\eta = \mathbf{x}^{\prime}\beta$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

= 1	\sim^2			00000
Introduction 000000	Locally D-optimal Designs	EW D-optimal Designs	Robustness 000	Example 00000

$$X = \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & +1 \\ 1 & +1 & -1 \\ 1 & +1 & +1 \end{pmatrix}, W = \begin{pmatrix} w_1 p_1 & 0 & 0 & 0 \\ 0 & w_2 p_2 & 0 & 0 \\ 0 & 0 & w_3 p_3 & 0 \\ 0 & 0 & 0 & w_4 p_4 \end{pmatrix}$$

The optimization problem maximizing

$$\left|X'WX\right| = 16w_1w_2w_3w_4L(\mathbf{p}),$$

where $v_i = 1/w_i$ and

$$L(\mathbf{p}) = v_4 p_1 p_2 p_3 + v_3 p_1 p_2 p_4 + v_2 p_1 p_3 p_4 + v_1 p_2 p_3 p_4$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Locally D-optimal Designs	EW D-optimal Designs	Robustness	Example
000000		0000	000	00000
General ca	ase: order- <i>d</i> polyr	omial		

For general case, X is an $m \times d$ matrix with distinct rows, $W = \operatorname{diag}(p_1w_1, \ldots, p_mw_m).$

Based on González-Dávila, Dorta-Guerra and Ginebra (2007) and Yang, Mandal and Majumdar (2012b), we have

Lemma

Let $X[i_1, i_2, ..., i_d]$ be the $d \times d$ sub-matrix consisting of the i_1 th, ..., i_d th rows of the design matrix X. Then

$$f(\mathbf{p}) = |X'WX| = \sum_{1 \le i_1 < \cdots < i_d \le m} |X[i_1, \dots, i_d]|^2 \cdot p_{i_1} w_{i_1} \cdots p_{i_d} w_{i_d}.$$

Introduction 000000	Locally D-optimal Designs	EW D-optimal Designs	Robustness 000	Example 00000
Characte	erization of locally	D-ontimal desi	mnc	

For each $i = 1, \ldots, m$, $0 \le x < 1$, we define

$$f_i(x) = f\left(\frac{1-x}{1-p_i}p_1, \dots, \frac{1-x}{1-p_i}p_{i-1}, x, \frac{1-x}{1-p_i}p_{i+1}, \dots, \frac{1-x}{1-p_i}p_m\right)$$

= $ax(1-x)^{d-1} + b(1-x)^d$

If
$$p_i > 0$$
, $b = f_i(0)$, $a = \frac{f(\mathbf{p}) - b(1 - p_i)^d}{p_i(1 - p_i)^{d-1}}$; otherwise, $b = f(\mathbf{p})$,
 $a = f_i(\frac{1}{2}) \cdot 2^d - b$.

Theorem

Suppose $f(\mathbf{p}) > 0$. Then \mathbf{p} is D-optimal if and only if for each i = 1, ..., m, one of the two conditions below is satisfied: (i) $p_i = 0$ and $f_i\left(\frac{1}{2}\right) \le \frac{d+1}{2^d}f(\mathbf{p})$; (ii) $0 < p_i \le \frac{1}{d}$ and $f_i(0) = \frac{1-p_id}{(1-p_i)^d}f(\mathbf{p})$.

Saturated	designs			
Introduction	Locally D-optimal Designs	EW D-optimal Designs	Robustness	Example
000000		0000	000	00000

Theorem

Let
$$\mathbf{I} = \{i_1, \dots, i_d\} \subset \{1, \dots, m\}$$
 satisfying $|X[i_1, \dots, i_d]| \neq 0$.
Then $p_{i_1} = p_{i_2} = \dots = p_{i_d} = \frac{1}{d}$ is D-optimal if and only if for each $i \notin \mathbf{I}$,

$$\sum_{j \in \mathbf{I}} \frac{|X[\{i\} \cup \mathbf{I} \setminus \{j\}]|^2}{w_j} \leq \frac{|X[i_1, i_2, \dots, i_d]|^2}{w_i}.$$

- 2^2 main-effects model: $p_1 = p_2 = p_3 = 1/3$ is D-optimal if and only if $v_1 + v_2 + v_3 \le v_4$, where $v_i = 1/w_i$.
- 2^3 main-effects model: $p_1 = p_4 = p_6 = p_7 = 1/4$ is D-optimal if and only if $v_1 + v_4 + v_6 + v_7 \le 4 \min\{v_2, v_3, v_5, v_8\}$.

000000		0000	000	00000		
Saturated designs: more example						

 2×3 factorial design: Suppose the design matrix

$$X = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & -2 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & 0 & -2 \\ 1 & -1 & -1 & 1 \end{pmatrix}$$

- $p_1 = p_2 = p_3 = p_4 = 1/4$ is D-optimal if and only if $v_1 + v_2 + v_4 \le v_5$ and $v_1 + v_3 + v_4 \le v_6$.
- $p_2 = p_3 = p_4 = p_5 = 1/4$ is D-optimal if and only if $v_2 + v_4 + v_5 \le v_1$ and $v_2 + v_3 + v_5 \le v_6$.
- $p_3 = p_4 = p_5 = p_6 = 1/4$ is D-optimal if and only if $v_3 + v_4 + v_6 \le v_1$ and $v_3 + v_5 + v_6 \le v_2$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

For fixed β_0 , a pair (β_1 , β_2) satisfies the saturation condition if and only if the corresponding point is above the curve labelled by β_0 .

|β₁|

(日)、

э

Introduction 000000	Locally D-optimal Designs	EW D-optimal Designs	Robustness 000	Example 00000
Lift-one	algorithm (Yang	Mandal and Ma	iumdar, 20	12b)

Given X and w_1, \ldots, w_m , search for $\mathbf{p} = (p_1, \ldots, p_m)'$ maximizing $f(\mathbf{p}) = |X'WX|$:

- 1° Start with arbitrary $\mathbf{p}_0 = (p_1, \dots, p_m)'$ satisfying $0 < p_i < 1$, $i = 1, \dots, m$ and compute $f(\mathbf{p}_0)$.
- 2° Set up a random order of *i* going through $\{1, 2, \ldots, m\}$.
- 3° For each *i*, determine $f_i(z)$. In this step, either $f_i(0)$ or $f_i(\frac{1}{2})$ needs to be calculated.
- 4° Define

 $\mathbf{p}_{*}^{(i)} = \left(\frac{1-z_{*}}{1-p_{i}}p_{1}, \ldots, \frac{1-z_{*}}{1-p_{i}}p_{i-1}, z_{*}, \frac{1-z_{*}}{1-p_{i}}p_{i+1}, \ldots, \frac{1-z_{*}}{1-p_{i}}p_{2^{k}}\right)',$

where z_* maximizes $f_i(z)$, $0 \le z \le 1$. Here $f(\mathbf{p}_*^{(i)}) = f_i(z_*)$.

- 5° Replace \mathbf{p}_0 with $\mathbf{p}_*^{(i)}$, $f(\mathbf{p}_0)$ with $f(\mathbf{p}_*^{(i)})$.
- 6° Repeat 2° ~ 5° until convergence, that is, $f(\mathbf{p}_0) = f(\mathbf{p}_*^{(i)})$ for each *i*.

Introduction 000000	Locally D-optimal Designs	EW D-optimal Designs	Robustness 000	Example 00000
Comments	on lift-one algor	rithm		

- The basic idea of the lift-one algorithm is that, for randomly chosen $i \in \{1, \ldots, m\}$, we update p_i to p_i^* and all the other p_j 's to $p_j^* = p_j \cdot \frac{1-p_i^*}{1-p_i}$.
- The major advantage of the lift-one algorithm is that in order to determine an optimal p^{*}_i, we need to calculate |X'WX| only once.
- This algorithm is motivated by the *coordinate descent algorithm* (Zangwill, 1969).
- It is also in spirit similar to the idea of one-point correction in the literature (Wynn, 1970; Fedorov, 1972; Müller, 2007), where design points are added/adjusted one by one.

Converge	ance of lift one al	rorithm		
Introduction 000000	Locally D-optimal Designs	EW D-optimal Designs	Robustness 000	Example 00000

Modified lift-one algorithm:

(1) For the 10*m*th iteration and a fixed order of i = 1, ..., m we repeat steps $3^{\circ} \sim 5^{\circ}$. If $\mathbf{p}_{*}^{(i)}$ is a better allocation found by the lift-one algorithm than the allocation \mathbf{p}_{0} , instead of updating \mathbf{p}_{0} to $\mathbf{p}_{*}^{(i)}$ immediately, we obtain $\mathbf{p}_{*}^{(i)}$ for each *i*, and replace \mathbf{p}_{0} with the best $\mathbf{p}_{*}^{(i)}$ only.

(2) For iterations other than the 10mth, we follow the original lift-one algorithm update.

Theorem

When the lift-one algorithm or the modified lift-one algorithm converges, the converged allocation \mathbf{p} maximizes |X'WX| on the set of feasible allocations. Furthermore, the modified lift-one algorithm is guaranteed to converge.

Introduction 000000	Locally D-optimal Designs	EW D-optimal Designs	Robustness 000	Example 00000
Performan	ce of lift-one algo	rithm: compari	son	

Table: CPU time in seconds for 100 simulated β

	Algorithms										
	Nelder-Mead	quasi-Newton	conjugate	simulated	lift-one						
			gradient	annealing							
2 ² Designs	0.77	0.41	4.68	46.53	0.17						
2 ³ Designs	46.75	63.18	925.5	1495	0.46						
2 ⁴ Designs	125.9	NA	NA	NA	1.45						

Under 2^k main-effects model, binary response, logit link, β_i 's iid from Uniform(-3,3):

Under 2^k main-effects model, binary response, logit link, we simulate β_i 's iid from a uniform distribution and check the time cost in seconds by lift-one algorithm:

Introduction	Locally D-optimal Designs	EW D-optimal Designs	Robustness	Example
000000		●○○○	000	00000
EW D-opt	imal designs			

- For experiments under generalized linear models, we may need to specify the β_i's, which gives us the w_i's, to get D-optimal designs, known as *local D-optimality*.
- An EW D-optimal design is an optimal allocation of p that maximizes |X'E(W)X|. It is one of several alternatives suggested by Atkinson, Donev and Tobias (2007).
- EW D-optimal designs are often approximately as efficient as Bayesian D-optimal designs.

- EW D-optimal designs can be obtained easily using the lift-one algorithm.
- In general, EW D-optimal designs are robust.

Introduction	Locally D-optimal Designs	EW D-optimal Designs	Robustness	Example
000000		o●oo	000	00000
FW D-onti	mal design and l	Bavesian D-onti	mal design	

Theorem

For any given link function, if the regression coefficients $\beta_0, \beta_1, \ldots, \beta_d$ are independent with finite expectation, and β_1, \ldots, β_d all have a symmetric distribution about 0 (not necessarily the same distribution), then the uniform design is an EW D-optimal design.

A Bayes D-optimal design maximizes $E(\log |X'WX|)$ where the expectation is taken over the prior distribution of β_i 's. Note that, by Jensen's inequality,

$$E\left(\log |X'WX|
ight) \leq \log |X'E(W)X|$$

since $\log |X'WX|$ is concave in **w**. Thus an EW D-optimal design maximizes an upper bound to the Bayesian D-optimality criterion.

000000	00000000000		000	00000
Example:	2 ² main-effects m	odel		

Suppose $\beta_0, \beta_1, \beta_2$ are independent, $\beta_0 \sim U(-1, 1)$, and $\beta_1, \beta_2 \sim U[0, 1)$.

- Under the logit link, the EW D-optimal design is $\mathbf{p}_e = (0.239, 0.261, 0.261, 0.239)'$.
- The Bayes optimal design, which maximizes $\phi(\mathbf{p}) = E \log |X'WX|$ is $\mathbf{p}_o = (0.235, 0.265, 0.265, 0.235)'$. The relative efficiency of \mathbf{p}_e with respect to \mathbf{p}_o is

$$\exp\left\{\frac{\phi(\mathbf{p}_e) - \phi(\mathbf{p}_o)}{k+1}\right\} \times 100\% = 99.99\%$$

for logit link, or 99.94% for probit link, 99.77% for log-log link, and 100.00% for complementary log-log link.

- The time cost for EW is 0.11 sec, while it is 5.45 secs for maximizing $\phi(\mathbf{p})$.
- It should also be noted that the relative efficiency of the uniform design $\mathbf{p}_u = (1/4, 1/4, 1/4, 1/4)'$ with respect to \mathbf{p}_o is 99.88% for logit link, and is 89.6% for complementary log-log link.

Evample	2 ³ main_effects	model		
Introduction	Locally D-optimal Designs	EW D-optimal Designs	Robustness	Example
000000		○○○●	000	00000

Suppose $\beta_0, \beta_1, \beta_2, \beta_3$ are independent, and the experimenter has the following prior information for the parameters: $\beta_0 \sim U(-3,3)$, and $\beta_1, \beta_2, \beta_3 \sim U[0,3)$.

- For the logit link the uniform design is not EW D-optimal.
- In this case, EW solution is $\mathbf{p}_e = (0, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 0)'$, while

 $\mathbf{p}_o = (0.004, 0.165, 0.166, 0.165, 0.165, 0.166, 0.165, 0.004)'$

which maximizes $\phi(\mathbf{p})$.

- The relative efficiency of \mathbf{p}_e with respect to \mathbf{p}_o is 99.98%.
- On the other hand, the relative efficiency of the uniform design with respect to **p**_o is 94.39%.
- It takes about 2.39 seconds to find an EW solution while it takes 121.73 seconds to find p_o. The difference in computational time is even more prominent for 2⁴ case (24 seconds versus 3147 seconds).

Introduction	Locally D-optimal Designs	EW D-optimal Designs	Robustness	Example
000000		0000	●○○	00000
Robustnes	s for misspecifica	tion of <i>w</i>		

• Denote the D-criterion value as

$$\psi(\mathbf{p}, \mathbf{w}) = |X' W X|$$

for given $\mathbf{w} = (w_1, \ldots, w_m)'$ and $\mathbf{p} = (p_1, \ldots, p_m)'$.

• Define the relative loss of efficiency of ${\bf p}$ with respect to ${\bf w}$ as

$${\it R}({f p},{f w})=1-\left(rac{\psi({f p},{f w})}{\psi({f p}_w,{f w})}
ight)^{rac{1}{d}},$$

where \mathbf{p}_w is a D-optimal allocation with respect to \mathbf{w} .

 Define the maximum relative loss of efficiency of a given design p with respect to a specified region W of w by

$$R_{\max}(\mathbf{p}) = \max_{\mathbf{w}\in\mathcal{W}} R(\mathbf{p},\mathbf{w}).$$

- Yang, Mandal and Majumdar (2012a) showed that under 2² experiment with main-effects model, if w_i ∈ [a, b], i = 1, 2, 3, 4, 0 < a ≤ b, then the uniform design p_u = (1/4, 1/4, 1/4, 1/4)' is the most robust one in terms of the maximum of relative loss of efficiency.
- On the other hand, if the experimenter has some prior knowledge about the model parameters, for example, if one believes that β₀ ~ Uniform(-1,1), β₁, β₂ ~ Uniform[0,1) and β₀, β₁, β₂ are independent, then the theoretical R_{max} of uniform design is 0.134, while the theoretical R_{max} of design given by **p** = (0.19, 0.31, 0.31, 0.19)' is 0.116. That is, uniform design may not be the most robust one.

Simulate β_0, \ldots, β_4 for 1000 times and calculate the corresponding **w**'s. For each **w**_s, we obtain a D-optimal allocation **p**_s.

		Percentages											
	β_0 -	$\sim U(-$	$(3,3) \qquad U(-1,1)$			U(-3, 0)			N(0,5)				
	β_1 ~	~ U(-	1, 1)		U(0, 1))		U(1, 3)		N(0, 1))	
	β_2 ~	$\sim U(-$	1, 1)	U(0,1)			U(1, 3)		N(2, 1))		
	$\beta_3 \sim U(-1,1)$			U(0, 1)		U	U(-3, -1)		N(5,2)		2)		
	$\beta_4 \sim U(-1,1)$		U(0,1)		U(-3, -1)		N(5, 2)						
	(I)	(II)	(111)	(I)	(II)	(III)	(I)	(II)	(III)	(I)	(II)	(111)	
R_{99}	.35	.35	.35	.15	.11	.11	.50	.27	.30	.65	.86	.73	
R_{95}	.30	.30	.30	.13	.09	.09	.50	.25	.26	.62	.79	.67	
R_{90}	.27	.27	.27	.12	.08	.09	.49	.24	.23	.59	.74	.63	
NI	(1)		(\	£	.1							

Note: (I) = $R_{100\alpha}(\mathbf{p}_u)$, uniform design;

(II) = $\min_{1 \le s \le 1000} R_{100\alpha}(\mathbf{p}_s)$, best among 1000;

(III) = $R_{100\alpha}(\mathbf{p}_e)$, EW design.

- Based on the data presented in Hamada and Nelder (1997), $\hat{\beta} = (1.77, -1.57, 0.13, -0.80, -0.14)'$ under logit link.
- The efficiency of the original 2_{III}^{4-1} design \mathbf{p}_{HN} is 78% of the locally D-optimal design if $\hat{\boldsymbol{\beta}}$ were the true value.
- It might be reasonable to consider an initial guess of
 β = (2, -1.5, 0.1, -1, -0.1)'. This will lead to the locally
 D-optimal half-fractional design p_a with relative efficiency
 99%.

\A/'			
vvindsnield	i experiment:	optimal nait-tractional de	sign

Row	А	В	С	D	η	π	рнм	pa	\mathbf{p}_{e}
5	+1	-1	+1	+1	-0.87	0.295		0.044	0.184
1	$^{+1}$	$^{+1}$	+1	+1	-0.61	0.352	0.125	0.178	0.011
6	+1	$^{-1}$	+1	-1	-0.59	0.357	0.125	0.178	0.011
2	+1	+1	+1	$^{-1}$	-0.33	0.418		0.059	0.184
7	+1	$^{-1}$	$^{-1}$	+1	0.73	0.675	0.125	0.163	
3	+1	+1	$^{-1}$	+1	0.99	0.729			0.195
8	+1	$^{-1}$	$^{-1}$	$^{-1}$	1.01	0.733			0.195
4	$^{+1}$	+1	-1	-1	1.27	0.781	0.125	0.147	
13	$^{-1}$	$^{-1}$	+1	+1	2.27	0.906	0.125	0.158	0.111
9	$^{-1}$	+1	+1	+1	2.53	0.926			
14	$^{-1}$	$^{-1}$	+1	$^{-1}$	2.55	0.928			
10	-1	+1	+1	-1	2.81	0.943	0.125	0.074	0.110
15	-1	-1	-1	$^{+1}$	3.87	0.980			
11	-1	$^{+1}$	$^{-1}$	$^{+1}$	4.13	0.984	0.125		
16	-1	$^{-1}$	$^{-1}$	-1	4.15	0.984	0.125		
12	$^{-1}$	+1	$^{-1}$	$^{-1}$	4.41	0.988			

Introduction	Locally D-optimal Designs	EW D-optimal Designs	Robustness	Example
000000		0000	000	○○●○○
Conclusion	าร			

- We consider the problem of obtaining locally D-optimal designs for experiments with fixed finite set of design points under generalized linear models.
- We obtain a characterization for a design to be locally D-optimal.
- Based on this characterization, we develop efficient numerical techniques to search for locally D-optimal designs.
- We suggest the use of EW D-optimal designs. These are much easier to compute and still highly efficient compared with Bayesian D-optimal designs.
- We investigate the properties of fractional factorial designs (not presented here, see Yang, Mandal and Majumdar, 2012b).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• We also study the robustness of the D-optimal designs.

Introduction	Locally D-optimal Designs	EW D-optimal Designs	Robustness	Example
000000		0000	000	○○○●○
References	5			

- Hamada, M. and Nelder, J. A. (1997). Generalized linear models for quality-improvement experiments, *Journal of Quality Technology*, 29, 292–304.
- Ø McCullagh, P. and Nelder, J. (1989). Generalized Linear Models, Second Edition.
- Obson, A.J. (2008). An Introduction to Generalized Linear Models, 3rd edition, Chapman and Hall/CRC.
- González-Dávila, E., Dorta-Guerra, R. and Ginebra, J. (2007). On the information in two-level experiments, *Model Assisted Statistics and Applications*, 2, 173–187.
- J. Yang, A. Mandal, and D. Majumdar (2012a). Optimal designs for two-level factorial experiments with binary response, *Statistica Sinica*, Vol. 22, No. 2, 885–907.
- J. Yang, A. Mandal, and D. Majumdar (2012b). Optimal designs for 2^k factorial experiments with binary response, submitted for publication. Available at http://arxiv.org/pdf/1109.5320v3.pdf

Introduction	Locally D-optimal Designs	EW D-optimal Designs	Robustness	Example	
000000		0000	000	○○○○●	
More references					

- Zangwill, W. (1969), Nonlinear Programming: A Unified Approach, Prentice-Hall, New Jersey.
- Wynn, H.P. (1970). The sequential generation of D-optimum experimental designs, Annals of Mathematical Statistics, 41, 1655–1664.
- Fedorov, V.V. (1972). Theory of Optimal Experiments, Academic Press, New York.
- Müller, W. G. (2007). Collecting Spatial Data: Optimum Design of Experiments for Random Fields, 3rd Edition, Spinger.
- Atkinson, A. C., Donev, A. N. and Tobias, R. D. (2007). Optimum Experimental Designs, with SAS, Oxford University Press.