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* For highly reliable products or components, a life
testing experiment takes too long to observe any
failures under normal operating conditions.

 ALT is often used to shorten the life so that the
failures can be quickly obtained in a reasonable time
period.

 ALT experiments are normally conducted at stress

levels which are higher than normal use stress level,
So-
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The commonly used methods of stress loading
(acceleration) include:

. Constant stress ALT: each unit is subjected to an
accelerated stress level and this level remains unchanged
during the testing period although different units may be
under different stress levels.

 Step-stress ALT: the stress subjected to each test unit
is not constant but is changing in a stepwise manner.

* Compare to constant stress ALTS, step-stress ALTs
often obtain information much more quickly. 5
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Step-Stress ALT

e Stress level varies with time.

« All test units are tested at an accelerated stress level
(all at the same level). at the first stress changing time,
all of the surviving units are moved to a higher stress
level; at the second stress changing time, all of the
surviving units are moved to an even higher stress
level, and so on, until all units fail (complete data) or
until a specified censoring time (censored data).

A simple step-stress only use two accelerated stress

levels with one stress-changing time. °
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Graphical representation of a 4-step-stress plan
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For a step-stress plan, the effect of the change in stress levels
on the remaining life-time of a product needs to be explained.

With a k-step-stress model, two commonly used ones are:
1. Cumulative Exposure Model (CE model) (Nelson, 1980)
For a fixed stress level x;, the cumulative distribution funection F;(t).
This model ensures the cumulative function for 0 < £ < T be continuous
with
( Fi(t),0 <t < 7;
Flt) = { Fa(ri +(t—T11)), 71 <t = Ty
|
|

FII.:{TF:_] — |:t— Te—1 }} Te—1 < t < T.

where r; satisfies

Filri—1) = Fica(ri—2 + (Ti—1 — Ti—2))-
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2. Khamis-Higgins Model (KH model) (Khamis and Higgins, 1998) with a
Weibull Iife distribution:

For a scale parameter at x; being #;,the hazard funtion is h(#;), when a
shape parameter stays constant:
( hit|61).0 =<t < 7q;
El:]hlitlﬁg::lj T1 <t < Ta;

P

h(t) =

| El:j,:_]hliﬂﬁ#jh Te—1 < t<T

Often, o; = %1 15 used.
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Under a Cumulative Exposure Model (CE model):

» Miller and Nelson (1983) and Bai, Kim, and Kee (1989) discuss
the optimal simple step-stress plans when the lifetimes have an
exponential distribution.

* Bai and Kim (1993) also obtain an optimal simple step-stress
plan for a Weibull lifetime distribution for censored data.

 Ma and Meeker (2008) extend the optimal step-stress ALT plans
construction to the general log-location-scale distributions.

11.
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Under the KH model with a Weibull life distribution:

 Alhadeed and Yang (2002) derived the optimal simple
step-stress .

 Mostrecently, Fard and Li (2009) investigated the optimal
simple step-stress ALT design for reliability prediction.

* We will consider the Khamis-Higgins model too.

-- All of the above results are under the assumption that the
Weibull shape parameter doesn’t change when a stress level
changes.

12.
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Motivation 1

 However, as indicated in Nelson (2004), for many products, the
spread of lifetime (or transformed lifetime) is also a function of
stress.

* Cox and Oakes (2002) pointed out that the accelerated stress
not only affects the scale parameter, but the shape parameter of
the Weibull distribution as well.

 Such behaviour in lifetime should be taken into account in the
design stage of the ALT experiments.

« We study the optimal designs for step-stress when both scale
and shape parameters of a Weibull life distribution are function of
the stress. '
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* Ginebra and Sen (1998) investigate the minimax ALT when
the parameter values, which the design depends on, are possibly
misspecified.

* Pascual and Montepiedra (2003) discuss the robust designs
when there is uncertainty on lifetime distribution.

e Pascual (2006) develop the model-robust designs against
imprecision in the assumed life-stress relationship.

» All these paper consider the robust designs for the constant-
stress ALTs.

14.
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 Minimal research has been conducted in robust designs
against model departure for step-stress ALT .
* Pascual (2006) noted that estimates under the linear and

quadratic models may appear similar within the stress

range of the life tests, but tend to diverge beyond this range.

* Thisis certainly problematic for the practitioner because
the results from the fitted regression model at accelerated

levels are extrapolated to normal operating conditions.

15



Assuming a Weibull life distribution,

1. Optimal designs for step- stress ALT with
a non-constant shape parameter, and

2.  Robust designs for step-stress ALT when
the scale-stress relastionship is possibly
misspecified.

16
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e n - number of initial test units

e S, - use stress level

e S, -low accelerated stress level
e S, -high accelerated stress level
e T - stress changing time

e T - censoring time

17
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LBI’H’L{‘ Model Assumptlons -

Simple step-stress plan:
* SO<S]_<SZ

e The failure time of a test unit:

i.i.d.

t, ~ Weibull(6,5,), i=0,1,2

* The scale parameter 6, 1=0,1,2 is a log-linear
function of stress:

In(6,)=Lo+B1S;,

where [, and ; are unknown parameters. 9
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All test units are subjected to S; until T, at which

the stress is raised to S, the test is continued until
all the test units have failed.

ii.d.
Yij :In(tij) ~S.EV.(u;,0,) 1=0,1,2,
where

U= Bo+P1S;,

o,=1/0;

and

20
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Let

(ti;
yij = In x?j)

The model can be simplified:

v * SEV.(u;,0)), i=0,1,2,

where
M= Po+P1S; -In(T),
and
6,=1/9;
Let .

21
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S;—5
Let the transformed stress +: = gt=35 .

Assume the shape-stress relationship is:

2 2
o, = O0g+73%;

where y>0, and o, is the reciprocal of the squared
Weibull shape parameter at use stress level.

22
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Design Criterion

We choose the optimal stress-changing time
so that nAVAR of the MLE of reliability, at
the use stress level and at a given time, can
be minimized.

23
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Reliability Estimate

The parameter of interest, the reliability at time ¢ for
censored data under the use stress level S is

Rs, (¢) = exp (erp (E” (%) ;DI” (H??)))

By the invariance property of MLE, the MLE of reliability at
time ¢ under the use stress level S is

@\ Hp — xqip
j’”(:r) I—x,
Rs, (@) = exp | —exp ,

g

where 1, and f, are the MLEs of «; and /.,

24

Note: For complete data, using T=1 for the derivation.



Brock

University

Optimization Criteri

The asymptotic variance of the MLE of reliability is

AVAR([Rs, ()] = AVAR

fi1—xq iz

1-x4

| (m{%}
exp| —exp

Jg

>

=HT-F'.H,

where F is the expected Fisher information matrix and H is

defined as
(P
1 ex —Eex In (T)
) o oo(1—2x) P P
- _[0Rs @) 3R @] _
ofiy dit;
P
_ 1 ex —exX In (T
ogg(1 —xp) p P

R

1_xl

) ( @)

1— Xq

Xy

A
1— xl
Jo
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* The expected Fisher information matrix F at the use stress
level S, can be derived as

_ o n Ay AlE]
£ = go2 LA21 Azl
2 e,
Where All — zn?[l — eXp (_EIP(C]_))] ' Alg = AEI = ':],
0o°
Ass = é [exp (—exp(tfl)) — exp (—e:k:p(CT) + EIP(CE) — exp(ﬂ‘l))],
with Ef}- = M, i =1, 2, and CT = —E.
Tj Oz

26
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e The elements of the Fisher information matrix for
complete data are:

Ay = zl;[l — exp (_EIP(ED)] y A1 = Az =0, 455 = E[EKP (_EIP[E‘:))];
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« A simple step-stress test for cable insulation is run to
estimate the reliability at ¢=2000 minutes, under a normal
use voltage: S,=20kV .

* Teststress levels are: S;=24kV, S,=30kV. (so, x,=0.4).

e n=100 test units, T=1000 minutes

* Assume &,=2.2,then 0% = 484 + vy, i=0,1,2

« With /dz =750 and@2 = 600, we have the optimal stress
changing times for both cases of complete and censored data.

28
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Optimal Stress-Changing T

Complete Censored (1 = 1000)
~ min. n X AVAR | Optimal 7 | min. n x AVAR | Optimal 7
0 0.000810 831.9 0.000888 755.5
0.01 0.000832 828.7 0.000918 750.4
0.1 0.001031 813.0 0.001183 711.3
0.2 0.001249 801.1 0.001484 677.8
0.5 0.001896 780.0 0.002414 606.4
1 0.002967 761.5 0.004021 529.2
2 0.005162 741.7 0.007348 432.7
5 0.011499 712.5 0.017685 286.7
10 0.022156 686.0 0.035355 178.8
15 0.032813 667.7 0.053253 124.2
20 0.043469 653.2 0.071273 91.2
25 0.054125 640.9 0.089371 69.5
30 0.064781 630.1 0.107525 54.3

29
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Censored vs. Complete Data

600 4 *

300

* 100 — e + Censored Data
+ * Complete Data

200 - "o

100 e
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Censored vs. Complete Data

0.10
0.09 *
0.08 |
0.07 *
0.06 |

*AVAR - .
g 0.03 i + Censored Data

. - o Complete Data
0.04

0.03 - -
0.02 — * .

0.01 *
L
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e The model considered is more general, as a special
case of y=0 creates a constant shape parameter.

e Since the mean lifetime of the test units is decreasing
as y increases, there are more expected failures at the
lower stress level.

e So the optimal changing stress time occurs at an
earlier time. This reveals that

e Asvyincreases the optimal T decreases.
32
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* Assumes a particular model to fit the data, but

recognizes the possibility that the assumed model

may not be precise.

* Find the optimal stress-changing time so that the

Asymptotic MSE can be minimized.

34
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Modify the step-stress ALT model used earlier.
t; ~ Weibull(6,6), i=0,1,2

Two scale stress relationships are considered as
possible candidates: linear and quadratic.

Suppose the linear model is fitted,
In(8y;)=Po+B1S;
The true model is actually quadratic,

In(0,;)=00+011 S; +01,S;?

35
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* M, -(quadratic model) true model
e M, -(linear model) the fitted model

e L(B,§) - the log-likelihood under M,
* L(0,C) - the log-likelihood under M,

e I(ou: B) = Eyg[L(,8)-L(B,C)],
where a=[a, &4, a,]T and B =[Sy,5:]"

e Fix o and let B be the value of f that minimizes I(o: B).

36



n—M Asymptotic Distribution o

University

Define the matrices

I 92 L(B,£) 82L(B,E)\
A(B) = EMq( 57 bty \ 3,07,
o (LB o (9LBE)
_ Mg 98198 Mq P -
2 ]
s | ()] (50250
‘ ‘ ) 2
u, (558 2580) o [(2582)"

and

C(B) = [A(B)I*B(B) [A(B)]

37
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- If model assumption is correct (M=M_) then -A([3)

gives the usual Fisher information matrix.

* Fit model M, to the data by MLE methods
* B denotes the MLE of J.

* By Theorem 3.2 of White (1982), ./n (ﬁ- B") is
asymptotically normal with mean 0 and variance
covariance matrix C(B= ")

38



LBrHcl\ Criteria for Robust Test Pl-

- Quantity of interest is

-~

Ns,(B,¢) =In (— In {Rso (B H&“)D = é {lﬂ (¢) — (30 T .315[}”

* We minimize the Asymptotic Mean Squared
Error (AMSE) of the estimator above.

39
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Asymptotic Variance is

ANz, (B.¢) . )
A1 N (A A AT — 98¢ (@ a*\ | ONs(B.p) ANz (B.¢)
n AVAR [350{_,@.&,,) Mq] = | o P | Cla:p=p5") |2l -
83,
AN- (B.0) ON:. (B.o
where 0o 7P — 1 and 0 (Bw) _ _ So
98, o 38, o

Asymptotic Squared Bias is

. 2 . o
(ABIAS [ 50 (B.0) M'q]) = — [1g0 — (53 + 5:50)]°

o?
We minimize the Asymptotic Mean Squared Error (AMSE):

) ) 2 )
AMSE [NSD (B.¢) | _-"Lffq} - (ABIAS’ [Ngn (B.¢) uq]) +AVAR [NSD (B.¢) | Mq}
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Revisit the same example used earlier.

Suppose that In(0 ))=0p+a S; +@,S7 is true with

* 0p=10.39264742
e a,=-0.253190592
° 0(220.004

The designs are derived by minimizing AMSE with
respect to the stress-changing time.

41



| Minimizing AMSE (Com

Brock

University

Complete Data with Simple Step-Stress

354 )
E -
LE 20y L
= S04
g 1°
g2 * The stress-changing
& { ° : : .
= - time which minimizes
o204 ° "
2 ] - 2 the AMSE is at 739
2 ] i =
;%. o I minutes.

10- 2 v

v (optimal design is at 832)

300 400 500 600 700 800 900 1000 1100 1200
T 42
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4}.13-1--'
£ :z '. : The stress-changing
?‘é ] . time which minimizes
tg{,_m_ i the AMSE is at 633
= ’ ' minutes.
E 0.1294 '. -
%1}_115: '_- _' (optimal design is at 756)
< 0127
0.126-

43



Future Study

Brock

University

* Current study is rather preliminary.

* Construct the optimal designs when the simultaneous
estimation is needed for the parameters involved in both the
scale-stress and shape-stress relationships.

 Investigate the optimal and robust designs for the multiple
step stress model which minimizes the loss with respect to

the stress-changing time(s) and middle stress level(s).

* Robust designs for simple and multiple step-stress ALT
when a cumulative exposure model is used.

44
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