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• Sensitivity testing : problem formulation 
• Review of existing procedures for sequential 

sensitivity testing 
• Proposed procedure: 3-phase optimal design (dubbed 

3pod for its steady performance)   
• Simulation comparisons with existing procedures 
• Conclusions and further work 



Sensitivity testing 

• Stress/stimulus level x: launching velocity, drop height 
• Response/nonresponse y = 1 or 0: penetrate, explode 
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Quantal response curve 

• Quantal response curve F(x) = prob (y = 1| x); interested in 
estimating the p-th quantile xp with F(xp) = p, p typically high, 
e.g., p = 0.9, 0.99, 0.999. Useful for certification or 
quantification of test items. Common in military and heavy 
industry applications 

 

 

 

 

 
• Choice of F: probit, logit, or skewed version 

• Problem/challenge: find a sequential design procedure to 
estimate xp efficiently and for small samples 



Review of existing procedures 

• Up-and-down method (Dixon-Mood, 1948):   

      

                                                                                                          
easy to use, not efficient, only for median x0.5 

• Stochastic approximation (Robbins-Monro, 1951):   

                                                                      

 optimal c = o   ,     regression slope based on  

 {xn, yn} (Lai-Robbins, 1979). For binary data y, use of 
linear regression slope is not efficient, i.e., not the 
best exploitation of data 

 

 

 

 

 

 

 



 
Modification of Robbins-Monro procedure 

 
• Recognizing the deficiency for binary data, Joseph (2004) 

proposed a modification: retain binary structure btn y and x, 
assume   θ (=xp) ~ N(x1,      ). Consider the scheme 
 
 

• Let Zi=xi-θ, and choose ai, bi to minimize E(        ) under 
E(Zi+1) =0. Assuming Zi+1~ N(0,     ), the solution is 
 
 
 

 
• We call it the Robbins-Monro-Joseph (RMJ) procedure. 



Logit-MLE procedure 

• Wu (1985): relating stochastic approximation to likelihood 
estimation  to take advantage of the latter’s estimation 
efficiency. Assume a parametric model F(x| γ), γ=(μ,σ), like 
logit or probit. At the ith run,      = MLE of γ. Then, choose xi+1 
so that             ..  

• However, existence of MLE requires an overlapping data 
pattern 
 
 
 
 
 

• Wu did not incorporate overlapping data pattern in its design 
procedure. Bayesian modification (Joseph-Tian-Wu, 2007) 
 



D-optimality based procedure 

• Neyer’s method (1994) has three parts: use guessed value σg                               

     (i) use a modified binary search to generate y = 1 and y = 0,     

      and to “close-in” on design region of interest;  update σg                              

     (ii) use D-optimality criterion based on σg to generate  

     overlapping pattern;                                                                                    

     (iii) Assume a parametric model like probit or logit for           

     F(x|θ); same procedure as in (ii) except that the MLE 𝜃  is used  

     in the D-criterion. This step for estimation efficiency 

• First to incorporate the achieving of overlapping pattern in 
the design procedure 

 

 



Challenges 

• For this problem with a long history, is there a 
consensus on best procedure? No! Why? 

• Up-and-down for its simplicity appeal is still 
misused by less sophisticated users; lately Neyer 
has become popular among well informed users; 
Joseph’s modification of RM for binary data has 
received scant attention; some military in-house 
procedure like Langlie (1962) has been used but 
is ad hoc, and no good theoretical justification 

• There is a still room for improvement,                 
thus our work  

 



Three-phase optimal design 
• A trilogy of search-estimate-approximate:   

I. (search) to generate y = 1 and y = 0, to “close-in” 
on region of interest and to obtain overlapping data 
pattern; similar to Neyer’s parts 1-2, details differ 
II. (estimate) use D-optimality criterion evaluated at 
MLE 𝜃  to generate design points; spread out design 
points (same as Neyer’s part 3)                                    
III. (approximate) Taking 𝜇 + 𝐹−1 𝑝 𝜎 , where  𝜇 , 𝜎  
are MLE of μ,σ based on data in I-II, as the starting 
value, use the Robbins-Monro-Joseph (RMJ) 
procedure to generate design points 

• 3-phase optimal design, dubbed as 3pod                 
(for its steady performance ) 
  



• It has three stages I1, I2, I3 

• I1. (quickly obtain y = 1 and y = 0). Choose (μmin, μmax) 
for location parameter μ and σg as guessed value of 
scale parameter σ and μmax- μmin ≥ 6σg. Take y1 and y2  

at 𝑥1 =
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Four cases result:  
(i) y1= y2= 0       x1, x2 to the left of μ; take x3= μmax 

+1.5σg. If y3= 1, move to I2. If y3= 0, take x4= μmax 

+3σg. If y4= 1, move to I2. If y4= 0, range not large; 
increase x by 1.5σg until y=1. 

Phase I of 3pod 



Phase I of 3pod (continued) 

(ii) y1= y2= 1, do the mirror image of (i) 
(iii) y1= 0, y2= 1: good! Move to I2                                
(iv) y1= 1, y2= 0: range too narrow around μ,   

       expand it by taking x3= μmin -3σg,  

       x4= μmax +3σg; move to I2 

 

• Note: I1 is like “dose ranging” in                     
dose-response studies 

 



Trapped in separation? 

• Let M0 = largest x value with y = 0, m1= smallest x value with y 
= 1. Overlapping iff M0 > m1;  separation iff M0 ≤ m1 

• Running test within the separation interval [M0, m1] will 
forever be trapped in separation .       When the interval is 
small, get out to avoid logjam 
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I2: stage 2 of phase I 
• If overlapping in data from I1, move to I3. Otherwise, 

take next level at     (=MLE assuming probit and σg); if 
overlapping, move to I3. If no overlapping, update 
M0, m1 ,    , take next level at     until m1-M0<1.5 σg. 
Then choose x levels outside the separation interval 
[M0, m1]. See next.  

• Take next run at m1+0.3σg; if y = 0, overlapping, move 
to I3. If y = 1, next run at M0-0.3σg; if y = 1, 
overlapping, move to I3. Otherwise it suggests σg  is 
too large, reduce it to     σg, repeat I2 until seeing 
overlapping.   



I3: stage 3 of phase I 

• To enhance overlapping pattern 

• If M0-m1 ≥ σg, take one more run at (M0+m1)/2;  

 if M0-m1 < σg, take two runs at                 

(M0+m1)/2 ± 0.5σg. Then move to phase II.  



Illustrative Example 
(0,22), probit, μ=10, σ=1, σg=3, x0.99=11.2816 

  : y=1 
  : y=0 



Comparison in terms of # of wasted (separating) runs  
in order to generate 1000 successful (overlapping)runs 

(i) n=40 (n1=25, n2=15 for 3pod) 
 



Comparison in terms of # of wasted runs  
(in order to generate 1000 successful runs) 

(ii) n=60 (n1=30, n2=30 for 3pod) 
 



Comparison in terms of # of wasted runs  
(in order to generate 1000 successful runs) 

(iii) n=80 (n1=35, n2=45 for 3pod) 
 



Summary of results 

• As σg increases, # of wasted runs gets bigger. 
Larger σg indicates more fluctuating behavior 

• Up-and-down is the worst, dropped in further 
comparisons 

• 3pod consistently outperforms Neyer, especially 
for large σg because its phase I has a more 
elaborate search to reach overlapping than 
Neyer’s parts 1-2 (binary search, D-optimal) 

• For 3pod, by increasing n1 (= sample size of phase 
I) by 5, # of wasted runs decreases to nearly zero 



RMSE for estimation of x0.9, n=40,  
(n1=25, n2=15 for 3pod) ,  
true distribution=normal 

 RMJ     3pod     Neyer  

 except for μg =11, σg=4, 3pod is the best           
(RMJ deteriorates from σg=3 to σg=4). 



RMSE for estimation of x0.99, n=60,  
(n1=n2=30 for 3pod),  

true distribution=normal 

 For yellow entries, 3pod     Neyer     RMJ 
 For others, RMJ     3pod     Neyer; 
 Sudden deterioration of RMJ when σg increases. 



Values of x1-x0.99, x1=starting value,  
x0.99=true value under normal 

 Explanation for the poor performance of RMJ: 
- Poor starting value x1 (i.e., large x1-x0.99)  
- Large  σg        small ai in the RMJ iterations 
 xi+1=xi-ai(yi-bi), small steps in iterations 
- Small σg does not suffer because larger iteration steps 

can compensate for poor start 



Poor performance of RMJ: a case study 

• Take n = 60, μg =10, σg=4, RMSE = 4.947 = Bias 
in simulations. So all the errors are due to the 
bias term. Here x1 = 19.3054, much large than 
x0.99 = 12.3263. x2 = 19.228, x3 = 19.1548, and 
y1 = y2 = y2 = 1. Each of the following 58 
iterations make tiny steps (due to large σg) 
toward 12.3263 and their y values are equal to 
1. When it terminates, x61 = 17.2733, still far 
away from 12.3263, with bias = 4.947 



RMSE for estimation of x0.999, n=80,  
(n1=35, n2=45 for 3pod),  
true distribution=normal 

Same conclusion as in the case of n=60 



Values of x1-x0.999, x1=starting value,  
x0.999=true value under normal 

• Same explanation as in the case of n=60 for 
the poor performance of RMJ 

• For logistic F, conclusions are qualitatively the 
same 



Conclusions and further work 

• 3pod outperforms Neyer uniformly 

• 3pod and Robbins-Monro-Joseph (RMJ) are the two 
winners; 3pod performs more steadily but RMJ 
excels when it does not deteriorate 

• How to choose between the two?  

• Further improvement for each procedure 

• 3pod has four “modules”: I1 (dose ranging), I2 
(overlapping search), II (opt estimate), III (approxim). 
These modules can be reassembled for other 
purposes, or be deployed to improve other 
procedure like RMJ with I1 


