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1. Motivation

Derivation of optimal designs for nonlinear models is usually
tedious, difficult and method for one model does not usually
generalize to another
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1. Motivation

Derivation of optimal designs for nonlinear models is usually
tedious, difficult and method for one model does not usually
generalize to another

Formulae for optimal designs rarely exist and if they do, they are
complicated and frequently unhelpful to the practitioners

Algorithms are very helpful - available only for some types of
optimal designs

Issues - proof, speed of convergence, ease of use and availability
of software

Is there an easy-to-use and efficient method for finding optimal
designs for different types of optimal designs for any given model?
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1.1 Locally D-optimal Designs for the Logistic Model
on X = [−1, 1] (from Silvey’s text, 1980)

log π(x)
1−π(x) = θ1 + θ2x , θ ∈ Θ = {(θ1, θ2) : θ1 > 0 & θ2 > 0}.
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log π(x)
1−π(x) = θ1 + θ2x , θ ∈ Θ = {(θ1, θ2) : θ1 > 0 & θ2 > 0}.

Let a∗ solve exp(a) = (a + 1)/(a − 1) and let u∗ solve

exp(θ1 + θ2u) =
2 + (u + 1)θ2

−2 + (u + 1)θ2
.
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1.1 Locally D-optimal Designs for the Logistic Model
on X = [−1, 1] (from Silvey’s text, 1980)

log π(x)
1−π(x) = θ1 + θ2x , θ ∈ Θ = {(θ1, θ2) : θ1 > 0 & θ2 > 0}.

Let a∗ solve exp(a) = (a + 1)/(a − 1) and let u∗ solve

exp(θ1 + θ2u) =
2 + (u + 1)θ2

−2 + (u + 1)θ2
.

condition locally D-optimal design
{θ : θ2 − θ1 ≥ a} {a−θ1

θ2
, −a−θ1

θ2
; 1

2 ,
1
2}

{θ : θ2 − θ1 < a,exp(θ1 + θ2) ≤ θ2+1
θ2−1} {−1,u∗; 1

2 ,
1
2}

{θ : exp(θ1 + θ2) >
θ2+1
θ2−1} {−1,1; 1

2 ,
1
2}
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1.2 Amended Ford’s results on X = [−c, c], c > 0

Let a∗ solve the equation ea = a+1
a−1 (a∗ = 1.5434),

let b∗ solve the equation eθ0+bc = cb+1
cb−1

and let x∗ solve the equation eθ0+θ1x = (x+c)θ1+2
(x+c)θ1−2 .

condition locally D-optimal design
{θ : θ1 > 1

c (θ0 + a∗)} {−a∗
−θ0

θ1
, a∗

−θ0
θ1

; 1
2 ,

1
2}

{θ : b∗ < θ1 ≤ 1
c (θ0 + a∗)} {−c, x∗; 1

2 ,
1
2}

{θ : 0 < θ1 ≤ b∗} {−c, c, ; 1
2 ,

1
2}.
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−θ0
θ1

; 1
2 ,

1
2}

{θ : b∗ < θ1 ≤ 1
c (θ0 + a∗)} {−c, x∗; 1

2 ,
1
2}

{θ : 0 < θ1 ≤ b∗} {−c, c, ; 1
2 ,

1
2}.

Corrected results when X = [a,b] in Sebastiani and Settimi (JSPI,
1997)

What is the E-optimal design for X = [3,6]?
Weng Kee Wong (Dept. of Biostatistics Fielding School of Public Health )wkwong@ucla.edu October 19, 2012 7 / 50

wkwong@ucla.edu


1.3 A 4-parameter Heteroscedastic Hill Model

yi =
(Econ − b)( Di

IC50
)m

1 + ( Di
IC50

)m
+ b + εi = η(Di , θ) + εi , εi ∼ N(0, σ(Eyi)

2λ)

Di = dose of a drug assigned to subject i

yi = drug effect of subject i

Econ = the control effect at zero drug concentration

b = background effect at infinite drug concentration

IC50 = inflection point on the curve (a measure of the drug potency)
= drug concentration that induces a 50% decrease in the

maximal effect (Econ − b)

m = slope parameter of the curve.
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1.5 Information matrix for the Hill Model

Let the nominal value for θ be θ0 = (E0
con,b

0, IC0
50,m

0)T and let

f T (x , θ0) =(
∂η(x , θ)
∂Econ

,
∂η(x , θ)

∂b
,
∂η(x , θ)
∂IC50

,
∂η(x , θ)
∂m

)|θ0

where
∂η(x , θ)
∂Econ

=
(x/IC50)

m

(1 + x/IC50)m

∂η(x , θ)
∂b

=
1

1 + (x/IC50)m

∂η(x , θ)
∂IC50

=− (b − Econ)(x/IC50)
mlog(x/IC50)

(1 + (x/IC50)m)2

∂η(x , θ)
∂m

=
(b − Econ)m(x/IC50)

m

IC50(1 + (x/IC50)m)2 .

The total information matrix is proportional to

M(ξ, θ0) = F T WF

where F =
[

f T (x1),f T (x2),. . .f T (xn)
]T

and W = diag(y−2λ
1 , ..., y−2λ

n ).
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1.6 Algorithms and Their Usage (Whitacre, 2011)

(a) Recent trends indicate rapid growth of nature-inspired optimization
in academia and industry. Computing, Vol. 93, 121-133.

(b) Survival of the flexible: explaining the recent dominance of
nature-inspired optimization within a rapidly evolving
world. Computing, Vol. 93, 135-146.
Use data from Delphion patent searches, Google Scholar,Web of
Science, Scientific WebPlus to compare use of MOT, NNIM and
NIM
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1.6 Algorithms and Their Usage (Whitacre, 2011)

(a) Recent trends indicate rapid growth of nature-inspired optimization
in academia and industry. Computing, Vol. 93, 121-133.

(b) Survival of the flexible: explaining the recent dominance of
nature-inspired optimization within a rapidly evolving
world. Computing, Vol. 93, 135-146.
Use data from Delphion patent searches, Google Scholar,Web of
Science, Scientific WebPlus to compare use of MOT, NNIM and
NIM
Compared different types of algorithms based on historical bias,
academic bias, conceptual appeal, simplicity of implementation,
algorithm utility, flexibility
NNIM = { greedy randomized adaptive search, great deluge,
squeaky wheel optimization, tabu, harmony search, unit-walk,
stochastic local search, iterated greedy algorithms, iterated local
search, cross entropy method, extremal optimization, stochastic
diffusion search, reactive search optimization, random-restart hill
climbing, variable neighborhood search }
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1.7 Mathematical Optimization Techniques (MOT)
versus Nature-Inspired Metaheuristics (NIM)

MOT = { mathematical programming, constraint
programming,quadratic programming, quasi-Newton method,
nonlinear programming, interior-point method, goal programming,
integer programming, simplex method, branch and bound
algorithm, linear programming, dynamic programming,
branch-and-cut, exhaustive search, branch and price, convex
programming, stochastic programming,quasi-convex
programming}
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1.7 Mathematical Optimization Techniques (MOT)
versus Nature-Inspired Metaheuristics (NIM)

MOT = { mathematical programming, constraint
programming,quadratic programming, quasi-Newton method,
nonlinear programming, interior-point method, goal programming,
integer programming, simplex method, branch and bound
algorithm, linear programming, dynamic programming,
branch-and-cut, exhaustive search, branch and price, convex
programming, stochastic programming,quasi-convex
programming}
NIM = { genetic algorithm, evolutionary computation, swarm
optimization, ant colony optimization, memetic algorithm, genetic
programming, simulated annealing, nature inspired algorithm,
bio-inspired optimization, evolutional strategies, swarm
intelligence, hyper-heuristics, adaptive operator selection,
multi-meme algorithms, self generating algorithms, honey bees
algorithm, differential evolution}
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2. Metaheuristic Algorithms

From Wikipedia, the free encyclopedia: Meta-heuristic

In computer science, meta-heuristic designates a computational
method that optimizes a problem by iteratively trying to improve a
candidate solution with regard to a given measure of quality.
Meta-heuristics make few or no assumptions about the problem being
optimized and can search very large spaces of candidate solutions.
However, meta-heuristics do not guarantee an optimal solution is ever
found. Many meta-heuristics implement some form of stochastic
optimization.
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2. Metaheuristic Algorithms

From Wikipedia, the free encyclopedia: Meta-heuristic

In computer science, meta-heuristic designates a computational
method that optimizes a problem by iteratively trying to improve a
candidate solution with regard to a given measure of quality.
Meta-heuristics make few or no assumptions about the problem being
optimized and can search very large spaces of candidate solutions.
However, meta-heuristics do not guarantee an optimal solution is ever
found. Many meta-heuristics implement some form of stochastic
optimization.

Our interest here is nature-inspired meta-heuristic algorithms

Particle Swarm Optimization (PSO) proposed by Eberhard &
Kennedy (IEEE, 1995) models animal instincts.
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2.1 Heuristics versus Metaheuristics

Taken from stackoverflow.com/questions/10445700/what-is-the-
difference-between-heuristics-and-metaheuristics

Heuristics are often problem-dependent, that is, you define and
heuristic for a given problem. Meta-heuristics are
problem-independent techniques that can be applied to a broad range
of problems. A meta-heuristic knows nothing about the problem it will
be applied, it can treat functions as black boxes.

A heuristic exploits problem-dependent information to find a ’good
enough’ solution to a specific problem, while meta-heuristics are, like
design patterns, general algorithmic ideas that can be applied to a
broad range of problems.
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2.2 Figure 2: Animal Instincts in Nature

Particle swarm optimization: Origins

How can birds or fish ex-

hibit such a coordinated

collective behavior?
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2.3 Particle Swarm Optimization (PSO)

Many websites and books provide tutorials, codes and track PSO
applications, e.g. http://www.swarmintelligence.org/index.php
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Since 2001, at least one annual workshop on Swarm Optimization

International Conference on Swarm Intelligence: Theoretical
Advances and Real world Applications in France on June 2011
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2.3 Particle Swarm Optimization (PSO)

Many websites and books provide tutorials, codes and track PSO
applications, e.g. http://www.swarmintelligence.org/index.php

Lots of application papers in computer science and engineering;
more than 14000 hits on http://www.youtube.com

Since 2001, at least one annual workshop on Swarm Optimization

International Conference on Swarm Intelligence: Theoretical
Advances and Real world Applications in France on June 2011

A journal, Swarm Intelligence, was born in 2007 and another,
International Journal of Swarm Intelligence Research, in 2010 -
just to keep track of PSO development and applications in the real
world. A third is Swarm and Evolutionary Computation (2011)
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2.4 Some Applications of PSO
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2.4 Some Applications of PSO

artificial neural network training

K-means cluster analysis mathematical finance

social networks

data mining

foraging techniques

intrusion detection

resources allocation problems

course+exam scheduling in real time

designing ideotypes for sustainable product systems in genetics

prediction of stock market indices using genetic algorithm and
PSO with a perturbed term

bioinformatics

reactive power and voltage control in electric power systems
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2.5 Recent Papers in Particle Swarm Optimization

Parameter Estimation of Nonlinear Econometric Models using PSO.
Ekonomicka Revue-Central European Review of Economic Issues
(2010).

A Novel Global Search Algorithm for Nonlinear Mixed-Effects Models
using PSO. J. of Pharmacokinetics Pharmacodynamics (2011).

Optimizing Latin Hypercube Designs by PSO. Statistical Computing.
(2013).

Efficacy of Dual Cancer Screening by Chest X-ray and Sputum
Cytology using Johns Hopkins Lung Project Data. Statistical Methods
in Medical Research. (2013).
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Ekonomicka Revue-Central European Review of Economic Issues
(2010).

A Novel Global Search Algorithm for Nonlinear Mixed-Effects Models
using PSO. J. of Pharmacokinetics Pharmacodynamics (2011).

Optimizing Latin Hypercube Designs by PSO. Statistical Computing.
(2013).

Efficacy of Dual Cancer Screening by Chest X-ray and Sputum
Cytology using Johns Hopkins Lung Project Data. Statistical Methods
in Medical Research. (2013).

Paterlini, S. and Krink, T. (2006). Differential Evolution and PSO in
Partitional Clustering. Computational Statistics and Data Analysis,
50, 1220-1247.
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2.6 Main Features of PSO:

Random generation of an initial population

Each particle has a fitness value that depends on the optimum

Population is reproduced based on fitness value

If requirements are met, stop; otherwise each particle updates its
fitness value

Shares similarity with genetic algorithm but differs in important ways
discussed in numerous sites such as http://www.alife.org or
http://www.engr.iupui.edu/ eberhart with tutorials
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2.6 Main Features of PSO:

Random generation of an initial population

Each particle has a fitness value that depends on the optimum

Population is reproduced based on fitness value

If requirements are met, stop; otherwise each particle updates its
fitness value

Shares similarity with genetic algorithm but differs in important ways
discussed in numerous sites such as http://www.alife.org or
http://www.engr.iupui.edu/ eberhart with tutorials

PSO comprises a very simple concept, its paradigms can be
implemented in a few lines of computer code, requires only
primitive mathematical operators and is computationally
inexpensive in terms of both memory requirement and speed
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2.7 Basic Equations and tuning parameters in PSO

vi(t + 1) = ωivi(t) + c1β1(pi(t)− xi(t)) + c2β2(pg(t) − xi(t)),

xi(t + 1) = xi(t) + vi(t + 1).

xi and vi : position and velocity for the ithparticle

β1 and β2: random vectors

ωi : inertia weight that modulates the influence of the former velocity

c1 and c2: cognitive learning parameter and social learning parameter

pi and pg: Best position for the i th particle (local optimal) and for all
particles (global optimal)
For many applications, c1 = c2 = 2 seem to work well and usually
20 − 50 particles will suffice (Kennedy, IEEE, 1997).
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3 Demonstrations: PSO-generated Optimal Designs

3.1 Locally D-optimal Designs for a 4-parameter Hill Model

3.2 Locally D-Optimal Designs for a Rational Polynomial Model

3.3 Optimal Designs for a Continuation Ratio Model

3.4 Locally c-Optimal Designs for a Compartmental Model

3.5 Locally Ds-optimal Designs for the Quadratic Logistic Model
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3.1: PSO-generated designs coincide with the locally
D-optimal designs for the Hill model with fixed nominal
values Econ = 1.7, b = 0.137, λ = 0.794 and various
nominal values for IC50 and m for different drugs:

Drug IC50 m support points

TMTX 0.00875 -1.790 0 0.00773 0.02965 8.95
MTX 0.0223 -2.740 0 0.02056 0.04950 22.3

AG2034 0.453 -0.825 0 0.32042 5.56703 453
AG2032 0.0774 -3.490 0 0.07263 0.144756 77.4
AG2009 111 -1.030 0 53.9007 377.2057 1500
AG337 0.468 -1.540 0 0.40495 1.93184 468
ZD1694 0.0429 -1.690 0 0.03761 0.15624 42.9

Reference: Khinkis el at. (2003). Optimal Design for Estimating Parameters
of the 4-parameter Hill Model. Nonlinearity in Biology, Toxicology and
Medicine, Vol.1, 363-377.
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3.2 Locally D-Optimal Designs for a Rational
Polynomial Model

The model is

E(y) =
x + α

β0 + β1(x + α) + β2(x + α)2

Examples of the equally weighted locally D-optimal designs:

nominal values support points
Case α β0 β1 β2

(i) 0.1 1.0 −0.8 1 0 0.384 0.964 2.424

(ii) 0.5 1.0 0.8 1 0 0.302 1.285 5.470

Cobby, J. M., Chapman, P. F. and Pike, D. J. (1986). Design of
Experiments for Estimating Inverse Quadratic Polynomial Responses,
Biometrics, 42,659 − 664.
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3.3 Optimal Designs for Early Phase Clinical Trials

The Continuation Ratio Model relates probabilities of no response
(p1),efficacy and no severe toxicity (p2) and severe toxicity (p3) by:

ln[p3(θ, x)/(1 − p3(θ, x))] = a1 + b1x , b1 > 0 (1)

ln[p2(θ, x)/p1(θ, x)] = a2 + b2x , b2 > 0. (2)

dose

pro
ba

bil
ity

-4 -2 0 2 4

0.0
0.2

0.4
0.6

0.8

p1(x)

p2(x)

p3(x)
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Example 3.3a: Calculus

The biologically optimal dose xBOD depends on θT = (a1,b1,a2,b2)
and solves

g(x , θ) = b2(1 + e−a1−b1x)− b1(1 + ea2+b2x ) = 0.
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and solves

g(x , θ) = b2(1 + e−a1−b1x)− b1(1 + ea2+b2x ) = 0.

By the implicit function theorem, the gradient of the solution to the
above equation is

[

∂g(xBOD(θ), θ)

∂x

]

−1 ∂g(xBOD(θ), θ)

∂θ

=









e−a1−b1xBOD/[b1(e−a1−b1xBOD + ea2+b2xBOD )]

xBODe−a1−b1xBOD/[b1(e−a1−b1xBOD + ea2+b2xBOD )]

ea2+b2xBOD/[b2(e−a1−b1xBOD + ea2+b2xBOD)]

xBODea2+b2xBOD/[b2(e−a1−b1xBOD + ea2+b2xBOD)]









.
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.

Use standard algorithm to generate the locally optimal design
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3.3b Selected BOD- & D-optimal designs and
D-efficiencies (Fan & Chaloner, JSPI, 2003)

dose weight (a1,b1,a2,b2) dose weight D-efficiency

-5.67 0.001 (−3.3,0.5,3.4,1) -4.63 0.292 56%
-0.64 0.800 -1.32 0.416
4.84 0.199 4.19 0.056

8.64 0.236

-1.26 0.632 (−1,0.5,2,1) -3.54 0.366 67%
4.11 0.368 -0.59 0.403

4.80 0.231

-1.30 0.549 (−1.04,0.81.2,1) -2.67 0.370 77%
2.37 0.451 0.00 0.398

2.88 0.232

-14.00 0.100 (0.4,0.2,2,1) -13.00 0.070 62%
-1.14 0.628 -4.11 0.400
9.99 0.272 -0.77 0.372

9.08 0.158
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3.4 A 3-parameter Compartment Model

A popular compartmental model with θT = (θ1, θ2, θ3):

η(x , θ) = θ3{exp(−θ2x)− exp(−θ1x)} θ1 ≥ θ2 ≥ 0, θ3 ≥ 0, x ≥ 0.

Optimality criteria: (i) area under the curve;
(ii) time to maximum concentration;

and (iii) maximum concentration.
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(a) AUC =
∫

∞

0 η(x , θ)dx = θ3
θ2

− θ3
θ1

= g1(θ)
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∞

0 η(x , θ)dx = θ3
θ2

− θ3
θ1

= g1(θ)

(b) Time to maximum concentration: xmax = logθ1−logθ2
θ1−θ2

= g2(θ)
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3.4 A 3-parameter Compartment Model

A popular compartmental model with θT = (θ1, θ2, θ3):

η(x , θ) = θ3{exp(−θ2x)− exp(−θ1x)} θ1 ≥ θ2 ≥ 0, θ3 ≥ 0, x ≥ 0.

Optimality criteria: (i) area under the curve;
(ii) time to maximum concentration;

and (iii) maximum concentration.

(a) AUC =
∫

∞

0 η(x , θ)dx = θ3
θ2

− θ3
θ1

= g1(θ)

(b) Time to maximum concentration: xmax = logθ1−logθ2
θ1−θ2

= g2(θ)

(c) Maximum concentration: η(xmax , θ) = g3(θ)

Use nominal values in Atkinson & Donev’s (2004) text:
θ0

1 = 4.29, θ0
2 = 0.0589 and θ0

3 = 21.80.
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3.5 Ds-optimal Designs for the Quadratic Logistic
Models)

In radiation research, we want to design in vivo multifraction
experiments to estimate the α− β ratio (Taylor, Radiation Research,
1990).

p(x , θ) =
1

1 + exp{−a − b(x − m)2} θT = (a,b,m)

Using Elfving’s theorem, Fornius and Nyquist, Communications in
Statistics, 2010) used geometrical arguments and reported various
Ds-optimal designs for estimating different subsets of θ.
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3.6 Minimax Designs for Dose Response Studies

Want to optimally design to, say minimize the maximal variance of
the responses over the extrapolated doses.
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3.6 Minimax Designs for Dose Response Studies

Want to optimally design to, say minimize the maximal variance of
the responses over the extrapolated doses.

Notable References: Kiefer and Wolfowitz (1964a, 1964b, 1965),
Levin (1965), Spruill (1984,1990) assumed homoscedastic
polynomial models with X = [−1,1] and were able to obtain
analytical results when Z = [a,b] for selected values of a and b.
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Want to optimally design to, say minimize the maximal variance of
the responses over the extrapolated doses.

Notable References: Kiefer and Wolfowitz (1964a, 1964b, 1965),
Levin (1965), Spruill (1984,1990) assumed homoscedastic
polynomial models with X = [−1,1] and were able to obtain
analytical results when Z = [a,b] for selected values of a and b.
For heteroscedastic models, references include Wong
(Biometrika, 1992), Wong & Cook (JRSSB, 1993), Wong (JSPI,
1994), King & Wong (JSPI, 1998) and Chen et al. (Stat. & Prob.
Letters, 2008)
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Levin (1965), Spruill (1984,1990) assumed homoscedastic
polynomial models with X = [−1,1] and were able to obtain
analytical results when Z = [a,b] for selected values of a and b.
For heteroscedastic models, references include Wong
(Biometrika, 1992), Wong & Cook (JRSSB, 1993), Wong (JSPI,
1994), King & Wong (JSPI, 1998) and Chen et al. (Stat. & Prob.
Letters, 2008)
Maximizing minimal efficiencies under several objectives in
toxicological studies: Dette, Pepelyshev, Shpilev, Wong (Statistics
and Its Interface, 2009), Bernoulli Journal (2009, 2010), Dette,
Pepelyshev and Wong (Risk Analysis, 2011) and Dette,
Pepelyshev and Wong (Journal of Pharmacokinetics and
Pharmacodynamics, 2012)
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3.6a Minimax Optimal Design: a definition

Suppose
y(x) = f T (x)θ + e(x)/

√

λ(x), x ∈ X

where f T (x) is a vector of known regression functions, λ(x) is a known
efficiency function and e(x) ∼ N(0, σ2). If observations are
independent, information matrix is proportional to

M(ξ) =

∫

X
λ(x)f (x)f T (x)ξ(dx),

and the variance of the fitted response at x using ξ is proportional to

v(x , ξ) = varξ(f T (x)θ̂) = f T (x)M−1(ξ)f (x).

Definition: ξ∗ is minimax optimal design among all designs on X if

ξ∗ = arg min
ξ

max
x∈Z

v(x , ξ),

where Z is a user-selected compact set for prediction purposes.
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3.6b Equivalence theorem for a Minimax-type criterion

Equivalence Theorem: ξ∗ is minimax-optimal if and only if there exists
a probability measure µ∗ on A(ξ∗) such that for all x ∈ X ,

c(x , µ∗, ξ∗) =

∫

A(ξ∗)
λ(x)(f T (x)M(ξ)−1f (a))2µ∗(da)− v(a, ξ∗) ≤ 0,

with equality at the support points of ξ∗. Here,

A(ξ) = {a ∈ Z |v(a, ξ) = max
z∈Z

v(z, ξ)}.
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a probability measure µ∗ on A(ξ∗) such that for all x ∈ X ,

c(x , µ∗, ξ∗) =

∫

A(ξ∗)
λ(x)(f T (x)M(ξ)−1f (a))2µ∗(da)− v(a, ξ∗) ≤ 0,

with equality at the support points of ξ∗. Here,

A(ξ) = {a ∈ Z |v(a, ξ) = max
z∈Z

v(z, ξ)}.

A proof is in Berger, King & Wong (Psychometrika, 2000), where
they applied applied minimax optimal designs for item response
models in education testing problems.
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Equivalence Theorem: ξ∗ is minimax-optimal if and only if there exists
a probability measure µ∗ on A(ξ∗) such that for all x ∈ X ,

c(x , µ∗, ξ∗) =

∫

A(ξ∗)
λ(x)(f T (x)M(ξ)−1f (a))2µ∗(da)− v(a, ξ∗) ≤ 0,

with equality at the support points of ξ∗. Here,

A(ξ) = {a ∈ Z |v(a, ξ) = max
z∈Z

v(z, ξ)}.

A proof is in Berger, King & Wong (Psychometrika, 2000), where
they applied applied minimax optimal designs for item response
models in education testing problems.

µ∗ can be shown to be a maximin probability measure

Minimax efficiency lower bound can be directly found for any
design using convex theory.
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3.6c E-optimal designs for the Michaelis-Menten
model on X = [0, x̃ ] (Dette and Wong, Stat.
& Prob. Letters, 1999)

The Michaelis-Menten model for a continuous response is

y =
θ1x

θ2 + x
+ ε, x > 0 θT = (θ1, θ2), θ1 > 0, θ2 > 0.

If ε is normally distributed with mean 0 and constant variance, the
Fisher information matrix for a given design ξ is

M(ξ, θ) =

∫

(
θ1x

θ2 + x
)2

( 1
θ2

1
− 1

θ1(θ2+x)

− 1
θ1(θ2+x)

1
(θ2+x)2

)

dξ(x).

Let

w =

√
2(θ1/θ2)

2(1 − z̃){
√

2 − (4 − 2
√

2)z̃}
2 + (θ1/θ2)2{

√
2 − (4 − 2

√
2)z̃}2

and z̃ = x̃/(θ2 + x̃). The locally E -optimal design has weight 1-w at x̃
and weight w at {(

√
2 − 1)θ2x̃}/{2 −

√
2)x̃ + θ2}.
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3.6d Table 1: Locally E-optimal designs for the
Michaelis-Menten model on X = [0, 200].

θ1 θ2 ξPSO E -optimal designs
100 150 46.52(0.693) 200(0.308) 45.51(0.693) 200(0.307)
100 100 38.15(0.677) 200(0.323) 38.15(0.677) 200(0.323)
100 50 24.78(0.617) 200(0.383) 24.78(0.617) 200(0.383)
100 10 6.52(0.260) 200(0.740) 6.52(0.260) 200(0.740)
100 1 0.70(0.022) 200(0.978) 0.70(0.022) 200(0.978)
10 150 46.50(0.707) 200(0.293) 46.50(0.707) 200(0.293)
10 100 38.14(0.707) 200(0.293) 38.14(0.707) 200(0.293)
10 50 24.78(0.706) 200(0.294) 24.78(0.706) 200(0.294)
10 10 6.52(0.684) 200(0.316) 6.52(0.684) 200(0.316)
10 1 0.70(0.188) 200(0.812) 0.70(0.188) 200(0.812)
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θ1 θ2 ξPSO E -optimal designs
100 150 46.52(0.693) 200(0.308) 45.51(0.693) 200(0.307)
100 100 38.15(0.677) 200(0.323) 38.15(0.677) 200(0.323)
100 50 24.78(0.617) 200(0.383) 24.78(0.617) 200(0.383)
100 10 6.52(0.260) 200(0.740) 6.52(0.260) 200(0.740)
100 1 0.70(0.022) 200(0.978) 0.70(0.022) 200(0.978)
10 150 46.50(0.707) 200(0.293) 46.50(0.707) 200(0.293)
10 100 38.14(0.707) 200(0.293) 38.14(0.707) 200(0.293)
10 50 24.78(0.706) 200(0.294) 24.78(0.706) 200(0.294)
10 10 6.52(0.684) 200(0.316) 6.52(0.684) 200(0.316)
10 1 0.70(0.188) 200(0.812) 0.70(0.188) 200(0.812)

discrepancy stubbornly remained and did not disappear
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3.6d Table 1: Locally E-optimal designs for the
Michaelis-Menten model on X = [0, 200].

θ1 θ2 ξPSO E -optimal designs
100 150 46.52(0.693) 200(0.308) 45.51(0.693) 200(0.307)
100 100 38.15(0.677) 200(0.323) 38.15(0.677) 200(0.323)
100 50 24.78(0.617) 200(0.383) 24.78(0.617) 200(0.383)
100 10 6.52(0.260) 200(0.740) 6.52(0.260) 200(0.740)
100 1 0.70(0.022) 200(0.978) 0.70(0.022) 200(0.978)
10 150 46.50(0.707) 200(0.293) 46.50(0.707) 200(0.293)
10 100 38.14(0.707) 200(0.293) 38.14(0.707) 200(0.293)
10 50 24.78(0.706) 200(0.294) 24.78(0.706) 200(0.294)
10 10 6.52(0.684) 200(0.316) 6.52(0.684) 200(0.316)
10 1 0.70(0.188) 200(0.812) 0.70(0.188) 200(0.812)

discrepancy stubbornly remained and did not disappear
simply calculation error from the formula; PSO gave right answer!
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Figure 4: Plot of the maximum eigenvalue of M(ξ, θ)−1 versus the
number of PSO iterations.
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Figure 5: The movement of particles in the PSO search for the
E-optimal design for the Michaelis-Menten model at various stages.
The red star in each of the three plots indicates the current best
design.
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3.6e Minimax Optimal Designs for Nonlinear Models

Assume there is a plausible region Θ for the unknown intercept (θ1)
and slope (θ2) parameters in the two parameter logistic model, i.e.

(θ1, θ2) ∈ Θ.

King & Wong (Biometrics, 2002) found minimax D-optimal designs
when the form of Θ is a cartesian product.

For example, when Θ = [0,3.5]× [1,3.5] and X is unrestricted:

xi − 0.35 0.62 1.39 2.11 2.88 3.85

wi 0.18 0.21 0.11 0.11 0.21 0.18
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and slope (θ2) parameters in the two parameter logistic model, i.e.

(θ1, θ2) ∈ Θ.

King & Wong (Biometrics, 2002) found minimax D-optimal designs
when the form of Θ is a cartesian product.

For example, when Θ = [0,3.5]× [1,3.5] and X is unrestricted:

xi − 0.35 0.62 1.39 2.11 2.88 3.85

wi 0.18 0.21 0.11 0.11 0.21 0.18

Algorithm for finding minimax optimal designs remains elusive.
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Figure 6: Plot of the directional derivative of claimed minimax
D-optimal design for the logistic model.
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Example 3.6f: A minimax D-optimal design for the
logistic regression model when we have plausible
ranges for the two parameters (King & Wong,
Biometrics, 2000)

Consider the logistic model

p(x , θ) = 1/{1 + exp(−θ2(x − θ1))}, θT = (θ1, θ2).

The Fisher information matrix for ξ is M(ξ, θ) given by
∫ (

θ2
2p(x , θ)(1 − p(x , θ)) −θ2(x − θ1)p(x , θ)(1 − p(x , θ))

−θ2(x − θ1)p(x , θ)(1 − p(x , θ)) (x − θ1)
2p(x , θ)(1 − p(x , θ))

)

dξ(x)

Goal: Find a minimax D-optimal design ξ∗ such that

ξ∗ = arg min
ξ

max
θ∈Θ

log(|M−1(ξ, θ)|).

Here Θ is a known set containing all plausible values of θ1 and θ2.
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Figure 7: Plot of the directional derivatives c(x , ξPSO , µ
∗) versus x for

two cases:
(i) Θ = [0,2.5]× [1,3.0] on X = [−1,4] (left)
(ii) Θ = [0,3.5]× [1,3.5] on X = [−5,5] (right).

no. of particles for external(internal) optimization: 64(256) 32(512)
no. of iterations for external(internal) optimization:100(200) 50(100)
Efficiency Lower Bounds of PSO-generated designs are both about
0.9924.
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4 Discussion

Helpful to have a design website to find tailor-made optimal designs at
http://optimal-design.biostat.ucla.edu/optimal/

Illustrative examples in Berger & Wong, An Introduction to Optimal
Designs for Social & Biomedical Research (John Wiley, 2009).
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Implement PSO to find multiple-objective optimal designs; see
Cook & Wong (JASA, 1994), Huang & Wong (Biometrics, 1998),
Zhu & Wong (J. Biopharm. Stat., 2000), Imhof & Wong
(Biometrics, 2000), Huang & Wong (Drug Information J., 2004)
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Implement PSO to find multiple-objective optimal designs; see
Cook & Wong (JASA, 1994), Huang & Wong (Biometrics, 1998),
Zhu & Wong (J. Biopharm. Stat., 2000), Imhof & Wong
(Biometrics, 2000), Huang & Wong (Drug Information J., 2004)

Apply PSO to find optimal exact designs, minimum bias optimal
designs and Bayesian Designs? What about optimal designs on a
discrete design space? Models with correlated errors?
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4 Discussion

Helpful to have a design website to find tailor-made optimal designs at
http://optimal-design.biostat.ucla.edu/optimal/

Illustrative examples in Berger & Wong, An Introduction to Optimal
Designs for Social & Biomedical Research (John Wiley, 2009).

Implement PSO to find multiple-objective optimal designs; see
Cook & Wong (JASA, 1994), Huang & Wong (Biometrics, 1998),
Zhu & Wong (J. Biopharm. Stat., 2000), Imhof & Wong
(Biometrics, 2000), Huang & Wong (Drug Information J., 2004)

Apply PSO to find optimal exact designs, minimum bias optimal
designs and Bayesian Designs? What about optimal designs on a
discrete design space? Models with correlated errors?

Expand website capabilities to find an optimal design for any
model and any criterion (? - hopefully).
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4.1 Other Nature-Inspired Algorithms

Ant colony (1991)
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4.1 Other Nature-Inspired Algorithms

Ant colony (1991)
Differential Evolution (Storn & Price, 1997)
Invasive weed optimization (2006)
Bees algorithm (2006)
Saplings growing-up algorithm (2007)
Artificial bee colony algorithm (2007)
Monkey search (2008)
Viral Systems (2008)
Intelligent water drops algorithm (2009)
Glowworm swarm optimization (2009)
Gravitational search algorithm (2009)
Cuckoo search (Yang & Deb, 2009)
Firefly algorithm (2009, 2010)
Bat algorithm (2010)
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4.2 Resources for Metaheuristic Optimization
and Nature-Inspired Metaheuristic Codes

Scholarpedia, the peer-reviewed open-access encyclopedia:
http://www.scholarpedia.org/article/Metaheuristic_Optimization

Another is at
http://www.metaheuristic.com/metaheuristic_optimization.php

Xin-She Yang’s 2008 book and updated in 2010:

 

  2008       2010 (2
nd

 edition) 
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4.3 Other Methods for Finding Optimal Designs

What about semi-definite programming (SDP) and semi-infinite
programming (SIP)?
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4.3 Other Methods for Finding Optimal Designs

What about semi-definite programming (SDP) and semi-infinite
programming (SIP)?

Powerful, can handle many parameters in the tens or hundreds

Requires design space to be discretized and so may not produce
the optimal design

O’Brien (Journal of Data Science, 2005) noted that the locally
Ds-optimal design for estimating θ2 in the 2-compartmental model

η(x , θ) =
θ1

θ1 − θ2
{exp(−θ2x)− exp(−θ1x)}

found by Hill and Hunter (Technometrics, 1974) over a discretized
design space does not satisfy the equivalence theorem.
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4.3 Other Methods for Finding Optimal Designs

What about semi-definite programming (SDP) and semi-infinite
programming (SIP)?

Powerful, can handle many parameters in the tens or hundreds

Requires design space to be discretized and so may not produce
the optimal design

O’Brien (Journal of Data Science, 2005) noted that the locally
Ds-optimal design for estimating θ2 in the 2-compartmental model

η(x , θ) =
θ1

θ1 − θ2
{exp(−θ2x)− exp(−θ1x)}

found by Hill and Hunter (Technometrics, 1974) over a discretized
design space does not satisfy the equivalence theorem.

Huge memory space is needed especially for finding Bayesian
optimal designs for nonlinear models (Duarte and Wong, 2012a)
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4.4 Further Minimax Design Problems

(a) Power Logistic Model (Prentice, Biometrics, 1976):

p(x , θ) =
1

{1 + exp(β(x − µ)}s , θ ∈ Θ = {(µ,β, s), µ > 0 & β > 0}.

(b) Logistic Model with a nonlinear constraint on the parameter space:

log
π(x)

1 − π(x)
= β(x − µ), θ ∈ Θ = {(µ, β), µ > 0 & β > 0},

i.e. constrained space has a nonlinear relationship in µ and β.

Duarte and Wong (2012b) used SIP and found minimax D-optimal
designs for such problems.
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Table 2: Minimax D-optimal designs for the logistic
model when the model parameters are functionally
dependent inside the plausible region

[µL, µU ]

[0.5,1.0] [0.5,2.5]

Constraint ξop ξop

β ≥ 2 µ -0.0680(0.5000) 0.2885(0.2796)

β ∈ [0, 3] 1.5680(0.5000) 1.2678(0.4408)

2.7115(0.2796)

β ≤ 2 µ -0.2997(0.5000) 0.1710(0.2606)

β ∈ [0, 3] 1.7997(0.5000) 1.5000(0.4788)

2.8290(0.2606)

β ≥ 2 µ2 -0.0680(0.5000) 0.2498(0.2772)

β ∈ [0, 3] 1.5680(0.5000) 1.2662(0.4457)

2.7502(0.2772)

β ≤ 2 µ2 -0.6274(0.5000) 0.1710(0.2606)

β ∈ [0, 3] 2.1274(0.5000) 1.5000(0.4788)

2.8290(0.2606)
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Fig. 8: Plot of the directional derivative Ψ(x , ξop, θ) of
the SIP-generated design ξop over X confirms that ξop

is minimax D-optimal for the logistic model with
β ≤ 2µ2, µ ∈ [0.5, 2.5] and β ∈ [0.0, 3.0]
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4.3 Tomlab

    LATEST NEWS

Aug 23rd 2012

TOMLAB 7.9 released. Read

more >>

Dec 16th 2011

TOMLAB 7.8 released. Read

more >>

Jun 8th 2011

TOMLAB 7.7 released. New

versions of CPLEX, GUROBI and

KNITRO. Read more >>

Nov 24th 2010

TOMLAB 7.6 released. GUROBI

now supports MIQP. Read more

>>

Oct 1st 2010

TOMLAB 7.5 released. PROPT

now supports binary and integer

variables! Read more >>

Mar 24th 2010

TOMLAB 7.4 released. PROPT

now has an automated scaling

module. Read more >>

Dec 7th 2009

TOMLAB 7.3 released. GUROBI

2.0 released. Several Base

Module updates! Read more >>

Aug 18th 2009

TOMLAB 7.2 released. New

GUROBI solver now available.

Read more >>

Aug 6th 2009

TOMLAB switches to BITROCK

for multi-platform installation

support. Read more >>

Mar 25th 2009

TOMLAB v7.1 released. Many

additional PROPT examples,

MINLP support in KNITRO and

more. Read more >>

The TOMLAB® Optimization Environment

For fast and robust large-scale optimization in MATLAB®

    PARTNERS

PENOPT

The TOMLAB Optimization Environment is a powerful optimization platform and modeling

language for solving applied optimization problems in Matlab. TOMLAB provides a wide range

of features, tools and services for your solution process. Read more about TOMLAB >>

"PROPT" has now cemented its position as the world's leading optimal control platform!

Read more: here

"TomSym" - a TOMLAB modeling language with complete source transformation. Read

more: here

Purchase TOMLAB online >>

Are you looking for a solver to embed in your system?

If you register you can test TOMLAB for free for 21 days.

What can Tomlab do for you? See our customer examples >>

    MOST POPULAR PRODUCTS

TOMLAB /SOL v7.8

TOMLAB /SOL v7.8 efficiently integrates the well-known solvers developed by the Stanford Systems

Optimization Laboratory (SOL) with MATLAB and TOMLAB. The toolbox includes the solvers MINOS,

LPOPT, QPOPT, NPSOL, NLSSOL, LSSOL, SNOPT, SQOPT.

Read more >> Buy now >>

TOMLAB /CPLEX v12.2

Solver package CPLEX 12.2, including Matlab interface. State-of-the-art mixed-integer linear and

quadratic programming with quadratic constraints (MILP, MIQP, MIQQ), and large-scale simplex and

barrier methods for LP and QP.

Read more >> Buy now >>

TOMLAB /CGO v7.8

Solver package for costly global optimization. The latest release of the solvers rbfSolve and EGO also

handles integer variables. The package is best used in conjunction with TOMLAB /SOL or TOMLAB

/OQNLP if integer variables are included.

Read more >> Buy now >>
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4.4 Summary

Successes with PSO: nonlinear models up to 6 parameters, cubic
mixture models with 8 factors on the regular simplex
(185-dimensional optimization problem!) and log contrast mixture
models.
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4.4 Summary

Successes with PSO: nonlinear models up to 6 parameters, cubic
mixture models with 8 factors on the regular simplex
(185-dimensional optimization problem!) and log contrast mixture
models.

Recall the NO FREE LUNCH THEOREM. For complex problems,
need to hybridize algorithms!

PSO methodology offers great promise and I believe represents a
leap forward in the field of optimal experimental designs.

Students should be more exposed to different types of
optimization techniques - more interdisciplinary training!
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Questions/Comments?

Please send them to Weng Kee Wong

( wkwong@ucla.edu )

The support for the entire work on the website was entirely supported
by a NIGMS grant award R01GM072876
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