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e Why robustness of design?

— The models for which we construct designs are generally at best ap-
proximations.

— The ‘best’ design for a slightly wrong model can be much more than
slightly sub-optimal.

— Although we will fit the assumed, ‘ideal’ model, we should design for

protection against biases arising from any of a range (‘neighbourhood’)
of alternate models.

e lllustrations to follow are based on simple straight line regression (SLR) —
even here there are intriguing, and frustratingly difficult, open problems.

e More complex situations discussed later, as time allows.



e SLR: We fit the model
E[Y (z)] = f' ()8 = 0 + 017,
(i.e. f'(x) = (1,z)) for x € [—1,1] but are concerned that

E[Y (2)] = f'(2) 0+ ¢ (),

for some ‘small’ function .

— Example: ¥ (z) = a - (1/3 —m2> for some ‘small’ o — quadratic
‘contamination’, orthogonal to f:

1 0\
[ f@v@a=(g); ()

this can always be arranged and ensures that @ is well defined.



Classically 'optimal’ design with misspecified response

4 E(Y)=1+x+0.3(1/3-x%)

error.std.dev=0.3
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o Let £ be the ‘design’, sometimes viewed as a pmf & (x;) = n;/n if n;
observations are to be made at the design point x;, at other times viewed
as the ‘design measure’ or the edf of the design points. For instance the
se & = (X'X) ! X’y has covariance matrix o2 (X'X) "}

o2 n; —1 o -1
= E(EY @) @) = (T @) F (@)
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o 1
= ZEM, where Mg = [ £ (2) £/ (2)€ (do).

o If E[Y (2)] = f/(x) 0 + 1 (x) then the presence of v introduces a bias:
E|0—6] =M. by, where by, ¢ = /_11f (z) ¢ () € (dz).

— Compare (1) — the continuous uniform ‘design’ is unbiased. ['Space-
filling']

— The mse matrix of 0 is

2

o _ — —
MSE (,€) = —M ' + Mg 'y ebly (M, .



e For a function ¢ (-) like the determinant (‘D-optimality’), trace (‘A-optimality’),
max eigenvalue (‘E-optimality’) etc. we might aim to minimize (the worst

case of) ¢ (MSE (v, €)):

min max & (MSE (1, €))

— The max value ¢ (MSE (¥ max, &)) turns out to depend only on the
maximum eigenvalue of this mse matrix (or one closely related to it);
these eigenvalues are functions of the design itself.

e Back to SLR - if (as has always been assumed in these problems) the design
is symmetric (£ (x) = &£ (—x)) then

Mng_llf(w)f’(w)f(dw)Z/_Z(i §2>f(d$):<(l) uzo(f))’

and it turns out that the other matrices involved in MSE(%) 1,44, &) are also
diagonal, so that the eigenvalues can be read off; now proceed to minimize
the larger (?) of them.
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Implementations of minimax designs, n = 20; max subject to
[2(z)dz < 12/n. (a) 72 =0, (b) 72 positive but small, (c) 72 — oo.
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e Problem 1: Does symmetry have to be assumed, or is the optimal (‘min-
imax’) design necessarily symmetric?

— Possible route to a solution: Drop this assumption and determine the
optimal design without it. This is complicated (for me) — the various
matrices determining the loss, which are diagonal under symmetry, are
no longer so.

— Sometimes, as for D-optimality, there are nice convexity properties —
the loss is smaller at the average (§+ + §_> /2 of the design for ‘z'

and the design for ‘—x’, and this average design is symmetric. Not
true for A- or E-optimality (although it is in ‘classical’ theory).

— For the ‘classical’ theory all of these loss function are convex and sym-
metry is indeed necessary.



e Problem 2: For D-optimality, the optimal design is range-invariant: if the
regression range [—1,1] is changed to [a, b] then we linearly transform
each design point x; and put the same number of observations at the
transformed design point as there were at x;. This is not so for (classical
or robust) A- and E-optimality — the design weights will also change. How

do they vary with the range?

— A solution to Problem 2 might shed light on the next problem — perhaps,
in the case of SLR, it is a problem only for certain ranges [a, b] and

not for others.



e Problem 3: The minimax problem for SLR described above was reduced
to finding an optimal design £y minimizing the maximum of two quantities:

max (A1 (£), A2 (£))-

e What are these quantities? First (recall [ ?(z)dz < 72/n) define
72

€ [0,1],

UV =
’7'2—|—0'g

so v = 0 = only variance of interest, v = 1 = only bias of interest.
Put o = [2%¢(dx). Let m(zx) be the density of the ‘design’ & (1) —
the optimal design has to be approximated in the end, to implement it.

Then — for instance — in the case of E-optimality and the regression range
x = [—1/2,1/2] we have

M) = 1—v+v[/X(m(x)—1)2dx],

/xZ (m(x)—12>2da: |
X o

1—v

H2

A2 (€) +v




e We are to minimize max (A1 (&), A2(&)). A relatively easy route to a
solution — when it works — is:

1. Hope that Aq will be the largest one, find £; minimizing A1 (§), verify
that max (A1 (§1) ;A2 (1)) = A1 (€1)-

2. If not, do it with Ap: find £, minimizing A (&), verify
that max (A1 (£2) ; A2 (£2)) = A2 (€2).

BUT this doesn't always work; for A- and E-optimality, often

max (A1 (§1),A2(€1)) = A2(&1) and
max (A1 (£2),A2(82)) = A1(&2)-



e Shi, Ye, Zhou (2003) — non-smooth optimization methods (maximum
eigenvalues aren't ‘smooth') — obtain a description of the solution; severe
computational problems.

e Alternate approach, being attempted for SLR:
1. Find &1 minimizing A1 (&) in the class for which A1 (£) > A2 (&).
2. Find & minimizing Ay (&) in the class for which Ay (&) > A1 (€).

Choose the one with the smaller maximum loss: put

¢ = { £ i A1 (61) < X2 (&),
0=

r, otherwise.



e Even if this works out for SLR it remains a problem for more complex
models — approximate quadratic regression is the ‘next’ one.

e Problem 3 is not related to the non-invariance of A- and E-optimality under
changes of the regression range. For quadratic regression it also arises in
the case of D-optimality, even though this criterion is range-invariant.

e Sometimes the best ‘solution’ is to avoid the problem altogether:

— Restrict the class of allowable designs - e.g. tractable parametric classes
with the parameters optimally chosen.

— Finite design space? — Avoids the problem of designs with densities
(designs are now equivalent to vectors); integer optimization problems.



e A sampling of other problems in robustness of design:

— Spatial sampling — look at robustness of the design against the ‘wrong’
spatial correlation function (as well as against the wrong response func-
tion); applications in computer experiments too.

— Survey sampling - survey samplers resist model-based designs, but could
perhaps be convinced otherwise if the models were sufficiently flexible.

— Response surface exploration — sequentially search for a maximum on
a surface, allowing for model errors.

— Threshold designs — search for a level of the inputs at which the re-
sponse exceeds a particular threshold (in the face of model uncertainty).



There is no shortage of problems to be ‘robustified’.



