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• Why robustness of design?

— The models for which we construct designs are generally at best ap-
proximations.

— The ‘best’ design for a slightly wrong model can be much more than
slightly sub-optimal.

— Although we will fit the assumed, ‘ideal’ model, we should design for
protection against biases arising from any of a range (‘neighbourhood’)
of alternate models.

• Illustrations to follow are based on simple straight line regression (SLR) —
even here there are intriguing, and frustratingly difficult, open problems.

• More complex situations discussed later, as time allows.



• SLR: We fit the model

E [Y (x)] = f 0 (x)θ = θ0 + θ1x,

(i.e. f 0 (x) = (1, x)) for x ∈ [−1, 1] but are concerned that

E [Y (x)] = f 0 (x)θ + ψ (x) ,

for some ‘small’ function ψ.

— Example: ψ (x) = α ·
³
1/3− x2

´
for some ‘small’ α — quadratic

‘contamination’, orthogonal to f :Z 1
−1
f (x)ψ (x) dx =

Ã
0
0

!
; (1)

this can always be arranged and ensures that θ is well defined.
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Classically ’optimal’ design with misspecified response

E(Y) = 1 + x + 0.3(1 3 − x2)

error.std.dev = 0.3

assumed response
true response
regression fit



• Let ξ be the ‘design’, sometimes viewed as a pmf ξ (xi) = ni/n if ni
observations are to be made at the design point xi, at other times viewed
as the ‘design measure’ or the edf of the design points. For instance the
lse θ̂ =

¡
X0X

¢−1X0y has covariance matrix σ2ε ¡X0X¢−1
=

σ2ε
n

µX ni
n
f (xi)f

0 (xi)
¶−1

=
σ2ε
n

³X
ξ (xi)f (xi)f

0 (xi)
´−1

=
σ2ε
n
M−1

ξ , whereMξ =
Z 1
−1
f (x)f 0 (x) ξ (dx) .

• If E [Y (x)] = f 0 (x)θ+ψ (x) then the presence of ψ introduces a bias:

E
h
θ̂ − θ

i
=M−1

ξ bψ,ξ, where bψ,ξ =
Z 1
−1
f (x)ψ (x) ξ (dx) .

— Compare (1) — the continuous uniform ‘design’ is unbiased. [‘Space-
filling’]

— The mse matrix of θ̂ is

MSE (ψ, ξ) =
σ2ε
n
M−1

ξ +M−1
ξ bψ,ξb

0
ψ,ξM

−1
ξ .



• For a function φ (·) like the determinant (‘D-optimality’), trace (‘A-optimality’),
max eigenvalue (‘E-optimality’) etc. we might aim to minimize (the worst
case of) φ (MSE (ψ, ξ)):

min
ξ
max
ψ

φ (MSE (ψ, ξ)) .

— The max value φ (MSE (ψmax, ξ)) turns out to depend only on the
maximum eigenvalue of this mse matrix (or one closely related to it);
these eigenvalues are functions of the design itself.

• Back to SLR - if (as has always been assumed in these problems) the design
is symmetric (ξ (x) = ξ (−x)) then

Mξ =
Z 1
−1
f (x)f 0 (x) ξ (dx) =

Z 1
−1

Ã
1 x
x x2

!
ξ (dx) =

Ã
1 0
0 μ2 (ξ)

!
,

and it turns out that the other matrices involved in MSE(ψmax, ξ) are also
diagonal, so that the eigenvalues can be read off; now proceed to minimize
the larger (?) of them.
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Implementations of minimax designs, n = 20; max subject toR
ψ2(x)dx ≤ τ2/n. (a) τ2 = 0, (b) τ2 positive but small, (c) τ2→∞.



• Problem 1: Does symmetry have to be assumed, or is the optimal (‘min-
imax’) design necessarily symmetric?

— Possible route to a solution: Drop this assumption and determine the
optimal design without it. This is complicated (for me) — the various
matrices determining the loss, which are diagonal under symmetry, are
no longer so.

— Sometimes, as for D-optimality, there are nice convexity properties —
the loss is smaller at the average

³
ξ+ + ξ−

´
/2 of the design for ‘x’

and the design for ‘−x’, and this average design is symmetric. Not
true for A- or E-optimality (although it is in ‘classical’ theory).

— For the ‘classical’ theory all of these loss function are convex and sym-
metry is indeed necessary.



• Problem 2: For D-optimality, the optimal design is range-invariant: if the
regression range [−1, 1] is changed to [a, b] then we linearly transform
each design point xi and put the same number of observations at the
transformed design point as there were at xi. This is not so for (classical
or robust) A- and E-optimality — the design weights will also change. How
do they vary with the range?

— A solution to Problem 2 might shed light on the next problem — perhaps,
in the case of SLR, it is a problem only for certain ranges [a, b] and
not for others.



• Problem 3: The minimax problem for SLR described above was reduced
to finding an optimal design ξ0 minimizing the maximum of two quantities:

max (λ1 (ξ) , λ2 (ξ)) .

• What are these quantities? First (recall
R
ψ2(x)dx ≤ τ2/n) define

ν =
τ2

τ2 + σ2ε
∈ [0, 1] ,

so ν = 0 ⇒ only variance of interest, ν = 1 ⇒ only bias of interest.
Put μ2 =

R
x2ξ (dx). Let m(x) be the density of the ‘design’ ξ (!) —

the optimal design has to be approximated in the end, to implement it.
Then — for instance — in the case of E-optimality and the regression range
χ = [−1/2, 1/2] we have

λ1 (ξ) = 1− ν + ν

"Z
χ
(m (x)− 1)2 dx

#
,

λ2 (ξ) =
1− ν

μ2
+ ν

⎡⎣Z
χ
x2
Ã
m (x)

μ2
− 12

!2
dx

⎤⎦ .



• We are to minimize max (λ1 (ξ) , λ2 (ξ)). A relatively easy route to a
solution — when it works — is:

1. Hope that λ1 will be the largest one, find ξ1 minimizing λ1 (ξ), verify
that max (λ1 (ξ1) , λ2 (ξ1)) = λ1 (ξ1).

2. If not, do it with λ2: find ξ2 minimizing λ2 (ξ), verify
that max (λ1 (ξ2) , λ2 (ξ2)) = λ2 (ξ2).

BUT this doesn’t always work; for A- and E-optimality, often

max (λ1 (ξ1) , λ2 (ξ1)) = λ2 (ξ1) and
max (λ1 (ξ2) , λ2 (ξ2)) = λ1 (ξ2) .



• Shi, Ye, Zhou (2003) — non-smooth optimization methods (maximum
eigenvalues aren’t ‘smooth’) — obtain a description of the solution; severe
computational problems.

• Alternate approach, being attempted for SLR:

1. Find ξ1 minimizing λ1 (ξ) in the class for which λ1 (ξ) > λ2 (ξ) .

2. Find ξ2 minimizing λ2 (ξ) in the class for which λ2 (ξ) > λ1 (ξ) .

Choose the one with the smaller maximum loss: put

ξ0 =

(
ξ1, if λ1 (ξ1) < λ2 (ξ2) ,
ξ2, otherwise.



• Even if this works out for SLR it remains a problem for more complex
models — approximate quadratic regression is the ‘next’ one.

• Problem 3 is not related to the non-invariance of A- and E-optimality under
changes of the regression range. For quadratic regression it also arises in
the case of D-optimality, even though this criterion is range-invariant.

• Sometimes the best ‘solution’ is to avoid the problem altogether:

— Restrict the class of allowable designs - e.g. tractable parametric classes
with the parameters optimally chosen.

— Finite design space? — Avoids the problem of designs with densities
(designs are now equivalent to vectors); integer optimization problems.



• A sampling of other problems in robustness of design:

— Spatial sampling — look at robustness of the design against the ‘wrong’
spatial correlation function (as well as against the wrong response func-
tion); applications in computer experiments too.

— Survey sampling - survey samplers resist model-based designs, but could
perhaps be convinced otherwise if the models were sufficiently flexible.

— Response surface exploration — sequentially search for a maximum on
a surface, allowing for model errors.

— Threshold designs — search for a level of the inputs at which the re-
sponse exceeds a particular threshold (in the face of model uncertainty).



There is no shortage of problems to be ‘robustified’.


