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Calibration Problems

Consider a computer experiment problem with both
computer output and physical response.

Physical experiment has control variables.
Computer code is deterministic.
Computer input involves control variables and calibration
parameters.

Calibration parameters represent inherent attributes of the
physical system, which cannot be controlled in physical
experiment.
In many cases, the true value of the calibration parameters
cannot be measured physically.
Kennedy and O’Hagan (2001) describe the calibration
problems as:

“Calibration is the activity of adjusting the unknown
(calibration) parameters until the outputs of the (computer)
model fit the observed data.”
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A Spot Welding Example

Consider a spot welding example from Bayarri et al.
(2007). Two sheets of metal are compressed by
water-cooled copper electrodes under an applied load.
Control variables

Applied load L
Direct current of magnitude C

Calibration parameter
Contact resistance at the faying surface
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Notation

Denote the control variable by x , and the calibration
parameter by θ.
For simplicity, assume that the physical response yp has
no random error. Denote the computer output by ys.

yp is a deterministic function of x and ys is a deterministic
function of (x , θ).

Calibration problems can be formulated as

yp(x) = ys(x , θ0) + δ(x), (1)

where θ0 is the true value of the calibration parameter and
δ is the discrepancy between the physical response and
the computer model.
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Identifiability

The true calibration parameter θ0 is unidentifiable because
both θ0 and δ are unknown.

For any given θ, ε(x , θ) = yp(x)− ys(x , θ) solves equation
(1).
“A lack of (likelihood) identifiability, ..., persists
independently of the prior assumptions and will typically
lead to inconsistent estimation in the asymptotic sense.”
(Wynn, 2001).

The identifiability issue is also observed by Bayarri et al.
(2007) and Han et al. (2009) etc.
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Mathematical Framework

Let ε(x , θ) = yp(x)− ys(x , θ).

Definition

Define the L2 distance projection of θ by

θ∗ = argminθ∈Θ ‖ε(·, θ)‖L2(Ω),

where Θ is the domain for θ, and Ω is the experimental region.

We treat θ∗ as the “true” calibration parameter and the
problem becomes well defined.
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Kennedy-O’Hagan Method

Kennedy and O’Hagan (2001) proposed a modeling
framework for calibration problems.
Main idea:

Consider the model

yp(x) = ys(x , θ0) + δ(x).

Choose a prior distribution for θ0.
Assume that ys(·, ·) and δ(·) are independent realizations of
Gaussian processes. Then the posterior distribution of θ0
can be obtained.

By imposing such a stochastic structure, there is no
identifiability problem.

Rui Tuo and C. F. Jeff Wu Consistency of Calibration Parameter Estimation



Frequentist Version of Kennedy-O’Hagan Method

The log-likelihood function is given by

l(θ, σ2) = −n
2

logσ2 − 1
2

log |Φx| −
1

2σ2 ε(x, θ)TΦ−1
x ε(x, θ),

where Φx is the covariance matrix.
Given Φx, the MLE for θ is

θ̂ = argmin
θ∈Θ

ε(x, θ)TΦ−1
x ε(x, θ).

We refer to this method as the KO calibration. This
frequentist version is asymptotically equivalent to the
Bayesian estimation, provided that the support of the prior
distribution for θ is sufficiently wide.
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Reproducing Kernel Hilbert Space

To study the asymptotic behavior of the KO calibration, we
need the reproducing kernel Hilbert spaces, also known as
the native spaces, as the mathematical tool.
Suppose Φ is a symmetric positive definite function on Ω.
Define the linear space

FΦ(Ω) = {
N∑

i=1

αiΦ(·, xi) : N ∈ N, αi ∈ R, xi ∈ Ω for 1 ≤ i ≤ n}

and equip this space with the bilinear form

〈 N∑
i=1

αiΦ(·, xi),
M∑

j=1

βjΦ(·, yj)
〉

Φ
:=

N∑
i=1

M∑
j=1

αiβjΦ(xi , yj).

The native Hilbert function space is defined as the closure
of FΦ(Ω), denoted as NΦ(Ω).
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Filling distance

As a property of design, we define the filling distance as

hx,Ω := sup
x∈Ω

min
xi∈x
‖x − xi‖.

The design minimizing the filling distance is known as the
minimax distance design.
To develop an asymptotic theory, we assume that we have
a sequence of designs, denoted by Dn. Let the filling
distance of Dn be hn.
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Limiting Value of KO Calibration

By the definition of the native norm, we have

ε(x, θ)TΦ−1
x ε(x, θ) = ‖ε̂(·, θ)‖2NΦ(Ω),

where ε̂ is the interpolate of ε given by the Gaussian
process model.
Therefore, under mild conditions we have

Theorem

If there exists a unique θ′ such that

‖ε(·, θ′)‖NΦ(Ω) = inf
θ∈Θ
‖ε(·, θ)‖NΦ(Ω).

Then θ̂n → θ′ as hn → 0.
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Comparison between two norms (1)

In general, the limiting value θ′ of the KO calibration differs
from the L2 distance projection θ∗ of θ.
In order to study the difference θ′ − θ∗, let us consider the
difference between ‖ · ‖L2(Ω) and ‖ · ‖NΦ(Ω).
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Comparison between two norms (2)

Define the integral operator κ(f ) =
∫

Ω Φ(·, x)f (x)dx for
f ∈ L2(Ω). Denote the eigenvalues of κ by λ1 ≥ λ2 ≥ · · · .
Let fi be the eigenfunction associated with λi and
‖fi‖L2(Ω) = 1. Then

‖fi‖2NΦ(Ω) = 〈fi , λ−1fi〉L2(Ω) = λ−1
i ,

where the first equality follows from the identity
‖κ(f )‖2NΦ(Ω) = 〈f , κ(f )〉L2(Ω) for any f ∈ L2(Ω) (Wendland,
2005).

Since limk→∞ λk = 0, we obtain supf∈NΦ(Ω)
‖f‖NΦ(Ω)

‖f‖L2(Ω)
=∞.

There are some functions with very small L2 norm but their
native norm is bounded away from zero. Therefore, the KO
calibration can give results that are far from the L2

projection.
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An Illustrative Example (1)

Let Ω = [−1,1] and
Φ(x1, x2) = exp{−(x1 − x2)2}.
Consider a calibration
problem with a three-level
calibration parameter,
corresponding to computer
codes with discrepancy
ε1, ε2, ε3.
Suppose that ε1 and ε2 are the
first and second
eigenfunctions of κ with L2

norms
√

20 and ε3 = sinπx .

Figure : The solid and
dashed lines are the
first and second
eigenfunction of κ. The
dotted line shows the
function sinπx .
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An Illustrative Example (2)

By Definition 1, the third computer code is the L2 distance
projection.
The KO calibration with the correlation function Φ gives a
different ranking:

εT1Φxε1 = 12.594
εT2Φxε2 = 57.908
εT3Φxε3 = 436.268

|ε3(x)| is smaller than |ε1(x)| and |ε2(x)| for every x , i.e.,
the point-wise predictive error for the third computer code
is uniformly smaller than the first two. This gives a good
justification for choosing the L2 norm rather than the native
norm.
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Consistent Calibration

Definition
Suppose θ∗ is the unique solution of

‖ε(·, θ∗)‖L2(Ω) = min
θ∈Θ
‖ε(·, θ)‖L2(Ω).

For the design Dn, let θ̂n be an estimator of the calibration
parameter. The estimator θ̂n is asymptotically consistent if
θ̂n → θ∗ as hn → 0.

The aim is to find a consistent estimator of the calibration
parameter.
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Modified KO Calibration

We only consider the stationary Gaussian process models,
i.e., Φ(x1, x2) = R(x1 − x2).
Consistency for calibration cannot be achieved if R is fixed.
We assume that R has a correlation parameter φ satisfying
R(x ;φ) = R(φx ; 1) for any φ > 0 and x . Most correlation
families like Gaussian or Matérn family satisfy the
conditions.
Now we assume that the correlation parameter φn is a
fixed sequence of constants, not unknown parameter to be
estimated from data.
Define the modified KO calibration θ̂n by the MLE under the
correlation function Φ(x1, x2) = R(x1 − x2, φn).
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Consistency Conjecture

We expect that φn → +∞ is a necessary condition for
consistency.
If φn increases too fast, the interpolator does not converge.
Haaland and Qian (2011) gives an error bounds on the
interpolate

‖ε− ε̂n‖NRφ
(Ω) ≤ CR(φhX ,Ω)k/2‖ε‖NRφ∗Rφ

(Ω).

This result reveals that another necessary condition for the
consistency is φnhn → 0.
We state the following conjecture:
Under regularity conditions, the modified KO calibration is
asymptotically consistent if φn → +∞ and φnhn → 0.

Rui Tuo and C. F. Jeff Wu Consistency of Calibration Parameter Estimation



Numerical Study

Consider the three-level calibration example again.
Define Φ(x1, x2;φ) = exp{−φ(x1 − x2)2} for φ = 1,2,3,4.
The following table shows the values of εTi Φ−1

X ,φεi .

φ = 1 φ = 2 φ = 3 φ = 4
εT1 Φ−1

X ,φε1 12.59418 14.96617 17.46962 19.64678
εT2 Φ−1

X ,φε2 57.90827 44.70162 46.05707 47.69874
εT3 Φ−1

X ,φε3 436.2677 26.35112 8.998971 6.259807
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Ongoing Work

Proof of the conjecture.
Convergence rate for the modified KO calibration.
Extensions to physical experiments with measurement
error.
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