On the Consistency of Calibration Parameter Estimation in Deterministic Computer Experiments

Rui Tuo and C. F. Jeff Wu

Chinese Academy of Sciences & Georgia Institute of Technology

Oct 19, 2012

Rui Tuo and C. F. Jeff Wu Consistency of Calibration Parameter Estimation

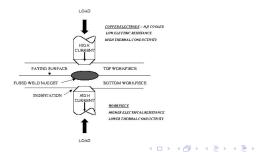
Calibration Problems

- Consider a computer experiment problem with both computer output and physical response.
 - Physical experiment has control variables.
 - Computer code is deterministic.
 - Computer input involves control variables and calibration parameters.
- Calibration parameters represent inherent attributes of the physical system, which cannot be controlled in physical experiment.
- In many cases, the true value of the calibration parameters cannot be measured physically.
- Kennedy and O'Hagan (2001) describe the calibration problems as:
 - "Calibration is the activity of adjusting the unknown (calibration) parameters until the outputs of the (computer) model fit the *observed* data."

・ロット (雪) () () () ()

A Spot Welding Example

- Consider a spot welding example from Bayarri et al. (2007). Two sheets of metal are compressed by water-cooled copper electrodes under an applied load.
- Control variables
 - Applied load L
 - Direct current of magnitude C
- Calibration parameter
 - Contact resistance at the faying surface



Notation

- Denote the control variable by *x*, and the calibration parameter by *θ*.
- For simplicity, assume that the physical response y^p has *no* random error. Denote the computer output by y^s .
 - y^ρ is a deterministic function of x and y^s is a deterministic function of (x, θ).
- Calibration problems can be formulated as

$$y^{p}(x) = y^{s}(x,\theta_{0}) + \delta(x), \qquad (1)$$

ヘロト ヘアト ヘビト ヘビト

where θ_0 is the true value of the calibration parameter and δ is the *discrepancy* between the physical response and the computer model.

- The true calibration parameter θ_0 is unidentifiable because both θ_0 and δ are unknown.
 - For any given θ, ε(x, θ) = y^p(x) y^s(x, θ) solves equation (1).
 - "A lack of (likelihood) identifiability, ..., persists independently of the prior assumptions and will typically lead to inconsistent estimation in the asymptotic sense." (Wynn, 2001).
- The identifiability issue is also observed by Bayarri et al. (2007) and Han et al. (2009) etc.

ヘロト 人間 ト ヘヨト ヘヨト

Mathematical Framework

• Let
$$\epsilon(x,\theta) = y^{p}(x) - y^{s}(x,\theta)$$
.

Definition

Define the L^2 distance projection of θ by

$$\theta^* = \operatorname{argmin}_{\theta \in \Theta} \|\epsilon(\cdot, \theta)\|_{L^2(\Omega)},$$

where Θ is the domain for θ , and Ω is the experimental region.

 We treat θ* as the "true" calibration parameter and the problem becomes well defined.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Kennedy and O'Hagan (2001) proposed a modeling framework for calibration problems.
- Main idea:
 - Consider the model

$$y^{p}(x) = y^{s}(x,\theta_{0}) + \delta(x).$$

- Choose a prior distribution for θ_0 .
- Assume that y^s(·, ·) and δ(·) are independent realizations of Gaussian processes. Then the posterior distribution of θ₀ can be obtained.
- By imposing such a stochastic structure, there is no identifiability problem.

ヘロト ヘアト ヘビト ヘビト

Frequentist Version of Kennedy-O'Hagan Method

The log-likelihood function is given by

$$I(\theta, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2} \log |\Phi_{\mathbf{x}}| - \frac{1}{2\sigma^2} \epsilon(\mathbf{x}, \theta)^{\mathsf{T}} \Phi_{\mathbf{x}}^{-1} \epsilon(\mathbf{x}, \theta),$$

where $\Phi_{\mathbf{x}}$ is the covariance matrix.

• Given $\Phi_{\mathbf{x}}$, the MLE for θ is

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \epsilon(\mathbf{x}, \theta)^{\mathsf{T}} \Phi_{\mathbf{x}}^{-1} \epsilon(\mathbf{x}, \theta).$$

 We refer to this method as the KO calibration. This frequentist version is asymptotically equivalent to the Bayesian estimation, provided that the support of the prior distribution for θ is sufficiently wide.

(雪) (ヨ) (ヨ)

Reproducing Kernel Hilbert Space

- To study the asymptotic behavior of the KO calibration, we need the reproducing kernel Hilbert spaces, also known as the native spaces, as the mathematical tool.
- Suppose Φ is a symmetric positive definite function on Ω.
 Define the linear space

$$F_{\Phi}(\Omega) = \{\sum_{i=1}^{N} \alpha_i \Phi(\cdot, x_i) : N \in \mathbb{N}, \alpha_i \in \mathbf{R}, x_i \in \Omega \text{ for } 1 \le i \le n\}$$

and equip this space with the bilinear form

$$\left\langle \sum_{i=1}^{N} \alpha_i \Phi(\cdot, \mathbf{x}_i), \sum_{j=1}^{M} \beta_j \Phi(\cdot, \mathbf{y}_j) \right\rangle_{\Phi} := \sum_{i=1}^{N} \sum_{j=1}^{M} \alpha_i \beta_j \Phi(\mathbf{x}_i, \mathbf{y}_j).$$

The native Hilbert function space is defined as the closure of F_Φ(Ω), denoted as N_Φ(Ω).

As a property of design, we define the filling distance as

$$h_{\mathbf{x},\Omega} := \sup_{x\in\Omega} \min_{x_i\in\mathbf{x}} \|x-x_i\|.$$

- The design minimizing the filling distance is known as the *minimax distance design*.
- To develop an asymptotic theory, we assume that we have a sequence of designs, denoted by D_n. Let the filling distance of D_n be h_n.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Limiting Value of KO Calibration

• By the definition of the native norm, we have

$$\epsilon(\mathbf{x}, \theta)^{\mathsf{T}} \Phi_{\mathbf{x}}^{-1} \epsilon(\mathbf{x}, \theta) = \|\hat{\epsilon}(\cdot, \theta)\|_{\mathcal{N}_{\Phi}(\Omega)}^{2},$$

where $\hat{\epsilon}$ is the interpolate of ϵ given by the Gaussian process model.

• Therefore, under mild conditions we have

Theorem

If there exists a unique θ' such that

$$\|\epsilon(\cdot,\theta')\|_{\mathcal{N}_{\Phi}(\Omega)} = \inf_{\theta\in\Theta} \|\epsilon(\cdot,\theta)\|_{\mathcal{N}_{\Phi}(\Omega)}.$$

Then $\hat{\theta}_n \rightarrow \theta'$ as $h_n \rightarrow 0$.

< ∃⇒

- In general, the limiting value θ' of the KO calibration differs from the L² distance projection θ* of θ.
- In order to study the difference θ' − θ*, let us consider the difference between || · ||_{L²(Ω)} and || · ||_{N_Φ(Ω)}.

Comparison between two norms (2)

- Define the integral operator κ(f) = ∫_Ω Φ(·, x)f(x)dx for f ∈ L²(Ω). Denote the eigenvalues of κ by λ₁ ≥ λ₂ ≥ ···.
- Let f_i be the eigenfunction associated with λ_i and $\|f_i\|_{L^2(\Omega)} = 1$. Then

$$\|f_i\|_{\mathcal{N}_{\Phi}(\Omega)}^2 = \langle f_i, \lambda^{-1}f_i \rangle_{L^2(\Omega)} = \lambda_i^{-1},$$

where the first equality follows from the identity $\|\kappa(f)\|_{\mathcal{N}_{\Phi}(\Omega)}^2 = \langle f, \kappa(f) \rangle_{L^2(\Omega)}$ for any $f \in L^2(\Omega)$ (Wendland, 2005).

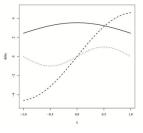
- Since $\lim_{k\to\infty} \lambda_k = 0$, we obtain $\sup_{f\in\mathcal{N}_{\Phi}(\Omega)} \frac{\|f\|_{\mathcal{N}_{\Phi}(\Omega)}}{\|f\|_{L^2(\Omega)}} = \infty$.
- There are some functions with very small *L*² norm but their native norm is bounded away from zero. Therefore, the KO calibration can give results that are far from the *L*² projection.

An Illustrative Example (1)

- Let $\Omega = [-1, 1]$ and $\Phi(x_1, x_2) = \exp\{-(x_1 - x_2)^2\}.$
- Consider a calibration problem with a three-level calibration parameter, corresponding to computer codes with discrepancy

 $\epsilon_1, \epsilon_2, \epsilon_3.$

Figure : The solid and • Suppose that ϵ_1 and ϵ_2 are the dashed lines are the first and second first and second eigenfunctions of κ with L^2 eigenfunction of κ . The dotted line shows the norms $\sqrt{20}$ and $\epsilon_3 = \sin \pi x$. function $\sin \pi x$.



- By Definition 1, the third computer code is the *L*² distance projection.
- The KO calibration with the correlation function Φ gives a different ranking:

$$\begin{aligned} \epsilon_1^{\mathsf{T}} \Phi_{\mathbf{x}} \epsilon_1 &= 12.594 \\ \epsilon_2^{\mathsf{T}} \Phi_{\mathbf{x}} \epsilon_2 &= 57.908 \\ \epsilon_3^{\mathsf{T}} \Phi_{\mathbf{x}} \epsilon_3 &= 436.268 \end{aligned}$$

• $|\epsilon_3(x)|$ is smaller than $|\epsilon_1(x)|$ and $|\epsilon_2(x)|$ for every x, i.e., the point-wise predictive error for the third computer code is uniformly smaller than the first two. This gives a good justification for choosing the L^2 norm rather than the native norm.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Suppose θ^* is the unique solution of

$$\|\epsilon(\cdot,\theta^*)\|_{L^2(\Omega)} = \min_{\theta\in\Theta} \|\epsilon(\cdot,\theta)\|_{L^2(\Omega)}.$$

For the design \mathcal{D}_n , let $\hat{\theta}_n$ be an estimator of the calibration parameter. The estimator $\hat{\theta}_n$ is *asymptotically consistent* if $\hat{\theta}_n \to \theta^*$ as $h_n \to 0$.

• The aim is to find a consistent estimator of the calibration parameter.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Modified KO Calibration

- We only consider the *stationary* Gaussian process models, i.e., $\Phi(x_1, x_2) = R(x_1 x_2)$.
- Consistency for calibration cannot be achieved if *R* is fixed.
- We assume that *R* has a correlation parameter φ satisfying *R*(*x*; φ) = *R*(φ*x*; 1) for any φ > 0 and *x*. Most correlation families like Gaussian or Matérn family satisfy the conditions.
- Now we assume that the correlation parameter φ_n is a fixed sequence of constants, not unknown parameter to be estimated from data.
- Define the modified KO calibration $\hat{\theta}_n$ by the MLE under the correlation function $\Phi(x_1, x_2) = R(x_1 x_2, \phi_n)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- We expect that φ_n → +∞ is a necessary condition for consistency.
- If φ_n increases too fast, the interpolator does not converge. Haaland and Qian (2011) gives an error bounds on the interpolate

$$\|\epsilon - \hat{\epsilon}_n\|_{\mathcal{N}_{R_{\phi}}(\Omega)} \leq C_R(\phi h_{X,\Omega})^{k/2} \|\epsilon\|_{\mathcal{N}_{R_{\phi}*R_{\phi}}(\Omega)}.$$

This result reveals that another necessary condition for the consistency is $\phi_n h_n \rightarrow 0$.

 We state the following conjecture: Under regularity conditions, the modified KO calibration is asymptotically consistent if φ_n → +∞ and φ_nh_n → 0.

・ロト ・ 理 ト ・ ヨ ト ・

- Consider the three-level calibration example again.
- Define $\Phi(x_1, x_2; \phi) = \exp\{-\phi(x_1 x_2)^2\}$ for $\phi = 1, 2, 3, 4$.
- The following table shows the values of $\epsilon_i^T \Phi_{X,\phi}^{-1} \epsilon_i$.

	$\phi = 1$	$\phi = 2$	$\phi = 3$	$\phi = 4$
$\epsilon_1^T \Phi_{X,\phi}^{-1} \epsilon_1$	12.59418	14.96617	17.46962	19.64678
$\epsilon_2^T \Phi_{X,\phi}^{-1} \epsilon_2$	57.90827	44.70162	46.05707	47.69874
$\epsilon_3^T \Phi_{X,\phi}^{-1} \epsilon_3$	436.2677	26.35112	8.998971	6.259807

< 回 > < 回 > < 回 > … 回

- Proof of the conjecture.
- Convergence rate for the modified KO calibration.
- Extensions to physical experiments with measurement error.

・ 同 ト ・ ヨ ト ・ ヨ ト

æ