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● Optimum Design Theory.

● Multiplicative Algorithm.

● Multifactor Models:

✦ Enzyme Inhibition.

✦ pV T Measurements.

● Discriminating between models.

✦ Adsorption Isoterms.

● Results Discussion.
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● Determination of optimum designs is not a
straightforward process, even for moderate examples.

● New schemes for developing iterative algorithms, based
on the multiplicative algorithm
(Torsney and Martı́n-Martı́n, 2009), devoted to the
numerical construction of optimum designs are being
sought.

● Provide experimenters with designs that would minimize
the experimental cost of measurements while obtaining
the most accurate characterization of the mechanisms.
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Consider the general non-linear regression model

y = η(x; θ) + ε, x ∈ X ,

where the random variables ε are independent and normally
distributed with zero mean and constant variance σ2 and θ is
the unknown parameter vector.

X , called design space.

Let Ξ be the set of probability distributions on the Borel sets
of X , then any ξ ∈ Ξ satisfying

∫

X
ξ(dx) = 1, ξ(xi) ≥ 0, x ∈ X ,

is called a design measure, or an approximate design.
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The most common method for analyzing data from a
non-linear model is based on the use of the linear Taylor
series approximation of the response surface,

η(x; θ) ≈ η(x; θ0) + [∇η(x; θ)|θ0
]t(θ − θ0),

where ∇ denotes the gradient with respect to θ and being θ0

a prior value of θ.

The variance-covariance matrix of the least square estimator
of θ is asymptotically approximated by the inverse of the
information matrix induced by ξ,

M(ξ, θ) =

∫

χ
∇η(x; θ)[∇η(x; θ)]tdξ(x).
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Let φ be a real-valued function defined on the k× k symmetric
matrices and bounded above on {M(ξ, θ) : ξ ∈ Ξ}.

The optimum design problem is concerned with finding ξ⋆

such that φ(M(ξ⋆, θ)) = minξ∈Ξ φ(M(ξ, θ)) which is called a
φ-optimum design.

Caratheodory’s theorem implies that for a model with k
parameters, a locally φ-optimum design supported at no
more than k(k + 1)/2 + 1 points exists.

For convenience, designs will be described using a two row
matrix,

ξ =

{
x1 x2 . . . xN

ξ1 ξ2 . . . ξN

}
,

being ξ1, . . . , ξN non negative real numbers which sum up to
one.
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The D−optimum criterion minimizes the volume of the
confidence ellipsoid of the parameters and is given by

φD[M(ξ, θ)] = det{M(ξ, θ)}−1/k,

where k is the number of parameters in the model.

It is known that this criterion is a convex and non-increasing
function of the designs and so, designs with a small criterion
value are desirable.

A design that minimizes φD over all the designs on X is
called a D−optimum design.
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Since the criterion is convex, standard convex analysis
arguments using directional derivatives, when φ is
differentiable, show that a design ξ⋆ is φ−optimum if and only
if

Fφ

[
M(ξ⋆, θ), M(ξxj

, θ)
]
≡ Fφ(ξ⋆, ej) = dj −

N∑

j=1

ξ⋆
j dj ≥ 0,

with equality at the support points of ξ⋆.

M(ξxj
, θ) is the Information Matrix for a single observation at

the point xj , ej denotes the j-th unit vector in R
N and

dj = ∂φ/∂ξxj
.

The General Equivalence Theorem states that the variance
function evaluated using a φ-optimum design achieves its
maximum value at the support points of this design.
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The purpose of experimental design is to select the design
points x1, . . . , xN and the corresponding weights ξ1, . . . , ξN so
that the design ξ is optimum for some criterion, φ.

A simple case is the determination of the best N -point
φ-optimum design. Let x1, x2, . . . , xN be its support points,
xi ∈ X = [a, b].

Let:
Wh =

xh − xh−1

b − a
, h = 1, . . . , N + 1,

where x0 = a and xN+1 = b. The variables Wh satisfy

Wh ≥ 0,
N+1∑

h=1

Wh = 1.

Transformation was proposed by Torsney and Martı́n-Martı́n
(2009).
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Thus, we have an example of the following type of
optimization problem:
Minimize a criterion φ(W, ξ) over

P =
{
W = (W1, . . . , WN+1), ξ = (ξ1, . . . , ξN ) :

Wh ≥ 0,
N+1∑

h=1

Wh = 1 and ξj ≥ 0,
N∑

j=1

ξj = 1
}
.

Then the following simultaneous approaches are used

W
(r+1)
h =

W
(r)
h g(F

(r)
h , δ1)

∑N+1
t=1 W

(r)
t g(F

(r)
t , δ1)

, ξ
(r+1)
j =

ξ
(r)
j g(F

(r)
j , δ2)

∑N
i=1 ξ

(r)
i g(F

(r)
i , δ2)

,

where r = 0, 1, . . . is the iteration number, g(Fh, δ1) and
g(Fj, δ2), are positive increasing, and if δ = 0, g(F, δ) are
constants.
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Being Fj and Fh the vertex directional derivatives:

Fh = Fφ(W, eh) = dh −
∑

Whdh, dh =
∂φ

∂Wh
,

Fj = Fφ(ξ, ej) = dj −
∑

ξjdj , dj =
∂φ

∂ξj
.

Therefore if φ is a convex and differentiable function a design
ξ⋆ will be optimum if and only if,

F ⋆
h = Fφ (W ⋆, eh) =

{
= 0, for W ⋆

h > 0
≥ 0 for W ⋆

h = 0,

F ⋆
j = Fφ(ξ⋆, ej) =

{
= 0, for ξ⋆(xj) > 0
≥ 0 for ξ⋆(xj) = 0.
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Searching for optimally designed experiments with more than
one independent factor is more complicated than for models
with a single factor.

● Enzyme Inhibition.

● Pressure, Volume and Temperature measurements.
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Enzyme kinetics is the study of the chemical reactions that
are catalyzed by enzymes, with a focus on their reaction
rates.

The binding of an inhibitor can stop a substrate from entering
the enzyme’s active site and/or hinder the enzyme from
catalyzing its reaction. Inhibitor binding is either reversible or
irreversible.

Enzyme assays are laboratory procedures that measure the
rate of enzyme reactions.
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This kinetic model is relevant to situations where very simple
kinetics can be assumed, (i.e. there is no intermediate or
product inhibition).

V =
Vmax[S]

KM

(
1 + [I]

Ki

)
+ [S]

(
1 + [I]

K′

i

)

● Competitive inhibitors can bind to E, but not to ES.

● Non-competitive inhibitors have identical affinities for E
and ES (Ki = K ′

i).

● Mixed-type inhibitors bind to both E and ES, but their
affinities for these two forms of the enzyme are different
(Ki 6= K ′

i).

Unknown parameters θ = (Vmax, KM , Ki, K
′
i).
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Example: Considering Polifenol Oxidasa as enzyme,
4-Metylcatecol as substrate and Cianimic acid as a
competitive inhibitor, S × I = [5, 50] × [0, 1.2]µM and
θ0 = (V, Km, Ki) = (131.4, 12.5, 0.42).

ξ⋆
D =

{
(8.33, 0) (48, 26, 1.2) (50, 0)

0.33 0.33 0.33

}
.
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D-optima designs for these type of models have been
analytically computed by Bogacka et al. (2011).

Comparison of convergence rate of the Multiplicative
Algorithm (red) with Wynn-Fedorov Algorithm (blue) have
been obtained:
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The characterization of volume or density as a function of
temperature and pressure is particularly important for the
design of industrial plants, pipelines and pumps.

In order to correlate the density values over the temperature
and pressure intervals, the following Tait-like equation is
used,

E(ρ) = η(p, T ; θ) =
ρ0(T )

1 − C(T ) log B(T )+p
B(T )+p0

, var(ρ) = σ2.

ρ0(T ) is either a linear function of the required degree or a
non-linear function, known as Rackett equation.B(T ) and
C(T ) are linear functions.

X = P × T , where P and T are permissible ranges of values
for p and T . Being θt = (A0, . . . , B0, . . . , C0, . . . ) the set of
unknown parameters.
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Example: In order to characterize changes of density of
1-phenylundecane.
X = P × T = [0.1, 65]MPa × [293.15, 353, 15]K and the set of
best guesses of the parameters are obtained from
Milhet et al. (2005), θ0 = (A0, A1, A2, A3, B0, B1, B2, C)t.
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The obtained design, ξ⋆
D is supported at 11 points with

different proportions of observations for each point. In this
case, 8 of the support points lie at the boundaries of the
design space X , while two of them belong to its interior.

ξ⋆
D =






(0.1, 293.15) 0.12
(0.1, 311.99) 0.07
(0.1, 333.55) 0.10
(0.1, 353.15) 0.12

(28.58,308.91) 0.05
(28.58,339.50) 0.07
(28.58, 353.15) 0.07
(65, 293.15) 0.12
(65, 311.61) 0.07
(65, 334.53) 0.09
(65, 353.15) 0.12






t

.
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Example:In the work of Outcalt and Laesecke (2010),
measurements are taken over JP-10. Because of its high
thermal stability, high energy density, low cost, and
widespread availability, JP-10 is being investigated as a fuel
to be used in pulse-detonation engines.

In this case the dependence of ρ0 is characterized by the
Racket equation:

ρ0(T ) = AR/B
[1+(1−(T/CR))DR ]
R .

Measurements are taken over
X = P × T = [0.083, 30]MPa × [270, 470]K and the set of
best guesses are obtained from Outcalt and Laesecke
(2010), θ0 = (AR, BR, CR, DR, B0, B1, B2, C)t.
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The obtained design, ξ⋆
D is supported at 10 points with

different proportions of observations for each point. 9 of the
support points lie in the boundary while only one is in the
interior of X .

ξ⋆
D =






(0.083, 270) 0.11
(0.083, 334.95) 0.08
(0.083, 421.72) 0.12
(0.083, 470) 0.12

(12.51,439.1) 0.02
(12.60, 470) 0.12
(30, 270) 0.11

(30, 337.94) 0.09
(30, 425.91) 0.11
(30, 470) 0.12






t

.
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The Equivalence Theorem proves D−optimality of the
design. Figure shows the attainment of equality to k = 8 at
the support points.
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For the extension of the multiplicative algorithm to a
two-factor non-linear model, the transformation of pressure
values, pi, i = 1, . . . , N , into a marginal distribution or set of
weights Wph

, h = 1, . . . , N + 1, is proposed.

Then, the corresponding temperatures T paired with each
value pi, Ts|pi

, s = 1, . . . , q, are transformed into a conditional
distribution WTs|pi

, s = 1, . . . , q.

On the other hand, design weights need to be
simultaneously determined. These conditional and marginal
distributions must be optimally chosen.

According to Caratheodory’s theorem we initially assume
k(k + 1)/2 + 1 support points. The optimization problem can
be stated as a problem with respect to N + 2 distributions.
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pa p1 p2 p3 ... pi ... pN pb

Ta

Tb

P=@pa,pbD

T
=
@T

a,
T

bD

Wp1
Wp2

Wp3
WpN+1

WT1 pi

WT2 pi

WTq+1 pi

Hpi,T1 pi
L

Hpi,T2 pi
L

Hpi,Tq pi
L

.

.

..
.
.
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This leads to the following simultaneous multiplicative
iterations,

W (r+1)
ph

=
W

(r)
ph

g(F
(r)
ph

, δ1)
∑N+1

j=1 W
(r)
pj g(F

(r)
pj , δ1)

, h = 1, . . . , N + 1,

W
(r+1)
Ts|pi

=
W

(r)
Ts|pi

g(F
(r)
Ts|pi

, δ2)
∑q+1

l=1 W
(r)
Tl|pi

g(F
(r)
Tl|pi

, δ2)
, s = 1, . . . , q + 1, i = 1, . . . , N,

ξ
(r+1)
t =

ξ
(r)
t g(F

(r)
t , δ3)

∑qN
i=1 ξ

(r)
i g(F

(r)
i , δ3)

, t = 1, . . . , qN,

where g(F, δ) = Φ(δF ), and Fp, FT |p, Ft are the vertex
directional derivatives.
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Atkinson and Fedorov (1975a,b) introduced the so called
T-optimality criterion which has an interesting statistical
interpretation as the power of a test for the fit of a second
model when the other is considered as the true model.

Usually there is no closed form for the T-optimum design and
it must be computed through an iterative procedure.
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Let us assume that the function η(xi, θ) coincides with either
η1(x, θ1) or η2(x, θ2) partially known functions where
θ1 ∈ Ω1 ⊂ R

m1 and θ2 ∈ Ω2 ⊂ R
m2 are the unknown

parameter vectors.

Let us assume that η(x, θ) = η1(x, θ1) is the true model of the
process with parameters θ1 known and η2 is the rival model.

Atkinson and Fedorov (1975a,b) introduced the notion of
T -optimality.

T21(ξ) = min
θ2∈Ω2

∑

xi∈χ

[η(xi, θ) − η2(xi, θ2)]
2ξ(xi).

The design ξ∗ which maximizes T21(ξ) is called the T -optimal
design.
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A design for which the optimization problem

θ̂2 ≡ arg min
θ2∈Ω2

k∑

i=1

[
η(xi) − η2(xi, θ2)

]2
ξi

has no unique solution is a singular design, otherwise is
called regular.

For regular designs the Equivalence Theorem is applicable
with the implication: a design ξ∗ is T -optimal if and only if,

Fj(ξ) =
[
η(xj , θ)−η2(xj , θ̂2)

]2
−

k∑

i=1

[
η(xi, θ)−η2(xi, θ2)

]2
ξi ≤ 0,

with equality at the support points.
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Based on the Equivalence Theorem Atkinson and Fedorov
(1975a,b) provided the following algorithm:

● For a given initial design ξ
(0)
k =

{
x1 . . . xk

ξ1 . . . ξk

}

determine

θ̂2 = arg min
θ2∈Ω2

k∑

i=1

[
η(xi) − η2(xi, θ2)

]2
ξi

● Find the point

xk+1 = arg max
x∈χ

[
η(x) − η2(x, θ̂2)

]2
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● Let ξxk+1
be a design with measure concentrated at the

single point xk+1,

ξxk+1
=

{
xk+1

1

}

A new design is constructed in the following way:

ξk+1 = (1 − αk+1)ξk + αk+1ξxk+1

where typical conditions for the sequence {αk} are
limk→∞ αk = 0,

∑∞
k=0 αk = ∞,

∑∞
k=0 α2

k < ∞.

In our work αs = 1/(s + 1) has been used.
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Assuming that each ξ is regular, i.e. Ω2(ξ) = θ̂2, this first
optimization problem was solved using a quasi-Newton
algorithm through the FORTRAN IMLS routine DBCONF.

Then we wish to choose a design ξ optimally, that is, we wish
to determine both the support points and the design weights
optimally

ξ⋆ = arg max
(x,ξ(x))

∑

xi∈χ

[η(xi, θ)−η2(xi, θ̂2)]
2ξ(xi) = arg max

(x,ξ(x))
T2̂1(ξ).

In this case, the equivalence theorem says nothing about the
number of support points of an optimal design. We consider
designs with L support points, x1, . . . , xL, where L is an
appropriate number for each problem.
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Let
Wt =

xt − xt−1

b − a
t = 1, . . . , L + 1

where x0 = a and xL+1 = b. We have transformed from L
variables to L + 1 variables, but these must satisfy Wt ≥ 0
and

∑
t Wt = 1.

As in Torsney and Martı́n-Martı́n (2009) we have an
optimization problem with respect to two distributions one
defined by the design points and one defined by the design
weights.
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The multiplicative algorithm extends naturally to the two
simultaneous multiplicative iterations:

W
(r+1)
t =

W
(r)
t g(F

(r)
t , δ1)

∑L+1
h=1 W

(r)
h g(F

(r)
h , δ1)

ξ
(r+1)
j =

ξ
(r)
j g(F

(r)
j , δ2)

∑L
i=1 ξ

(r)
i g(F

(r)
i , δ2)

Being Fj and Fh the vertex directional derivatives of T21 at W
and ξ :

Fh = FT21
(W, eh) = dh −

∑
Whdh

Fj = FT21
(ξ, ej) = dj −

∑
ξjdj

Where dh = ∂T21

∂Wh
and dj = ∂T21

∂ξj
.
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The same first order conditions for a local maximum are used:

F ∗
h = FT21

(W ∗
h , eh) =

{
= 0, for W ∗

h > 0
≥ 0, for W ∗

h = 0

F ∗
j = FT21

(ξ∗, ej) =

{
= 0, for ξ∗j > 0

≥ 0, for ξ∗j = 0



Adsorption Isoterms

Optimum Design
Theory

Multiplicative
Algorithm

Multifactor Models

Discriminating
between Models
❖ Discriminating
between models
❖ Atkinson-Fedorov
Algorith

❖ Multiplicative
Algorithm

❖ Adsorption
Isoterms
❖ Results
Discussion

References

http://areaestadistica.uclm.es/oed October 20th 2012 – 16 / 19

The modeling of the adsorption phenomena in many chemical
and industrial processes has proved to be of great interest.

The two models used in the literature to describe the
relationship between the amount of gas or water adsorbed,
we, in terms of water activity aw for multilayer adsorption
phenomena are the Brunauer-Emmett-Teller (BET) model
and the extension known as Guggenheim-Anderson-de Boer
(GAB) model.

BET model: E[we] =
wmBcBaw

(1 − aw)(1 + (cB − 1)aw)
,

unknown parameters: θt
B = (wmB, cB).

GAB model: E[we] =
wmGcGkaw

(1 − kaw)(1 + (cG − 1)kaw)

unknown parameters: θt
G = (wmG, cG, k).
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Cepeda et al. (1999) studied water sorption behavior of
coffee for predicting hygroscopic properties as well as
designing units for its optimum preservation, storage, etc.

The results at 25 C0 for the GAB adsorption isotherm were
wmG = 0.03445 g of H2O adsorbed/g of coffee, cG = 11.70
and k = 0.994.
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Rodrı́guez-Aragón and López-Fidalgo (2007) provided the
T-optimal design considering the GAB model as the true
model using the Atkinson-Fedorov algorithm.

After 182 iterations of the algorithm, a design supported at
three experimental points was obtained, with a lower
efficiency bound of 0.998.

ξ∗ =

{
0.056 0.62 0.8
0.150 0.57 0.28

}

For the same problem the new approach was applied. After
129 iterations of this algorithm, the T-optimum design was
obtained, with a lower efficiency bound of 0.998.
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● Advantages of computing optima designs with the
Multiplicative Algorithm:

✦ Effectiveness to compute D−optimum designs for
multifactor modesl.

✦ T−optimization with simpler computations.

● Locally optimum designs: designs depend on the initial
best guesses of the parameters.

● Open issues: Choice of function g and constants δ,
Torsney and Mandal (2006).

● Possibility of computing θ̂2 using the multiplicative
algorithm.
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