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Introduction

Gaussian process (GP) models are popular surrogates for
emulating deterministic computer simulator outputs.

Fitting a GP model can be computationally unstable due to
near-singularity of the spatial correlation matrix R. We use
the nugget based approach in Ranjan et al. (2011).

GP model fitting procedure requires numerous evaluations
of determinant and inverse of R (i.e., every likelihood
evaluations is expensive)

Maximum likelihood approach: the log-likelihood function
of the GP model can have multiple local optima.

We follow a clustering based multi-start BFGS algorithm
for optimizing the log-likelihood. This is faster than genetic
algorithm and more accurate than mlegp.

Gaussian process model

Assume the simulator is deterministic, process is
stationary, and the outputs are scalar.

Data: {(x;,y;),i = 1, ...,n}, where x; € [0,1]%.

Model:

yi=p+z(x), i=1.,n
where u is constant mean, z(x;) is a GP. That is,
E(Z(x;) = 0,and Cov (Z(xi),Z(x/)) = g2R;;. We use
Gaussian correlation

d
2
Rijj = l_[ exp (—9k|xik - xjk| )
k=1
where 6, € [0, ). The closed form estimators of x and o2
are given by
() = (1'R711)'(1'R~1Y)

and

Y —1Q)'R7I(Y - 1D)
- .
The deviance (— 2 log(Lg)) to be optimized is

6%(0) =

log(IRI) + n log[(Y — 12)R™1(Y — 1)].
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Near-singularity of R

An n x n correlation matrix R is said to be ill-conditioned
or near-singular if its condition number

K(R) = [IR || |IR7" ]|
is too large.
This is a common problem in fitting GP models which

occurs if any pair of design points in the input space are
close together (Neal 1997).

Popular approach: replace Rby Rs =R+ 6 - 1.

To minimize over-smoothing, Ranjan et al. (2011) suggests
using the lower bound on 6, i.e.,

An(k(R) —e®)
Sy = max{—K(R)(Eu - }
Where 4, is the maximum eigenvalue of R, and e® is the
threshold of «x(R) that ensures a well-conditioned R.

That is, we use Rs,, = R + &, - I in place of R in the log-
likelihood expression.

Multiple local optima of —2log(Lg)
For the 2-d GoldPrice function, x € [-2,2]?,

yla) = [1+ (wg +a2g + 17 {19 — My + 323 — Ly + Gy + 323} »
[30 + (221 — 3a9) (18 = 32y + 1207 + 48y — 36z,79 + 2723)] .

The inputs were scaled to [0,1]2. Generated a 30-point
maximin LHD, and evaluated the log-likelihood function

8 8,
Overall deviance enlarged view near 0

Optimization near zero is tricky.

Reparametrization of R

Let By = logyo(6), for k = 1,...,d. Then, the Gaussian
correlation is

d
Ry = Hexp (_1°Bk|xm - x;‘k|2)'
k=1
where By € (—o0, ).

For the 2-d GoldPrice function, the deviance function is
easier to optimize (local optima are in the middle now).

Overall deviance enlarged view near 0

Optimization algorithm

Plausible values of g;’s
(exp(=5) =) 0 < R;; < 1 (=~ exp(=107%)

Assuming isotropic correlation, x € [0,1]¢ and n = 10 - d,
let Q, is given by

—2 —logyo(d) < Px <1og10(500) —logyo(d).
Algorithm

1. Choose 200d —point maximin LHD for g € Q¢, and
evaluate —2log(Lg) for each B.

. Choose 80d values of g that gives smallest —2log(Lg)

. Use k-means clustering on these 80d values of 8 to
find 2d groups and the cluster means.

. For d = 2, run BFGS along the diagonal (starting at
25%, 50% and 75%) to find the best solution.

. Use these 2d (or,2d + 1) points as the starting points
of BFGS to find the best minimizer of —2log(Lg).

» BFGS instead of genetic algorithm makes it a bit faster

» Multiple starting points make the algorithm robust

GPfit package
A more complete simulation study showed:

> GPmodel = GP_fit(X, Y, control=c(200*d,80*d,2*d),
nug_thres=20, trace=FALSE, maxit=100)

> Model_pred = predict. GP(GPmodel, xnew)

> plot. GP(GPmodel, range=c(0,1), resolution=50,
surf_check=FALSE, response=TRUE)

Examples
library(GPfit)
library(lhs)
n=7
x = maximinLHS(n,1)
y = matrix(0,n,1)
for(i in 1:n){ y[il = computer_simulator(x[il]) }
GPmodel = GP_fit(x,y)

Number Of Observations: n =7

Input Dimensions: d = 1

Correlation: Exponential (power = 2)
Correlation Parameters:

beta_hat
[1] 1.977

sigma®2 hat: [1] 0.7444

delta_lb(beta_hat): [1] 0
nugget threshold parameter: 20

> plot.GP(Gpmodel) ~
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