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Introduction

Block designs, where the experimental runs are partitioned into
homogenous groups, are ubiquitous in many areas of science and
industry. The assumption that the blocks constitute a random sample
from a population leads naturally to a mixed model for the data analysis
and the ability to predict the response from unobserved blocks.
Here, we consider an extension to the usual exchangeable correlation
structure and assume that the ordering of units within a block may have
an influence on the response. This effect is modelled by assuming an
autoregressive process of order 1 for the intra-block effects.
Such models are appropriate for a variety of situations, for example in
agricultural and clinical science. Our motivation is factorial experiments
to understand the impact of manufacturing process variables on the
fabrication of optical fibres, which is important in next generation
communication and internet applications. Fibres are manufactured
through a drawing process which naturally gives rise to blocks and
potential ordering effects within a block.

LinearMixedModels

An appropriate mixed model for a block design for f factors, each having l
levels, with n runs in b blocks of size k and random block effects is

Y = Xβ+ Zγ+ ε, (1)
where, as in the standard regression model, Y is the n × 1 vector of
responses, X is the n × p model matrix and β is the p × 1 vector of
parameters which are of primary interest. Also,
IZ is the n × b matrix representing the allocation of runs to blocks (the
(i, j)th entry of Z is 1 if the ith run is in the jth block),
Iγ ∼ N(0,σ2

γIb) is the b × 1 vector of random block effects, which are not of
interest here (σ2

γ accounts for the variation between blocks),
Iε ∼ N(0,σ2

εR) is the n × 1 vector of within block errors (σ2
ε accounts for the

variation between runs within a block). ε and γ are independent.
IV = var(Y) = σ2

γZZT + σ2
εR where the structure of R depends on the

correlation structure assumed for the errors within blocks.

Autoregressive Correlation Structure

When the error for the hth run in the jth block follows a stationary
autoregressive process of order 1,

εjh = ρεj,h−1 + ejh , (2)
where |ρ| < 1 is the autoregressive parameter, ejh are independent and
identically distributed (iid) N(0,σ2

ε) and εj,1 are iid N(0,σ2
ε/(1 − ρ2)) [2]. It

is assumed that εjh from different blocks are independent.
If (2) holds, then V is a block diagonal matrix with diagonal submatrices
given by
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ε

 1
1 − ρ2


1 ρ . . . ρk−1

ρ 1 . . . ρk−2

... ... . . . ...
ρk−1 ρk−2 . . . 1

+ ηJk

 , (3)

where Jk is the k × k matrix of 1’s and η = σ2
γ/σ

2
ε is the relative magnitude

of the variance components [6]. The exchangeable structure is a special
case of (3) with ρ = 0.
The correlation between the two responses within a block, r, s 6 k, is

τrs =
(1 − ρ2)η+ ρ|r−s|

(1 − ρ2)η+ 1
. (4)

D-Optimality

A D-optimal block design maximises

φD = |XTV−1X| , (5)
and hence provides parameter estimators with the joint confidence
ellipsoid of smallest volume [1, 4].
The relative D-efficiency of two designs for a given ρ and η is

eff(X1X2, ρ,η) =
n2

n1
×

(
|XT

1 V−1
ρ,ηX1|

|XT
2 V−1

ρ,ηX2|

)1
p

× 100, (6)

where Vρ,η is the V matrix for ρ and η, X1 is the model matrix for design 1
with n1 runs and X2 is the model matrix for design 2 with n2 runs.

Comparative Study

A comparative study found D-optimal designs for four experiments:
I f = 3, l = 2, n = 8, b = 2, k = 4, p = 8 (full interaction model),
I f = 3, l = 2, n = 16, b = 4, k = 4, p = 8 (full interaction model),
I f = 4, l = 2, n = 12, b = 4, k = 3, p = 5 (main effects model),
I f = 4, l = 2, n = 12, b = 4, k = 3, p = 11 (two-factor interaction model).
A treatment is a combination of factor levels for the f factors in the
experiment. In this study:
Ia coordinate exchange algorithm [5] was used to find the optimal

treatments and treatment allocation to blocks,
Ian interchange algorithm [1] was used to allocate the runs from an

optimal unblocked treatment design to blocks.

Saturated Designs

1. Saturated designs provide less information per run. When n = p,
φD = |V−1||XTX|. If we assume Z is fixed from the experiment, every
allocation to blocks of the optimal unblocked treatment design is equally
efficient [3]. However, from (5) we can see that, for n > p, the D-optimal
design takes account of both the allocation of treatments to blocks and the
order of treatments within a block. This leads to non-saturated designs
having a higher (per run) efficiency than saturated designs when ρ,η , 0;
this is evidenced by the low relative D-efficiencies in Table 1 for n1 = 8
and n2 = 16.
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η

ρ
0 0.25 0.5 0.75

0 100.00 97.67 90.68 78.79

2.5 85.26 82.11 77.83 71.09

5 79.31 76.43 72.71 67.33

7.5 75.78 73.04 69.60 64.65

10 73.30 70.66 67.38 63.22

Table 1: Relative D-efficiencies (%, 2 dp) of
D-optimal designs for n1 = 8, n2 = 16.

2. The relative D-efficiencies for the designs found using the interchange
algorithm increase as the designs compared get closer to the saturated
case (p gets closer to n). As p increased from 5 to 11 when n = 12, the
relative D-efficiencies increased. The relative D-efficiencies for the
D-optimal designs for the experiment with p = 5 and n = 12 varied from
91.72% to 100% (2 dp) whereas the relative D-efficiencies for the
D-optimal designs for the experiment with p = 11 and n = 12 varied from
99.34% to 100% (2 dp).

Robustness toMisspecification of ρ and η

1. Design performance is robust to misspecification of ρ and η. The
efficiency, (6), is close to 1 when calculated for an optimal design for one
set of values of ρ and ηwith respect to an optimal design for a second set
of ρ and η values. That is, D-optimal designs for model (1) are robust to
the value of ρ and η. The minimum relative D-efficiency of two D-optimal
designs found in this study is 91.72% (2 dp). This robustness may depend
on the range of the intra-block correlation, (4), which was greater than
0.78 (2dp) for ρ,η , 0 and, for fixed η, had a maximum difference of 17%
(2 sf) in this study.

2. Designs with the same value of φD, (5), do not necessarily have the same
treatments (when n = 12) or the same treatments allocation to blocks
(when n = 8, 16). The designs found using the coordinate exchange
algorithm when n = 12, η = 2.5, 5, 7.5 and ρ = 0.25, 0.5, 0.75 have the same
value of (5) but do not always have the same treatments or treatment
allocation to blocks, as shown in Figure 1 for η = 5 and ρ = 0.5, 0.75. The
designs found using the coordinate exchange algorithm when n = 16,
η = 5, 7.5, 10 and ρ = 0.25, 0.5 also have the same value of (5) but do not
have the same treatment allocation to blocks, see Figure 2 for η = 5. The
treatment labels in Figures 1 and 2 follow the standard order for f = 4,
l = 2 and f = 3, l = 2, respectively.
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Figure 1: Treatment allocation to blocks for the designs where n = 12,
b = 4, k = 3, ρ = 0.5, 0.75 and η = 5. White nodes represent the treatments

that differ between the two designs.
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Figure 2: Treatment allocation to blocks for the designs where n = 16,
b = 4, k = 4, ρ = 0.25, 0.5 and η = 5.
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