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Introduction

Separation is a common problem in models with binary responses when one or more co-
variates perfectly predicts some binary outcome. The separation problem leads convergence
difficulties as well as non-existence of likelihood estimates of model parameters. Some meth-
ods have been proposed in literature to deal with the separation problems. In this endevour
we propose a new probability-based optimality criterion (Ps) that would reduce the problem of
separation and thus maximize the probability of the existence of likelihood estimates.

Types of Separation

Albert and Anderson (1984) classify logistic regression data sets into three mutually exclusive
and exhaustive categories: complete separation, quasi-complete separation, and overlap.
The maximum likelihood estimates exists only for overlapped data.

Complete separation occurs whenever there exists some vector of coefficients α such that
Yi = 1 if αXi > 0 and Yi = 0 if αXi ≤ 0. In other words, complete separation occurs
whenever a linear function of X can generate perfect predictions of Y .

Quasi-complete separation occurs when there exists some coefficient vector α such that
Yi = 1 if αXi ≥ 0 and Yi = 0 if αXi ≤ 0, and equality holds for at least one case in each
category of the dependent variable.

Data which are neither completely or quasi-completely separated are called overlapped. A
certain degree of overlap is a necessary and sufficient condition for the existence of maximum
likelihood estimates for the binomial response (Silvapulle, 1981).

Hypothetical Example of Separation and Existing Solutions of Separation

Consider two hy-
pothetical exam-
ples of separation.
The complete sep-
aration is shown
in Table 1 and
Table 2 displays a
data set regarding
quasi-complete
separation. What
distinguishes the
data set in Table 2
is that there are
two additional
observations,
each with x values
of 0 but having
different values of
y.

Table: Data
exhibiting
complete
separation

Y X
0 -5
0 -4
0 -3
0 -2
0 -1
1 1
1 2
1 3
1 4
1 5

Table: Data
exhibiting
quasi-complete
separation

Y X
0 -5
0 -4
0 -3
0 -2
0 -1
0 0
1 0
1 1
1 2
1 3
1 4
1 5

Quasi-complete separa-
tion can be dealt with by
data analytic methods
such as deletion of
the problem variable,
combining categories,
reporting likelihood ratio
chi-square, Bayesian
estimation, and penal-
ized likelihood estima-
tion, but it is difficult to
deal with complete sep-
aration (Allison, 2008).
Having some pitfalls in
all the existing methods,
we propose optimal
design techniques to
reduce the probability of
separation problem in
this study.

Notations: Separation Probability

Let Yi be a response corresponding to i th observation and associated covariate is Xi , i = 1,2, . . . ,n. The
distribution of Yi is a Bernoulli distribution with probability πi. In matrix notations

Y =


Y1
Y2
...

Yn

 , ε =


ε1
ε2
...
εn

 , X =


1 X1
1 X2
... ...
1 Xn

 , β =

[
β0
β1

]

For simplicity in defining separation probability let us describe the Table 3 with Yi and Xi values. In the Xi column
there is a cut off point X ∗ which separates the outcome Y into two groups namely ‘success’ (Si) defined by
Yi = 1|Xi and ‘failure’ (Fi) defined by Yi = 0|Xi.

Table: Design Matrix
Yi Xi
Y1 X1
Y2 X2
... ...

Yk Xk
Yk+1 Xk+1

... ...
Yn Xn

Yi =

{
0 if Xi ≤ X ∗, i=1, 2, . . . k
1 if Xi > X ∗, i=k+1, k+2, . . . n (1)

Probability of Complete and Quasi-complete Separations

The probability of complete separation would be

P(Complete Separation) =
n−1∑
k=1

P
[(

F1

⋂
F2

⋂
. . .
⋂

Fk

⋂
Sk+1

⋂
. . .
⋂

Sn

)⋃
(

S1

⋂
S2

⋂
. . .
⋂

Sk

⋂
Fk+1

⋂
. . .
⋂

Fn

)]
=

n−1∑
k=1

 k∏
i=1

P(Fi)
n∏

i=k+1

P(Si) +
k∏

i=1

P(Si)
n∏

i=k+1

P(Fi)

 (2)

The conditions described in 1 should be modified slightly for quasi-complete separation. In this situation equality
holds for at least one for each of the categories i.e.

Yi =

 0 if Xi < X ∗, i=1, 2, . . . k-1
0 or 1 if Xi = X ∗, i=k, k+1
1 if Xi > X ∗, i=k+2, k+3, . . . n

(3)

Probability of Complete and Quasi-complete Separations

The probability of quasi-complete separation would be

P(QCS) =

[
{P(F1)P(S2) + P(S1)P(F2)}

{
n∏

i=3

P(Si) +
n∏

i=3

P(Fi)

}]

+
n−2∑
k=2

[{P(Fk)P(Sk+1) + P(Sk)P(Fk+1)}
k−1∏
i=1

P(Fi)
n∏

i=k+2

P(Si) +
k−1∏
i=1

P(Si)
n∏

i=k+2

P(Fi)




+

{P(Fn−1)P(Sn) + P(Sn−1)P(Fn)}


n−2∏
i=3

P(Fi) +
n−2∏
i=3

P(Si)


 (4)

Lemma and Numerical Illustrations

Lemma
Given a design X1 ≤ X2 ≤ . . . ≤ Xn with Xk = Xk+1 = X ∗ for some k, the probability of
separation is reduced by changing Xk and Xk+1 to Xk

∗ = X ∗ − δ and X ∗k+1 = Xk+1 + δ
for a small δ > 0

The followings are two numerical illustrations supporting this lemma.

Table: Probability of
Complete Separation at
X3 = X ∗

Yi Xi X ∗i .
0 -1 -1
0 0 -0.05
0 0 0.05
1 1 1
1 2 2
1 3 3

P(CS) 0.11220 0.11213

Table: Probability Complete
and Quasi-complete
Separations at X3 = X ∗

Yi Xi X ∗i .
0 -2 -2
0 -1 -1
0 0 -0.01
1 0 0.01
1 1 1
1 2 2

P(CS) - 0.10495
P(QCS) 0.20783 -

Probability-based Optimality Criteria

The general form of proposed Ps-optimality criterion, analogous to McGree and Eccleston
(2008), could be

ψ(Ps) = f(P(Separation))= f(Fi,Si) (5)

where

P(Si) = P(Yi = 1|Xi) =
exp(β0 + β1Xi)

1 + exp(β0 + β1Xi)
and P(Fi) = 1− P(Si) (6)

A combined criterion can be developed considering both D- and Ps- optimality and, to achieve
the dual goals of efficient parameter estimation and reducing probability of separation, a com-
promise is necessary. Therefore, a compound criterion may be defined as a product of ef-
ficiencies of design ξ with respect to D- and Ps-optimality, weighted by a pre-defined mixing
constant 0 ≤ ρ ≤ 1 .

ψ(DPs) = [Deff (ξ)]
ρ[Pseff (ξ)]

1−ρ (7)

where

Deff (ξ) =
(
|M(ξ)|
|M(ξ∗D)|

)1/q
and Pseff (ξ) =

(
P(ξ)

P(ξ∗Ps
)

)
(8)

Conclusions and Future Work

I We have defined probability of complete and quasi-complete separations
I We have proposed probability-based criteria that might minimize separation problems
I We will check the existence of maximum likelihood estimates (MLEs) in designed

experiments
I We will see the possible configuration of response vector and MLEs existence with a given

covariate vector
I We will find local optimal designs with respect to proposed probability-based criteria
I We will find global optimal designs with respect to proposed probability-based criteria

References

Albert, A. and Anderson, J. A. (1984) “On the existence of maximum likelihood estimates in logistic
regression models”, Biometrika, 71, 1-10.

Silvapulle, M. J. (1981). “On the existence of maximum likelihood estimates for the binomial response
models”, Journal of Royal Statistical Society, Series B, 43, 310-13

McGree, J. M. and Eccleston, J. A. (2008). “Probability-based optimal designs”, Australian Newzealand
Journal of Statistics, 50, 13-28.

Allison, P. D. (2008). “Convergence failures in logistic regression”, SAS Global Forum, Paper 360-2008,
http://www2.sas.com/proceedings/forum2008/360-2008.pdf

Hamada, M. and Tse, S. K. (1996). “The existence of maximum likelihood estiamtes from designed
experiments”, Journal of Quality Technology, 28, 244-254.

DAE Conference 2012, The University of Georgia, Athens, USA
m.rahman@qmul.ac.uk/ s.g.gilmour@qmul.ac.uk


