Physical Experimental Design in Support of Computer Model Development

or

Experimental Design for RSM-Within-Model

Max D. Morris Department of Statistics Dept. of Industrial & Manufacturing Systems Engineering Iowa State University

- <u>Setting</u>: Constructing a deterministic computer model of a complex physical process.
- <u>Computer Model</u>: Modular form, with the various components of the process represented by different subroutines, most of which are regarded as *known* based on theory or extensive experience.
- <u>Problem</u>: One module is not known and must be determined via physical experimentation.
- Example: Models of biofuel production: Different types of biomass (e.g. switchgrass, corn stover, wood chips ...) react differently to the initial reduction steps; physical experimentation is required to characterize for each. But material transport, economics, later-stage chemistry, et cetera, are relatively well-understood.

Notation:

- Model inputs: $x = (x_1, x_2, x_3)$
- \bullet Model outputs: z
- Ideal model: $z = f(x_1, x_2, x_3)$
- Known components: $z = z(x_1, x_2, y)$, $t = t(x_2, x_3)$
- Unknown component: y = y(t)
- Empirical experiment: $\hat{y} = \hat{y}(t)$
- Model to be constructed: $\hat{z} = z(x_1, x_2, \hat{y}(t(x_2, x_3)))$

For specificity, focus on:

- All functions and arguments are real-valued and continuous
- $\hat{y}(t)$ will be constructed via polynomial regression, Response Surface Methodology (RSM) (e.g. Myers, Montgomery, and Anderson-Cook)
- At specified *t*, observed response is:

$$y^* = y(t) + \epsilon$$
, $y(t) = \mathbf{t}' \boldsymbol{\beta}$, $\epsilon \sim N(0, \sigma^2)$

• Select a design
$$D = \{t_1, t_2, t_3, ..., t_n\}$$

"expanded" as $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3, ..., \mathbf{t}_n$, the rows of $\mathbf X$

• For specified
$$\beta$$
, σ^2 , and t ,
 $\hat{\beta} \sim N(\beta, \sigma^2 (\mathbf{X}'\mathbf{X})^{-1}) \equiv BH(\beta), \quad \hat{y}(t) = \mathbf{t}'\hat{\beta}$

• What designs can be expected to work well?

Design for \hat{y} :

- Define a design space Δ_t
- Define a "weight" distribution Ω_t over Δ_t , with density ω_t
- Select *D* from some class to minimize:

$$\int_{t \in \Delta_t} Var(\hat{y}(t)) \, \omega_t(t) dt = \sigma^2 \int_{t \in \Delta_t} \mathbf{t}' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{t} \, \omega_t(t) dt,$$

i.e. *I*-optimality

Design for \hat{z} :

- Define a design space Δ_x
- Define a weight distribution Ω_x over Δ_x with density ω_x
- Select D from some class to minimize:

$$\phi = \int_{\Delta_x} Var_{\hat{y}}(z(x_1, x_2, \hat{y}(t(x_2, x_3)))) \omega_x(x) dx$$

= $E_x Var_{\hat{y}}(z(x_1, x_2, \hat{y}(t(x_2, x_3)))).$

- Problem: ϕ depends on on β .
- Specify a prior distribution B (for purposes of design) on β , and take the expectation of ϕ with respect to this distribution:

$$\phi_1 = E_{\beta,x} Var_{\hat{y}}(z(x_1, x_2, \hat{y}(t(x_2, x_3))))).$$

- Preposterior Analysis, e.g. Bayarri & Berger, 2004, Stat Sci

<u>Case 1</u>: z and t are simple functions

- For a specified design D, evaluate ϕ_1 as:
- 1. Begin E-loop
 - (a) Draw β from B
 - (b) Draw (x_1, x_2, x_3) from Ω_x
 - (c) Compute $t(x_2, x_3)$
 - (d) Begin V-loop
 - i. Draw $\hat{\boldsymbol{\beta}}$ from $BH(\boldsymbol{\beta})$
 - ii. Compute $\hat{y}(t) = \mathbf{t}' \hat{\boldsymbol{\beta}}$
 - iii. Compute $z = z(x_1, x_2, \hat{y})$
 - (e) Compute $Var_{\hat{y}}(z|\boldsymbol{\beta}, x)$.
- 2. Compute $E_{\beta,x} Var_{\hat{y}}(z|\beta, x)$.

<u>Case 2</u>: z and t are computationally demanding functions

- In (a) separate computational experiment(s), develop meta-models (surrogates) for each of z and t
- Here, assume Gaussian Process predictors (parametric kriging) ... predictive distributions $T(x_2, x_3)$ and $Z(x_1, x_2, y)$
- Then:

$$\phi_2 = E_{\beta,x,t,z} Var_{\hat{y}}(z(x_1, x_2, \hat{y}(t(x_2, x_3))))).$$

and for a specified design D, evaluate ϕ_2 as:

- 1. Begin E-loop
 - (a) Draw β from B
 - (b) Draw (x_1, x_2, x_3) from Ω_x
 - (c) Draw t from $T(x_2, x_3)$
 - (d) Draw $\mathcal{Z}(y)$ from $Z(x_1, x_2, y)$, jointly for all values of y
 - (e) Begin V-loop
 - i. Draw $\hat{\boldsymbol{\beta}}$ from $BH(\boldsymbol{\beta})$
 - ii. Compute $\hat{y}(t) = \mathbf{t}' \hat{\boldsymbol{\beta}}$
 - iii. Compute $z = \mathcal{Z}(\hat{y})$
 - (f) Compute $Var_{\hat{y}}(z|\boldsymbol{\beta}, x, t)$
- 2. Compute $E_{\beta,x,t,z} Var_{\hat{y}}(z|\beta,x,t)$

Example: Case 1

- $(x_1, x_2, x_3) \in [0, 1]^3$, $\Omega_x =$ continuous uniform distribution
- $t_1 = log_2(1 + \frac{x_2 + x_3}{2}), \quad t_2 = log_2(1 + x_2), \quad z = x_2 e^{-(x_1 + y^2)}$

•
$$\rightarrow (t_1, t_2) \in [0, 1]^2$$

• $y(t_1, t_2) = \beta_0 + \beta_1 t_1 + \beta_2 t_2 + \beta_{11} t_1^2 + \beta_{22} t_2^2 + \beta_{12} t_1 t_2$

•
$$B = N(\mu_{\beta}, \mathbf{V}_{\beta})$$

•
$$\sigma^2 = \frac{1}{100}, \quad \mu'_{\beta} = (\frac{1}{2}, 0, 0, 0, 0, 0, 0), \quad \mathbf{V}_{\beta} = \frac{1}{100}\mathbf{I}$$

<u>Designs</u>: Complete 3^2 factorial designs for which 0 and 1 are the low and high levels for each of t_1 and t_2 , the intermediate level of each is varied independently between 0.2 and 0.8, and 4 experimental runs are included at the run defined by the intermediate levels of t_1 and t_2 for replication (n = 12); for example:

Example: Case 2

t₁(x₂, x₃) and t₂(x₂, x₃) are estimated using data from a Latin hypercube design in 6 runs.

z(x₁, x₂, y) is estimated using data from a Latin hypercube design in 21 runs.

 Parametric kriging, Gaussian correlation function, process MLE's "plugged in" for corresponding parameters DAE 2012

- 1. Begin E-loop
 - (a) Draw β from B
 - (b) Draw (x_1, x_2, x_3) from Ω_x
 - (c) Begin V-loop
 - i. Draw $\hat{\boldsymbol{\beta}}$ from $BH(\boldsymbol{\beta})$
 - ii. Begin model iteration
 - A. Compute $t(x_2, x_3)$.
 - B. Compute $\hat{y}(t) = \mathbf{t}' \hat{\boldsymbol{\beta}}$
 - C. Compute $z = z(x_1, x_2, \hat{y})$
 - D. $x_2 \leftarrow z$
 - (d) Compute $Var_{\hat{y}}(z|\boldsymbol{\beta}, x)$
- 2. Compute $E_{\beta,x} Var_{\hat{y}}(z|\beta, x)$

 $\sqrt{\phi_1}$ as a function of t_1 and t_2 intermediate values, for the iterative version of the example model with 1 (for comparison), 2, 5 and 10 iterations

 $\sqrt{\phi_2}$ as a function of t_1 and t_2 intermediate values, for the iterative version of the example model with 1 (for comparison), 2, 5 and 10 iterations

- 1. Begin E-loop
 - (a) Draw β from B
 - (b) Draw (x_1, x_2, x_3) from Ω_x
 - (c) Draw* surrogates
 - (d) Begin V-loop
 - i. Draw $\hat{oldsymbol{eta}}$
 - ii. Execute $\rightarrow z$
 - (e) Compute $Var_{\hat{y}}(z|...)$
- 2. Compute $E_{\dots}Var_{\hat{y}}(z|...)$

* Model structure determines the extent to which draws must be joint/functional (i.e. which arguments are constant throughout execution and which are not).

Some Major "Details":

- Cases 1 and 2
 - What kind of iterative design construction (analogous to point-exchange) is possible?
 - How should the experimental range of t be determined for iterative models?
- Case 2
 - How to best organize prior experiments to construct multiple metamodels?
 - What is the best way to represent functional draws (T, Z) for higher-dimensional arguments?
 - How is the computer model best "parsed" into sections to be represented by themselves or metamodels? (Not necessarily subroutine-by-subroutine as a modeler or programmer would view the code.)