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• Setting: Constructing a deterministic computer model of a

complex physical process.

• Computer Model: Modular form, with the various components of

the process represented by different subroutines, most of which are

regarded as known based on theory or extensive experience.

• Problem: One module is not known and must be determined via

physical experimentation.

• Example: Models of biofuel production: Different types of biomass

(e.g. switchgrass, corn stover, wood chips ...) react differently to

the initial reduction steps; physical experimentation is required to

characterize for each. But material transport, economics,

later-stage chemistry, et cetera, are relatively well-understood.
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Basic System:

x1                 x2                   x3  (model inputs) 

z  (model output) 

t 

y 

t=t(x2,x3) 

y=y(t) 

z=z(x1,x2,y) 

to be estimated 
via empirical 
experimentation 

“known” model 
 components 

computer model 
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Notation:

• Model inputs: x = (x1, x2, x3)

• Model outputs: z

• Ideal model: z = f(x1, x2, x3)

• Known components: z = z(x1, x2, y), t = t(x2, x3)

• Unknown component: y = y(t)

• Empirical experiment: ŷ = ŷ(t)

• Model to be constructed: ẑ = z(x1, x2, ŷ(t(x2, x3)))
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For specificity, focus on:

• All functions and arguments are real-valued and continuous

• ŷ(t) will be constructed via polynomial regression, Response

Surface Methodology (RSM) (e.g. Myers, Montgomery, and

Anderson-Cook)

• At specified t, observed response is:

y∗ = y(t) + ε, y(t) = t′β, ε ∼ N(0, σ2)

• Select a design D = {t1, t2, t3, ..., tn}

“expanded” as t1, t2, t3, ..., tn, the rows of X

• For specified β, σ2, and t,

β̂ ∼ N(β, σ2(X′X)−1) ≡ BH(β), ŷ(t) = t′β̂

• What designs can be expected to work well?



DAE 2012 6

Design for ŷ:

• Define a design space ∆t

• Define a “weight” distribution Ωt over ∆t, with density ωt

• Select D from some class to minimize:∫
t∈∆t

V ar(ŷ(t)) ωt(t)dt = σ2
∫
t∈∆t

t′(X′X)−1t ωt(t)dt,

i.e. I-optimality



DAE 2012 7

Design for ẑ:

• Define a design space ∆x

• Define a weight distribution Ωx over ∆x with density ωx

• Select D from some class to minimize:

φ =
∫

∆x
V arŷ(z(x1, x2, ŷ(t(x2, x3)))) ωx(x)dx

= ExV arŷ(z(x1, x2, ŷ(t(x2, x3)))).

• Problem: φ depends on on β.

• Specify a prior distribution B (for purposes of design) on β, and

take the expectation of φ with respect to this distribution:

φ1 = Eβ,x
V arŷ(z(x1, x2, ŷ(t(x2, x3)))).

– Preposterior Analysis, e.g. Bayarri & Berger, 2004, Stat Sci
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Case 1: z and t are simple functions

• For a specified design D, evaluate φ1 as:

1. Begin E-loop

(a) Draw β from B

(b) Draw (x1, x2, x3) from Ωx

(c) Compute t(x2, x3)

(d) Begin V-loop

i. Draw β̂ from BH(β)

ii. Compute ŷ(t) = t′β̂

iii. Compute z = z(x1, x2, ŷ)

(e) Compute V arŷ(z|β, x).

2. Compute Eβ,x
V arŷ(z|β, x).
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Case 2: z and t are computationally demanding functions

• In (a) separate computational experiment(s), develop meta-models

(surrogates) for each of z and t

• Here, assume Gaussian Process predictors (parametric kriging) ...

predictive distributions T (x2, x3) and Z(x1, x2, y)

• Then:

φ2 = Eβ,x,t,z
V arŷ(z(x1, x2, ŷ(t(x2, x3)))).

and for a specified design D, evaluate φ2 as:
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1. Begin E-loop

(a) Draw β from B

(b) Draw (x1, x2, x3) from Ωx

(c) Draw t from T (x2, x3)

(d) Draw Z(y) from Z(x1, x2, y), jointly for all values of y

(e) Begin V-loop

i. Draw β̂ from BH(β)

ii. Compute ŷ(t) = t′β̂

iii. Compute z = Z(ŷ)

(f) Compute V arŷ(z|β, x, t)

2. Compute Eβ,x,t,ZV arŷ(z|β, x, t)
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Example: Case 1

• (x1, x2, x3) ∈ [0, 1]3, Ωx = continuous uniform distribution

• t1 = log2(1 + x2+x3

2 ), t2 = log2(1 + x2), z = x2e
−(x1+y2)

• → (t1, t2) ∈ [0, 1]2

• y(t1, t2) = β0 + β1t1 + β2t2 + β11t
2
1 + β22t

2
2 + β12t1t2

• B = N(µβ ,Vβ)

• σ2 = 1
100 , µ′β = ( 1

2 , 0, 0, 0, 0, 0, 0), Vβ = 1
100I
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Designs: Complete 32 factorial designs for which 0 and 1 are the low

and high levels for each of t1 and t2, the intermediate level of each is

varied independently between 0.2 and 0.8, and 4 experimental runs are

included at the run defined by the intermediate levels of t1 and t2 for

replication (n = 12); for example:
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√
φ1 as a function of t1 and t2 intermediate values
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Example: Case 2

• t1(x2, x3) and t2(x2, x3) are estimated using data from a Latin

hypercube design in 6 runs.
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• z(x1, x2, y) is estimated using data from a Latin hypercube design

in 21 runs.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

y

• Parametric kriging, Gaussian correlation function, process MLE’s

“plugged in” for corresponding parameters
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z at y = 0.25 E(Z) at y = 0.25 SD(Z) at y = 0.25
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√
φ2 as a function of t1 and t2 intermediate values
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Iterative Systems: For example,

x1                 x2                   x3  
                (initial z) 

final z  (model output) 

t 

y 

t=t(x2,x3) 

y=y(t) 

z=z(x1,x2,y) 

computer model 

recursive 
block 
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1. Begin E-loop

(a) Draw β from B

(b) Draw (x1, x2, x3) from Ωx

(c) Begin V-loop

i. Draw β̂ from BH(β)

ii. Begin model iteration

A. Compute t(x2, x3).

B. Compute ŷ(t) = t′β̂

C. Compute z = z(x1, x2, ŷ)

D. x2 ← z

(d) Compute V arŷ(z|β, x)

2. Compute Eβ,x
V arŷ(z|β, x)
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√
φ1 as a function of t1 and t2 intermediate values, for the iterative

version of the example model with 1 (for comparison), 2, 5 and 10

iterations
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√
φ2 as a function of t1 and t2 intermediate values, for the iterative

version of the example model with 1 (for comparison), 2, 5 and 10

iterations
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Iterative Systems: More generally,

y

x

z

simple/fast

surrogates
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1. Begin E-loop

(a) Draw β from B

(b) Draw (x1, x2, x3) from Ωx

(c) Draw∗ surrogates

(d) Begin V-loop

i. Draw β̂

ii. Execute → z

(e) Compute V arŷ(z|...)

2. Compute E...V arŷ(z|...)

* Model structure determines the extent to which draws must be

joint/functional (i.e. which arguments are constant throughout

execution and which are not).
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Some Major “Details”:

• Cases 1 and 2

– What kind of iterative design construction (analogous to

point-exchange) is possible?

– How should the experimental range of t be determined for

iterative models?

• Case 2

– How to best organize prior experiments to construct multiple

metamodels?

– What is the best way to represent functional draws (T , Z) for

higher-dimensional arguments?

– How is the computer model best ”parsed” into sections to be

represented by themselves or metamodels? (Not necessarily

subroutine-by-subroutine as a modeler or programmer would

view the code.)


