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Setting: Constructing a deterministic computer model of a

complex physical process.

Computer Model: Modular form, with the various components of

the process represented by different subroutines, most of which are
regarded as known based on theory or extensive experience.

Problem: One module is not known and must be determined via

physical experimentation.

Example: Models of biofuel production: Different types of biomass

(e.g. switchgrass, corn stover, wood chips ...) react differently to
the initial reduction steps; physical experimentation is required to
characterize for each. But material transport, economics,
later-stage chemistry, et cetera, are relatively well-understood.
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Basic System:

z (model output)
computer model T

z=2(x1,x2,y)
v to be estimated
via empirical

components y=y(t)
\ experimentation

~_ ]

t=t(x2,x3)

/T ’\\ Xz/ ’\

x1 x3 (model inputs)
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Notation:

Model inputs: x = (21, 2, T3)

Model outputs: z

ldeal model: z = f(x1,x2,x3)

Known components: z = z(xz1,T2,y), t = t(x2, x3)

Unknown component: y = y(t)

Empirical experiment: § = §(t)

Model to be constructed: Z = z(x1, x2, y(t(z2,x3)))
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For specificity, focus on:

All functions and arguments are real-valued and continuous

y(t) will be constructed via polynomial regression, Response
Surface Methodology (RSM) (e.g. Myers, Montgomery, and
Anderson-Cook)

At specified t, observed response is:

y* =y(t)+e yt)=t'8, e~ N(0,07)

Select a design D = {t1,t2,t3,...,tn}
“expanded” as tq,tq,ts3,....t,, the rows of X
For specified 3, 02, and t,
B~ N(B,0*(X'X)"") = BH(B), §(t)=t'8

What designs can be expected to work well?
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Design for :

e Define a design space A,

e Define a "weight” distribution €2; over A;, with density w;

e Select D from some class to minimize:
Jien, Var(g(t)) w(t)dt = o® [, o /(X' X) 71 wi(t)dt,
I.e. I-optimality
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Design for Z:

e Define a design space A,
e Define a weight distribution €2, over A, with density w,

e Select D from some class to minimize:

b= [y Vary(s(er, a0, i(t(rs,5))) wal)da
= B, Vary(z(x1,z2,9(t(r2,23)))).

Problem: ¢ depends on on 3.

Specify a prior distribution B (for purposes of design) on 3, and
take the expectation of ¢ with respect to this distribution:

b1 = By, Vary(z(w1, a2, §(t(x2,3))).
— Preposterior Analysis, e.g. Bayarri & Berger, 2004, Stat Sci
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Case 1: z and t are simple functions

e For a specified design D, evaluate ¢, as:

1. Begin E-loop
(a) Draw 3 from B
(b) Draw (x1,x2,x3) from €2,
(
(

c) Compute t(zs,x3)
d) Begin V-loop
i. Draw 3 from BH ()
i. Compute §(t) =t'8
iii. Compute z = z(x1,x2,7)

(e) Compute Var;(z|8,x).

2. Compute Eg Vary(z|8, 7).
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Case 2: z and t are computationally demanding functions

e In (a) separate computational experiment(s), develop meta-models
(surrogates) for each of z and ¢

e Here, assume Gaussian Process predictors (parametric kriging) ...

predictive distributions T (x5, x3) and Z(x1, x2,y)

e [hen:

¢ =Eg ,, Varg(z(zy, 12, §(t(r2,23)))).

and for a specified design D, evaluate ¢5 as:
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1. Begin E-loop
a) Draw 3 from B

b) Draw (1, x5, x3) from €,

(
(
(c) Draw t from T'(x2, x3)
(
(

d) Draw Z(y) from Z(x1,x2,y), jointly for all values of y
e) Begin V-loop
i. Draw 3 from BH ()
ii. Compute g(t) = t'3
iii. Compute z = Z(9)

(f) Compute Var;(z|8,x,1)

2. Compute Eg ZVary(z|8,z,1)

10
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Example: Case 1

o (v1,72,23) € [0,1]%, Q, = continuous uniform distribution
t1 = loga(1 + WT“”?’), to =loga(1+ x3), z= xze—($1+92)
— (t1,t2) €10,1]?
y(t1,t2) = Bo + Bit1 + Pata + Biit] + Pasts + Biatits
B =N(ug,Vg)

_Wl()’ Mb:(%aoaoaoaoaoa())v Vﬁzﬁl




DAE 2012 12

Designs: Complete 32 factorial designs for which 0 and 1 are the low

and high levels for each of t1 and t5, the intermediate level of each is
varied independently between 0.2 and 0.8, and 4 experimental runs are
included at the run defined by the intermediate levels of 1 and ¢, for
replication (n = 12); for example:
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Example: Case 2

e t1(xy,x3) and ty(xo, z3) are estimated using data from a Latin
hypercube design in 6 runs.

x3
1 1

00 02 04 06 08 1

.
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

z(x1,x2,y) is estimated using data from a Latin hypercube design

in 21 runs.

x2
y
y

00 02 04 06 08 10

00 02 04 06 08 10

00 02 04 06 08 10

. . .
T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Parametric kriging, Gaussian correlation function, process MLE's
“plugged in" for corresponding parameters

14
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V@2 as a function of 1 and t5 intermediate values
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Iterative Systems: For example,

computer model

final z (model output)

z=2(x1,x2,y)

v |

y=y(t)

t]

t=t(x2,x3)

1

\

L, recursive
block

\

X2 X3
(initial z)

18
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1. Begin E-loop
(a) Draw 3 from B

(b) Draw (x1,x2,x3) from €2,
(c) Begin V-loop
i. Draw 3 from BH ()
il. Begin model iteration
A. Compute t(x2,x3).
B. Compute §(t) = t'3
C. Compute z = z(x1,22,9)

D. 20 < 2

(d) Compute Vary(z|3, )

2. Compute Eg Vary(z|8,7)

19
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V@1 as a function of 1 and t5 intermediate values, for the iterative
version of the example model with 1 (for comparison), 2, 5 and 10
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V@2 as a function of 1 and t5 intermediate values, for the iterative
version of the example model with 1 (for comparison), 2, 5 and 10
Iterations
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lterative Systems: More generally,

t

=
-

-
y
!
B

<€— simple/fast

<€— surrogates
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1. Begin E-loop
a) Draw 3 from B

b) Draw (33’1,3}‘2,3}‘3) from Qx

(
(
(c) Draw™ surrogates
(

d) Begin V-loop
i. Draw B
il. Execute — 2

(e) Compute Vary(z|...)
2. Compute E_Vary(z|...)

* Model structure determines the extent to which draws must be
joint /functional (i.e. which arguments are constant throughout

execution and which are not).

23
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Some Major “Details”:

e Cases 1 and 2

— What kind of iterative design construction (analogous to

point-exchange) is possible?

— How should the experimental range of ¢ be determined for

Iiterative models?

o Case 2
— How to best organize prior experiments to construct multiple

metamodels?

— What is the best way to represent functional draws (T, Z) for
higher-dimensional arguments?

— How is the computer model best " parsed” into sections to be
represented by themselves or metamodels? (Not necessarily
subroutine-by-subroutine as a modeler or programmer would

view the code.)
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