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Summary Message
For some computer experiments, evaluating a single
data point can be computationally expensive, limiting
the number of data that one can afford.
Evaluating the gradient of the function using adjoint
techniques, and involving gradient information in the
model can substantially improve the accuracy of the
prediction.
The gradient of a d-variate function provides d more
scalar pieces of information, at a cost of perhaps
only several times the cost of a function value alone.
Choosing the experimental design from two
perspectives, robustness and efficiency.

Statistical Model
The experimental region, Ω, is some measurable
subset of Ω1 × · · · × Ωd.
H be some vector space of real-valued functions
defined on Ω, and assumed to be a separable Hilbert
space with a reproducing kernel K : Ω× Ω→ R.
Define an operator Lx : H → Rd+1, which when
applied to a d-variate function f ∈ H, returns

Lxf =

(
f (x),

∂f
∂x1

(x), · · · , ∂f
∂xd

(x)

)T

.

For a vector function f = (f1, . . . , f`)T : Ω→ R`, the
definition of this operator is extended:

Lxf T = (Lxf1, . . . ,Lxf`).
A linear regression model with gradient information:

ỹ i =
(

Lx ig
T
)
β + ε̃i, i = 1, . . . ,n,

ỹ i: observed vector response at the design point x i
g = (g1, . . . ,gk)T : the vector of basis functions
β: regression coefficient to be estimated
ε̃i: the error in estimating the response by the linear
combination of k basis functions. It is assumed that
ε̃1, . . . , ε̃n are i.i.d with zero mean and covariance
matrix σ2Λ̃.
Vector-matrix notation:

y = Gβ + ε,

where

G =

Lx1gT

...
LxngT

 , y =

ỹ1
...

ỹn

 , ε =

ε̃1
...
ε̃n

 ,

and ε has zero mean and covariance matrix σ2Λ,
where Λ = diag(Λ̃, . . . , Λ̃).
The weighted least squares estimate of the
regression coefficient β:

β̂ = By = β + Bε, B =
(

GTΛ−1G
)−1

GTΛ−1.

Scaled Integrated Mean Squared Error
Experimental design:

ξ =

{
x1 x2 · · · xN
w1 w2 · · · wN

}
,where N ≤ n.

The goal of the linear regression is assumed to be the estimation of T(gTβ),
where T : H → Ls

2.
For any vectors of functions, u = (u1, . . . ,us)T and v = (v1, . . . , vs)T , let
〈u,v〉Ls

2
=
∫

Ω uT (x)v(x) dFIMSE(x).

IMSE(ξ,g) = n
σ2E

∥∥∥T(gTβ)− T(gT β̂)
∥∥∥2

Ls
2

.

Proposition

IMSE(ξ,g) = tr(M−1A),

with

M = Mξ =
1
n

GTΛ−1G, and A =
(〈

Tgi,Tgj
〉
Ls

2

)k

i ,j=1

Low Discrepancy Design Bounds IMSE
Theorem
Suppose that FT is a probability distribution function defined on Ω, which may
be different from FIMSE , and that H is a reproducing kernel Hilbert space of
functions defined on Ω with reproducing kernel K . Consider the information
matrix for FT ,

MFT =

∫
Ω

(LxgT )T Λ̃
−1

(LxgT ) dFT(x),

and suppose that the function hα : x 7→ αT (MFT )−
1
2 Mx (MFT )−

1
2α lies in H for

any α ∈ Rk . Define a variation over the basis gas
Vg,FT = sup

‖α‖2≤1
V (hα),

where V is the variation. Then it follows that the integrated mean square error
is bounded above by

IMSE(ξ,g) ≤
tr(M−1

FT
A)

1− DFT (ξ)Vg,FT

,

provided that DFT (ξ)Vg,FT < 1.

Remark
Note that, in some cases, there exists FT , such that tr(M−1

FT
A) < tr(M−1

FIMSE
A).

This means that choosing the design to match the distribution FT will yield to
smaller upper bound compared to choosing the design to match distribution
FIMSE.

Numerical Experiments on Low Discrepancy Design
Ω = [−1,1], polynomial basis, 16 sample points, repeated 1000 times, and
Ω = [−1,1]× [−1,1], orthogonal basis up to degree 4, 32 sample points,
repeated 1000 times.
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Semi-definite Programming with Gradient Information
Define GT (x) = LxgT , F (x j) = A−

1
2G(x j).

Equivalent SDP model for I-optimal design:
Minimizewj ,γ eTγ

Subject to:

[∑N
j=1 wjF (v j)Λ̃

−1
F T (v j) I

I diag(γ)

]
� 0,

eTw = 1,
w ≥ 0.

SDP model for D-optimal design:

Minimizewj − log det
[∑K

j=1 wjG(v j)Λ̃
−1

GT (v j)
]

Subject to: eTw = 1,
w ≥ 0.

Numerical Results for Semi-definite Programming
D optimal design for quadratic model with variable in
1-d and 2-d:
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I optimal design for cubic model with variable in 1-d
and 2-d:
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JMP vs SDP (cubic 2-d model)
Support Points for D-optimal and I-optimal design
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Efficiency ratio:
I Efficiency Ratio D Efficiency Ratio

1− d Cubic 2− d Cubic 1− d Cubic 2− d Cubic
Cont Exact Cont Exact Cont Exact Cont Exact

Number
of

Sample
Points

12 1.0029 1.0004 1.1544 NA 1.0000 1.0000 1.0482 NA
16 1.0185 0.9994 1.0359 1.0359∗ 1.0000 1.0000 1.0496 1.0168
20 1.0007 1.0003 1.0574 1.0471 1.0000 1.0000 1.0403 1.0359
24 1.0030 1.0005 1.0349 1.0302 1.0000 1.0000 1.0171 1.0171∗

28 1.0031 1.0003 1.0280 1.0280∗ 1.0000 1.0000 1.0256 1.0256∗

32 1.0004 1.0004 1.0295 1.0295∗ 1.0000 1.0000 1.0249 1.0211
36 1.0031 1.0006 1.0327 1.0327∗ 1.0000 1.0000 1.0185 1.0137
40 1.0009 1.0004 1.0277 1.0277∗ 1.0000 1.0000 1.0201 1.0159
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