Summary Message

- For some computer experiments, evaluating a single data point can be computationally expensive, limiting the number of data that one can afford.
- Evaluating the gradient of the function using adjoint The goal of the linear regression is assumed to be the est techniques, and involving gradient information in the where $\mathbf{T}: \mathcal{H} \to \mathcal{L}_2^s$. model can substantially improve the accuracy of the • For any vectors of functions, $\boldsymbol{u} = (u_1, \ldots, u_s)^T$ and $\boldsymbol{v} = (v_1, \ldots, v_s)^T$ prediction.
- The gradient of a *d*-variate function provides *d* more scalar pieces of information, at a cost of perhaps only several times the cost of a function value alone.
- Choosing the experimental design from two perspectives, *robustness* and *efficiency*.

Statistical Model

- The experimental region, Ω , is some measurable subset of $\Omega_1 \times \cdots \times \Omega_d$.
- $\bullet \mathcal{H}$ be some vector space of real-valued functions defined on Ω , and assumed to be a separable Hilbert space with a reproducing kernel $K : \Omega \times \Omega \rightarrow \mathbb{R}$.
- Define an operator $\mathbf{L}_{\mathbf{X}} : \mathcal{H} \to \mathbb{R}^{d+1}$, which when applied to a *d*-variate function $f \in \mathcal{H}$, returns

$$\mathbf{L}_{\mathbf{X}}f = \left(f(\mathbf{X}), \frac{\partial f}{\partial x_1}(\mathbf{X}), \cdots, \frac{\partial f}{\partial x_d}(\mathbf{X})\right)^T$$

• For a vector function $\boldsymbol{f} = (f_1, \ldots, f_\ell)^T : \Omega \to \mathbb{R}^\ell$, the definition of this operator is extended:

$$\mathbf{L}_{\mathbf{x}}\mathbf{f}' = (\mathbf{L}_{\mathbf{x}}f_1, \ldots, \mathbf{L}_{\mathbf{x}}f_{\ell}).$$

• A linear regression model with gradient information:

$$\tilde{\boldsymbol{y}}_i = \left(\mathbf{L}_{\boldsymbol{x}_i} \boldsymbol{g}^T \right) \boldsymbol{\beta} + \tilde{\boldsymbol{\varepsilon}}_i, \qquad i = 1, \dots, n,$$

 $\tilde{\boldsymbol{y}}_i$: observed vector response at the design point \boldsymbol{x}_i $\boldsymbol{g} = (g_1, \ldots, g_k)^T$: the vector of basis functions β : regression coefficient to be estimated

 $\tilde{\varepsilon}_i$: the error in estimating the response by the linear combination of k basis functions. It is assumed that $\tilde{\varepsilon}_1, \ldots, \tilde{\varepsilon}_n$ are i.i.d with zero mean and covariance matrix $\sigma^2 \Lambda$.

Vector-matrix notation:

$$\mathbf{y} = \mathbf{G}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

where

$$\mathbf{G} = \begin{pmatrix} \mathbf{L}_{\boldsymbol{x}_1} \boldsymbol{g}^T \\ \boldsymbol{i} \\ \mathbf{L}_{\boldsymbol{x}_n} \boldsymbol{g}^T \end{pmatrix}, \qquad \boldsymbol{y} = \begin{pmatrix} \tilde{\boldsymbol{y}}_1 \\ \boldsymbol{i} \\ \tilde{\boldsymbol{y}}_n \end{pmatrix}, \qquad \boldsymbol{\varepsilon} = \begin{pmatrix} \tilde{\varepsilon}_1 \\ \boldsymbol{i} \\ \tilde{\varepsilon}_n \end{pmatrix}$$

and ε has zero mean and covariance matrix $\sigma^2 \Lambda$, where $\Lambda = \text{diag}(\Lambda, \ldots, \Lambda)$.

• The weighted least squares estimate of the regression coefficient β :

 $\hat{\boldsymbol{\beta}} = \mathbf{B}\boldsymbol{y} = \boldsymbol{\beta} + \mathbf{B}\boldsymbol{\varepsilon}, \qquad \mathbf{B} = \left(\mathbf{G}^{T}\mathbf{\Lambda}^{-1}\mathbf{G}\right)^{-1}\mathbf{G}^{T}\mathbf{\Lambda}^{-1}.$

MAIL: Yli88@iit.edu

Design of Experiments when Gradient Information Is Available Yiou Li

Department of Applied Mathematics

Scaled Integrated Mean Squared Error

Experimental design:

$$\xi = \left\{ \begin{matrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_N \\ \boldsymbol{w}_1 & \boldsymbol{w}_2 & \cdots & \boldsymbol{w}_N \end{matrix} \right\}, \text{ where } N \leq n.$$

 $\langle \boldsymbol{u}, \boldsymbol{v} \rangle_{\mathcal{L}_{2}^{s}} = \int_{\Omega} \boldsymbol{u}^{T}(\boldsymbol{x}) \boldsymbol{v}(\boldsymbol{x}) \, \mathrm{dF}_{\mathsf{IMSE}}(\boldsymbol{x}).$ • $\mathsf{IMSE}(\xi, \boldsymbol{g}) = \frac{n}{\sigma^{2}} E \left\| \mathsf{T}(\boldsymbol{g}^{T}\boldsymbol{\beta}) - \mathsf{T}(\boldsymbol{g}^{T}\hat{\boldsymbol{\beta}}) \right\|_{\mathcal{L}_{2}^{s}}^{2}.$ Proposition

$$\mathsf{IMSE}(\xi, \boldsymbol{g}) = \mathsf{tr}(\mathsf{M}^{-1}\mathsf{A}),$$

with

$$\mathsf{M} = \mathsf{M}_{\xi} = \frac{1}{n} \mathsf{G}^{\mathsf{T}} \mathbf{\Lambda}^{-1} \mathsf{G}, \text{ and } \mathsf{A} = \left(\left\langle \mathsf{T} g_{i}, \mathsf{T} g_{j} \right\rangle_{\mathcal{L}} \right)$$

Low Discrepancy Design Bounds IMSE Theorem

Suppose that F_T is a probability distribution function define be different from $F_{\rm IMSE}$, and that ${\cal H}$ is a reproducing kernel functions defined on Ω with reproducing kernel K. Conside matrix for F_{T} ,

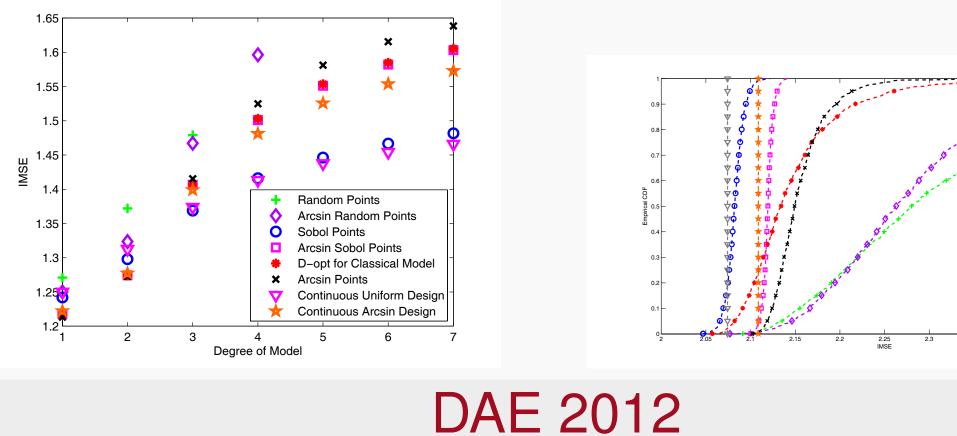
$$\mathsf{M}_{F_{T}} = \int_{\Omega} (\mathbf{L}_{\mathbf{x}} \mathbf{g}^{T})^{T} \widetilde{\mathbf{\Lambda}}^{-1} (\mathbf{L}_{\mathbf{x}} \mathbf{g}^{T}) \, \mathrm{dF}_{\mathrm{T}}(\mathbf{x}),$$

and suppose that the function $h_{\alpha}: \mathbf{X} \mapsto \alpha' (M_{F_{\tau}})^{-\frac{1}{2}} M_{\mathbf{X}} (M_{F_{\tau}})$ any $\alpha \in \mathbb{R}^k$. Define a variation over the basis **g**as

$$V_{oldsymbol{g},F_{\mathcal{T}}} = \sup_{\|oldsymbol{lpha}\|_2 \leq 1} V(h_{oldsymbol{lpha}}),$$

where V is the variation. Then it follows that the integrated is bounded above by

$$\mathsf{IMSE}(\xi, \boldsymbol{g}) \leq \frac{\mathsf{tr}(\mathsf{M}_{F_{\mathcal{T}}}^{-1}\mathsf{A})}{1 - D_{F_{\mathcal{T}}}(\xi)V_{\boldsymbol{g},F_{\mathcal{T}}}}$$

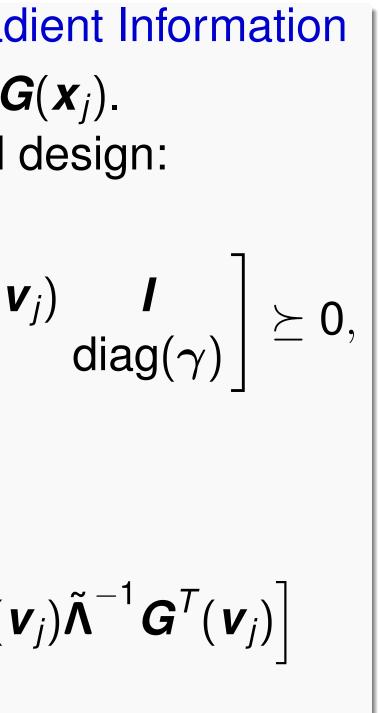

provided that $D_{F_{\tau}}(\xi) V_{g,F_{\tau}} < 1$.

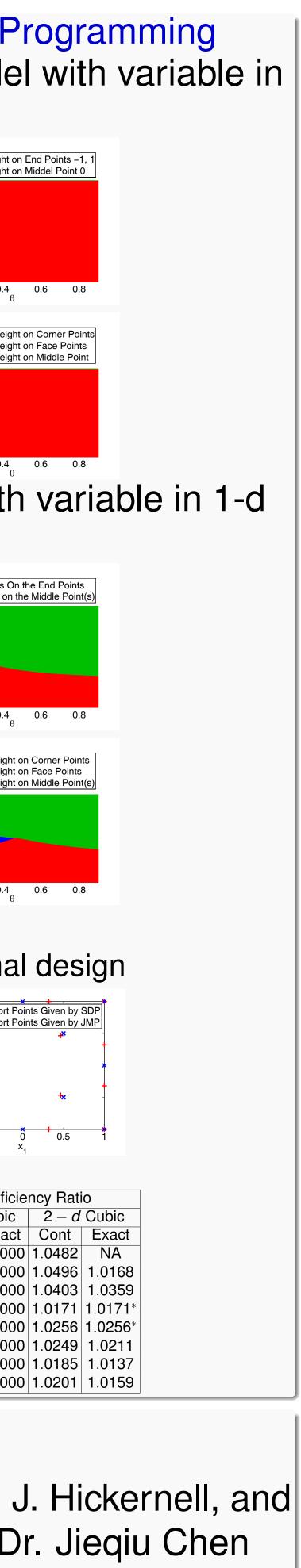
Remark

Note that, in some cases, there exists F_T , such that tr($M_{F_T}^{-1}$) This means that choosing the design to match the distribut smaller upper bound compared to choosing the design to F_{IMSE}.

Numerical Experiments on Low Discrepancy Design $\Omega = [-1, 1]$, polynomial basis, 16 sample points, repeated $\Omega = [-1, 1] \times [-1, 1]$, orthogonal basis up to degree 4, 32

repeated 1000 times.




ILLINOIS INSTITU

stimation of $\mathbf{T}(\boldsymbol{g}^T\boldsymbol{\beta})$, $v_1, \ldots, v_s)^T$, let	Semi-definite Programming with Gradient Information • Define $\mathbf{G}^{T}(\mathbf{x}) = \mathbf{L}_{\mathbf{x}} \mathbf{g}^{T}$, $\mathbf{F}(\mathbf{x}_{j}) = \mathbf{A}^{-\frac{1}{2}} \mathbf{G}(\mathbf{x}_{j})$. • Equivalent SDP model for I-optimal design: Minimize _{<i>w_j</i>, γ $\mathbf{e}^{T} \gamma$ Subject to: <math>\begin{bmatrix} \sum_{j=1}^{N} w_{j} \mathbf{F}(\mathbf{v}_{j}) \tilde{\mathbf{\Lambda}}^{-1} \mathbf{F}^{T}(\mathbf{v}_{j}) & \mathbf{I} \\ \mathbf{I} & \text{diag}(\gamma) \end{bmatrix} \succeq 0</math> $\mathbf{e}^{T} \mathbf{w} = 1$, $\mathbf{w} \ge 0$. • SDP model for D-optimal design: Minimize_{<i>w_j</i>} - log det $\begin{bmatrix} \sum_{j=1}^{K} w_{j} \mathbf{G}(\mathbf{v}_{j}) \tilde{\mathbf{\Lambda}}^{-1} \mathbf{G}^{T}(\mathbf{v}_{j}) \end{bmatrix}$ Subject to: $\mathbf{e}^{T} \mathbf{w} = 1$, $\mathbf{w} \ge 0$.}
$\binom{k}{i,j=1}^{k}$	 Numerical Results for Semi-definite Programming D optimal design for quadratic model with variable in 1-d and 2-d:
ed on Ω, which may el Hilbert space of er the information	$ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
$F_{\tau})^{-\frac{1}{2}} \alpha$ lies in \mathcal{H} for	I optimal design for cubic model with variable in 1-d and 2-d: $\int_{\text{and 2-d:}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1}{2}}{\sqrt{1-\frac{1-1}{2}}}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1}{2}}{\sqrt{1-\frac{1-1}{2}}}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1-1}{2}}{\sqrt{1-\frac{1-1}{2}}}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1-1}{2}}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1-1}{2}}}^{\sqrt{1-\frac{1-1}{2}}}} \int_{\frac{1-\frac{1-1}{2}}}^{\sqrt{1-\frac{1-1}{2}}}} \int_{\frac{1-\frac{1-1}{2}}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1-1}{2}}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1-1}{2}}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1-1}{2}}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1-1}{2}}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1-1}{2}}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1-1}{2}}}^{\sqrt{1-\frac{1-1}{2}}} \int_{\frac{1-\frac{1-1}{2}}}^{1-$
d mean square error	 JMP vs SDP (cubic 2-d model)
	Support Points for D-optimal and I-optimal design
$f_{T}^{1}A) < tr(M_{F_{IMSE}}^{-1}A).$ ution F_{T} will yield to match distribution	$ \begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$
ed 1000 times, and 2 sample points,	● Efficiency ratio: I Efficiency Ratio D Efficiency Ratio 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 1 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 1 - d Cubic 1 - d Cubic 2 - d Cubic 1 - d Cubic 1 - d Cubic 1 - d Cubic 1 - d Cubic 1 - d Cubic 1 - d Cubic 1 - d Cubic 1 - d Cubic
	Acknowledgements I would like to thank my advisor Fred J. Hickernell, an our collaborator Dr. Mihai Anitescu, Dr. Jieqiu Chen from Argonne National Lab for the assistance in my research.
-	I would like to thank my advisor Fred J. Hickernell, our collaborator Dr. Mihai Anitescu, Dr. Jieqiu Che from Argonne National Lab for the assistance in my

Illinois Institute of Technology, Chicago IL 60616

