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Outline 

 Pharmacokinetic/pharmacodynamic models 

 

 Population models and optimal design 

 

 Optimal design software, PkStaMp library 

 

 Information matrix, approximation options 
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Pharmacokinetics & pharmacodynamics 

 PK: what body does to the drug  (time-concentration) 

 Compartmental, systems of ordinary differential equations (ODE) 

 Non-compartmental (AUC, Tmax, Cmax) 

Example: 

One-compartment model, 1st order absorption and linear elimination 

 PD: what drug does to the body  (concentration → effect ) 

 Progression of clinically relevant endpoint or biomarker 
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Optimal Designs 
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Mixed effects model model 
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Information matrix for sequence  x 
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Optimal design for population PK/PD models 

 Annual Population Optimum Design of Experiments (PODE) 

Workshop created in 2006  

 Optimal design for nonlinear mixed effects models:  

 theory and applications in drug development 

 

 Discussion of population optimal design tools started in 2007  

 PFIM (developed in INSERM, Universitè Paris 7, France) 

 PkStaMp (GlaxoSmithKline/Vertex) 

 PopDes (CAPKR, University of Manchester, UK) 

 PopED (Uppsala University, Sweden) 

 WinPOPT (University of Otago, New Zealand) 

 

 

 



8 

PkStaMp library 

 Sampling Times Allocation (STand-Alone Application),  

Matlab Platform 

 Why Matlab: 

 Allows for creating executable files (no license required for end-users) 

 Easy to create GUI 

 Collection of independent modules created for various GSK 

projects, development started in 2002-2003 

 Last 3+ years: joint work with Dr. Alexander Aliev (Institute for 

Systems Analysis, Russian Academy of Science, Moscow) 

 Recent addition: user-defined option 
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Typical screen: one-compartment,1st order absorption 
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Design region  X 
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Diagnostics:  whether the algorithm converged 

 

•  Sensitivity function,   

total # of parameters = 9 

 

•  Design region:  

dimension = # of samples 

 

•  X-axis: sequence index 

 

• Red circles denote 

optimal points (sequences) 
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Efficiency analysis 

Goals: 

 Compare optimal design with alternative designs: 

benchmarking 

 Test robustness of the optimal design (sampling windows) 
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Cost-based designs 

In PkStaMp: (a) Cost c(x) proportional to # of samples in sequence x,  or 

         (b) Entered by user for each candidate sampling sequence 
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Two-compartment model, 1st order absorption,  

Michaelis-Menten elimination:  no analytical solution  (ODE solver) 

More complex models: nonlinear kinetics 
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More complex models (2): combined PK/PD 

 

 

One-compartment PK and  Emax PD model 
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PK and PD compartments may be measured at different times 
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Combination drug for treating chronic hepatitis C (HCV) infection 
Neumann et al. (1998), Mentré et al. (2011) 

More complex models (3): HCV 
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Parameterization 

 Log-parameters  

 Normal population distribution 

HCV example:  user-defined option 

User-defined option: 

 “Arbitrary” system of ODE, and/or 

 “Arbitrary” closed-form solution 

 “Arbitrary” number of compartments 
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Model specification 
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Software comparison   (PODE 2009-11) 
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Software  comparison   (cont.) 
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Software  comparison  (cont.) 

 Da = [μ(x,θ)] -1 : identical results for all tools under the same 
assumptions: Mentré et al. (2011), Leonov and Aliev (2012)  

 

 Compared   Da  and  De  (empirical variance-covariance 
matrix: Monte Carlo  +  estimation in NONMEM/Monolix): 

 Reduced option: block C  “excluded”  (C = 0),  2nd term 
in  A removed→ Da  and  De   are very close   

 Full option: block  C  and 2nd term in A are both kept → 
visible difference for some elements of  D 

 



22 

Approximation options 

Parameter  ka 
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Approximation options   (cont.) 

2nd - order approximation for mean/variance 

 All derivatives calculated numerically (central differences) 

 Derivatives of variance  S  require second derivatives of  η 

 With 2nd order approximation: fourth derivatives….. 

 

Numerically rather cumbersome… 
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Approximation options: Monte Carlo 
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Approximation options   (cont.) 

Mean response curves 

for one-compartment 

model example 

 Solid - 1st order 

approximation 

 Dashed - computed at 

mean values of log-

normal distribution, 

 Dotted - Monte Carlo 

average 
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Approximation options: Monte Carlo  (cont.) 
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Approximation options   (cont.) 
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Summary  

 Finding most “informative” levels of controls (sampling times) 

 Validating standard designs  

 (optimal designs as benchmark) 

 Test robustness of optimal designs  

 (sampling windows) 

 Can incorporate costs/penalties 

 Reduce # of samples with “minimal” precision loss 

 Example: from 16 sampling times – to 8 most informative 

    D-efficiency ( 8 samples vs 16 samples)  = 0.84  (only 16% lost) 
Gagnon, Leonov (2005) 
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