Mixture Design of Quantile Regression Model for Portfolio-Invariant Capital Rule

In Honor of Prof. Angela Dean's Contributions to DOE

Lie-Jane Kao Dept. of Finance and Banking Kainan University

Motivation-Pillard I of Basel II Accord

 An international standard that ensures banks have adequate capital for the risks banks exposes itself to, through its lending and investment practices.

--The Basel Committee on Banking Supervision (BCBS, 2004)

Capital Adequacy of a Bank's Loan Portfolio

Minimum capital requirement of a portfolio

= 99.9% percentile of the loss L (99.9% VaR)

--The Basel Committee on Banking Supervision (BCBS, 2004)

Risk Sensitive Capital Allocation

If a loan portfolio has N borrowers with principal weights $w_1,...,w_N$. The 99.9% VaR must be allocated among the N borrowers so that:

• Borrower *i*'s marginal capital charge per dollar exposure θ_i , $1 \le i \le N$, should depend on the characteristics of borrower *i*; instead of the composition of the portfolio, i.e., the exposure weights $w_1,...,w_N$.

Portfolio-Invariant Capital Rule

The 99.9% VaR should be a linear function G
in the exposure weights, i.e.,

99.9%
$$VaR = G(w_1,...,w_N) = Aw_1\theta_1 + ... + Aw_N\theta_N$$

where A is the aggregate principal or exposure,

Model Based Calibration of 99.9% VaR

Portfolio Credit Risk Models in Banking Industry:

- CreditMetrics (RiskMetrics Group),
- CreditRisk+ (Credite Suisse Financial Products),
- Credit Portfolio View (McKinsey),
- Portfolio Manager (KMV).

- A portfolio has K sectors and each sector has m borrowers. For borrower j in sector k, 1≤k≤K, 1≤j≤m, define:
 - (1) A_{ki} : the principle size,
 - (2) Q_{kj} : the loss per dollar exposure given default (LGD), with mean $E(Q_{ki}) = \mu_k^Q$,
 - (3) The borrower defaults with probability $d_{kj}=d_k$

• The K sectors' risk factors Z_1, \ldots, Z_K are correlated through a macro risk factor Z_0 in the form

$$Z_k = \beta_k Z_0 + \sqrt{1 - \beta_k^2} \eta_k$$

where $0 \le \beta_k \le 1$ is the **correlation parameter** between the sector risk factor Z_k and the macro risk factor Z_0 ; η_k is a standard normal indep. of Z_0 .

• The financial health index Y_{kj} of borrower j in sector k, $1 \le k \le K$, $1 \le j \le m$, is driven by the sector's systemic risk factor Z_k and an idiosyncratic factor \mathcal{E}_{kj} for the borrower

$$Y_{kj} = \lambda_k Z_k + \sqrt{1 - \lambda_k^2} \varepsilon_{kj} \sim N(0,1)$$

where the factor loading $0 \le \lambda_k \le 1$.

• For a borrower in sector k, $1 \le k \le K$, default occurs as his financial health index Y_{kj} falls below the threshold

$$\zeta_k = \Phi^{-1}(d_k)$$

 d_k is the default probability, Φ is the CDF of a standard normal.

The Aggregate Loss L

$$L = A \sum_{1 \le k \le K} \left(\sum_{1 \le j \le m} w_{kj} Q_{kj} 1_{\{Y_{kj} < \zeta_k\}} \right)$$

where

$$A = \sum_{1 \le k' \le K} \sum_{1 \le j' \le m} A_{k'j'}$$

and

$$w_{kj} = \frac{A_{kj}}{A}$$

Infinitely Fine-grained Portfolio

For all sectors,

- The sector's aggregate exposure sizes $\to \infty$ as the number of borrowers $m \to \infty$,
- The ratio of the largest exposure within a sector to the sector's aggregate exposure vanishes to zero as the number of borrowers $m \rightarrow \infty$.

--Gordy (2003)

Convergence of the Loss L (Gordy, 2003)

• Conditional on the risk factors $Z=(Z_1, ..., Z_K)$, the aggregate loss L of an infinitely fine-grained portfolio converges almost surely to

$$E[L \mid \mathbf{Z}] = A \sum_{1 \le k \le K} w_{k \bullet} \mu_{k}^{Q} \varphi(\mathbf{Z}_{k})$$

where **w**=(
$$w_{1\bullet}$$
,..., $w_{k\bullet}$), $w_{k\bullet} = \sum_{1 \le j \le m} w_{kj}$

and
$$\varphi(Z_k) = \Phi\left(\frac{\zeta_k - \lambda_k Z_k}{\sqrt{1 - \lambda_k^2}}\right)$$

Infinitely fine-grained portfolio

The 99.9% VaR, being a function G(w) of the weight exposure w, is the 99.9% percentile of the random variable

$$A \sum_{1 \le k \le K} w_{k \bullet} \mu_k^{\mathcal{Q}} \varphi(\mathbf{Z}_k)$$

Sufficient Condition for Portfolio-Invariance: Single Risk Factor (Gordy, 2003)

• When the risk factors $Z_1, ..., Z_K$ are all **completely** correlated with the macro risk factor Z_0 i.e., the correlation parameter $\beta_k=1$ for all $1 \le k \le K$, then the 99.9% VaR is

$$G(w) = A \sum_{1 \le k \le K} w_k \cdot \Theta_k$$

- $q_p^{Z_0}$ is the p^{th} percentile of the macro risk factor Z_0 ,
- $\theta_k = \mu_k^\varrho \varphi \left(q_{0.001}^{Z_0}\right)$ is sector k's marginal capital change per dollar exposure.

Adjustment of Multiple Risk Factors

- Single risk factor approximation (Pykhtin, 2004),
- Diversification factor (Cespedes and Herrero, 2006),

Two-Sector Example

- The default probability d_1 =0.01, d_2 =0.15,
- The factor loading $\lambda_1 = \lambda_2 = 0.75$,
- The mean of loss given default $E(Q_{ki})=0.5$,

Two-Sector Example

- The default probability $d_1=0.01$, $d_2=0.15$,
- The factor loading $\lambda_1 = 0.3941$, $\lambda_2 = 0.2801$ (Lopes, 2004)
- The mean of loss given default $E(Q_{ki})=0.5$,

Three-Sector Example

- The default probability d_1 =0.0052, d_2 =0.0120, d_3 =0.1912
- Sector correlation $\beta_1 = \beta_2 = \beta_3 = 0.25$
- The factor loading $\lambda_1 = \lambda_2 = \lambda_3 = 0.5$,
- The mean of loss given default $E(Q_{kj})=0.5$,

Three-Sector Example

- The default probability d_1 =0.0052, d_2 =0.0120, d_3 =0.1912
- Sector correlation $\beta_1 = \beta_2 = \beta_3 = 0.25$
- The factor loading λ_1 =0.2125, λ_2 = 0.1859, λ_3 = 0.1200 (Lopes, 2004)
- The mean of loss given default $E(Q_{ki})=0.5$,

Response Surface of Quantile Regression Model

- Choosing *n* portfolio compositions $\mathbf{w}_1, \dots, \mathbf{w}_a$, where $\mathbf{w}_i = (w_1^i, \dots, w_K^i)', 1 \le i \le a$.
- For portfolio composition \mathbf{x}_i , generating K_i replicates of the risk factors \mathbf{Z}^1 ,..., \mathbf{Z}^{K_i} , where $\mathbf{Z}^j = (Z_{1j}, \ldots, Z_{K,K_j})$, $1 \le j \le K_i$.
- Let $y_{ij} = A \sum_{1 \le k \le K} w_{k\bullet} \mu_k^{\mathcal{Q}} \varphi(Z_k)$, $1 \le j \le K_i$.

Response Surface of Quantile Regression Model

• Assuming the 99.9% percentile $Q(y_{ij})$ is a 2nd degree canonical polynomial

$$Q(y_{ij}) = \sum_{k=1}^{K} \gamma_k w_{k\bullet} + \sum_{k=1}^{K} \sum_{j>k}^{K} \gamma_{jk} w_{k\bullet} w_{j\bullet}$$

Approximate by a 1st degree canonical polynomial,

$$Q(y_{ij}) = \sum_{k=1}^{K} \theta_k w_{k\bullet}$$

--Koenker and Bassett (1978)

Quantile Regression Model

- Define $\mathbf{x}_{i1}' = \mathbf{w}_i = (w_{1\bullet}^i, \dots, w_{K\bullet}^i)',$ $\mathbf{x}_{i2}' = (w_{1\bullet}^i, w_{2\bullet}^i, \dots, w_{1\bullet}^i, w_{K\bullet}^i; \dots; \dots, w_{(K-1)\bullet}^i, w_{K\bullet}^i)$
- Full Model: $y_{ij} = \mathbf{x}_i' \gamma + \varepsilon_{ij}$ = $\mathbf{x}_{i1}' \gamma_1 + \mathbf{x}_{i2}' \gamma_2 + \varepsilon_{ij}$, $1 \le i \le n$, $1 \le j \le K_i$
- Reduced Model: $y_{ij} = \mathbf{x}_{i1}' \boldsymbol{\theta}_1 + \varepsilon_{ij}$, $1 \le i \le n$, $1 \le j \le K_i$

where the error terms ε_{11} , ..., ε_{ij} , ... are *i.i.d*. with distribution function F satisfying $F^{-1}(p)=0$ (Koenker and Bassett, 1978).

Least Absolute Deviation Estimation

• The p^{th} quantile regression estimator $\hat{\gamma}$ is the minimizer of the objective function $S(\gamma)$

$$\sum_{i} \sum_{j} \left\{ p \sum_{\{y_{ij} > x_{i}' \gamma\}} |y_{ij} - x_{i}' \gamma| + (1 - p) \sum_{\{y_{ij} < x_{i}' \gamma\}} |y_{ij} - x_{i}' \gamma| \right\}$$

--Koenker and Bassett (1978)

Least Absolute Deviation Estimation

• Define the observations $\Gamma_i = \{y_{i1}, ..., y_{i,K_i}\}$ for the i^{th} design point \mathbf{x}_i , $1 \le i \le a$,

• y_{i1} is the p^{th} percentile of the subsample Γ_i ,

• Define $y_1 = (y_{11}, ..., y_{a1})'$

Least Absolute Deviation Estimation

• **Lemma** (Kao, 2012) Consider a saturated design of full rank a=K+K(K-1)/2 in estimating the 2nd degree canonical polynomial. Let the design matrix

$$Z = \left\{ \left(x_i' \right)_{i=1}^a \right\}$$

The estimator $\hat{\gamma} = Z^{-1}y_1$ minimizes the objective function $S(\gamma)$. In addition, $\hat{\gamma}$ is unique if and only if y_{i1} is the unique p^{th} sample percentile of the subsample $\Gamma_i = \{y_{i1}, ..., y_{i,K_i}\}$ for all $1 \le i \le a$.

Design Criteria of Fitting a 1st degree Polynomial When the True Model is Quadratic

• The minimization of the mean squared deviation (MSD) between the fitted 1st degree polynomial \hat{y} and the true response surface of 2nd degree canonical polynomial averaged over an experimental region Ω

$$MSD = \int_{\Omega} (\hat{y} - x'\gamma)^2 \omega(x) dx$$

--Box and Draper (1959)

Efficient Design with Minimum MSD

Lemma (Kao, 2012) Suppose a 1st degree polynomial is fitted to the data, when the true model is the 2nd degree canonical polynomial. For large replications K_i , $1 \le i \le n$, there exists a subset $I_1 = \{i_1, ..., i_q\} \subseteq \{1, ..., a\}$, so the optimal design that minimizes MSD minimizes

$$det \left(Z_{21} Z_{11}^{-1} Z_{12} - Z_{22} \right)$$

where

$$Z_{11} = \{(x'_{i1})_{i \in I_1}\}, \quad Z_{21} = \{(x'_{i2})_{i \in I_1}\} \quad \text{and } Z_{22} = \{(x'_{i2})_{i \notin I_1}\},$$

Efficient Mixture Design (Scheffe, 1963)

- For the least squares estimation of:
 - (1) 1st degree canonical polynomial, the A- and D-optimal design is η_1 ;
 - (2) 2^{nd} degree canonical polynomial, the *D*-optimal design is $\xi_2^D = \frac{2}{a+1}\eta_1 + \frac{q-1}{a+1}\eta_2$

The A-optimal design $(q \ge 4)$ is

$$\xi_2^A = \frac{\sqrt{4q-3}}{2(q-1)+\sqrt{4q-3}}\eta_1 + \frac{2(q-1)}{2(q-1)+\sqrt{4q-3}}\eta_2$$

• η_j : The j^{th} elementary centroid design contains all the permutations of the j-components (1/j, ..., 1/j, ... 0).

Three-Sector Mixture Design

	Types of Mixture Designs		
	(a) $3\eta_1 + 3\eta_2$	(b) $2\eta_1 + 3\eta_2 + \eta_3$	(c) $3\eta_1 + 2\eta_2 + \eta_3$
Panel A: The sub-design Z_{11} is $3\eta_1$			
Determinant	1.562×10 ⁻²		6.944×10 ⁻³
MSD	9.349×10^{-3}		1.168×10 ⁻²
Panel B: The sub-design Z_{11} is $2\eta_1 + \eta_2$			
Determinant	3.125×10 ⁻²	3.472×10 ⁻³	3.472×10 ⁻³
MSD	1.332×10 ⁻²	3.042×10^{-3}	3.364×10 ⁻³
Panel C: The sub-design Z_{11} is $\eta_1 + 2\eta_2$			
Determinant	6.250×10 ⁻²	6.944×10 ⁻³	2.778×10 ⁻²
MSD	1.069×10^{-2}	1.645×10^{-2}	1.874×10 ⁻²
Panel D: The sub-design Z_{11} is $3\eta_2$			
Determinant	6.250×10 ⁻²	6.944×10^{-3}	
MSD	9.496×10 ⁻³	7.322×10 ⁻³	
Panel D: The sub-design Z_{11} is $2\eta_2 + \eta_3$			
Determinant		2.083×10 ⁻²	8.333×10 ⁻²
MSD		1.581×10 ⁻²	2.521×10 ⁻²

Calibration of the Optimal Design $2\eta_1+3\eta_2+\eta_3$

Note. The predicted 99.9% VaR $Q(y_{ij}) = \sum_{k=1}^{3} \hat{\theta}_k w_{k\bullet}$

Marginal Capital Charge by Sectors One and Two

Marginal Capital Charge by Sector Three

Conclusion

• Till now, estimation of the 99.9% percentile response surface of a 1st degree canonical polynomial based on efficient mixture designs is the only solution for portfolio-invariant capital allocation.

Conclusion

- Optimal design problems have mainly been considered in the context of maximum likelihood or least squares estimation, few results are for quantile regression models,
- Dette, H., M. Trampisch (2013) Optimal designs for quantile regression models, To appear in *Journal of the American Statistical Association*.
- Kao, L.J. (2012) "Efficient Mixture Design Fitting Quadratic Surface with Quantile Responses Using First Degree Polynomial", submitted to Communications in Statistics-Simulation and Computation.

Thank You!