Mixture Design of Quantile Regression Model for Portfolio-Invariant Capital Rule In Honor of Prof. Angela Dean's Contributions to DOE Lie-Jane Kao Dept. of Finance and Banking Kainan University #### Motivation-Pillard I of Basel II Accord An international standard that ensures banks have adequate capital for the risks banks exposes itself to, through its lending and investment practices. --The Basel Committee on Banking Supervision (BCBS, 2004) ## Capital Adequacy of a Bank's Loan Portfolio Minimum capital requirement of a portfolio = 99.9% percentile of the loss L (99.9% VaR) --The Basel Committee on Banking Supervision (BCBS, 2004) ## **Risk Sensitive Capital Allocation** If a loan portfolio has N borrowers with principal weights $w_1,...,w_N$. The 99.9% VaR must be allocated among the N borrowers so that: • Borrower *i*'s marginal capital charge per dollar exposure θ_i , $1 \le i \le N$, should depend on the characteristics of borrower *i*; instead of the composition of the portfolio, i.e., the exposure weights $w_1,...,w_N$. ## **Portfolio-Invariant Capital Rule** The 99.9% VaR should be a linear function G in the exposure weights, i.e., 99.9% $$VaR = G(w_1,...,w_N) = Aw_1\theta_1 + ... + Aw_N\theta_N$$ where A is the aggregate principal or exposure, #### **Model Based Calibration of 99.9% VaR** Portfolio Credit Risk Models in Banking Industry: - CreditMetrics (RiskMetrics Group), - CreditRisk+ (Credite Suisse Financial Products), - Credit Portfolio View (McKinsey), - Portfolio Manager (KMV). - A portfolio has K sectors and each sector has m borrowers. For borrower j in sector k, 1≤k≤K, 1≤j≤m, define: - (1) A_{ki} : the principle size, - (2) Q_{kj} : the loss per dollar exposure given default (LGD), with mean $E(Q_{ki}) = \mu_k^Q$, - (3) The borrower defaults with probability $d_{kj}=d_k$ • The K sectors' risk factors Z_1, \ldots, Z_K are correlated through a macro risk factor Z_0 in the form $$Z_k = \beta_k Z_0 + \sqrt{1 - \beta_k^2} \eta_k$$ where $0 \le \beta_k \le 1$ is the **correlation parameter** between the sector risk factor Z_k and the macro risk factor Z_0 ; η_k is a standard normal indep. of Z_0 . • The financial health index Y_{kj} of borrower j in sector k, $1 \le k \le K$, $1 \le j \le m$, is driven by the sector's systemic risk factor Z_k and an idiosyncratic factor \mathcal{E}_{kj} for the borrower $$Y_{kj} = \lambda_k Z_k + \sqrt{1 - \lambda_k^2} \varepsilon_{kj} \sim N(0,1)$$ where the factor loading $0 \le \lambda_k \le 1$. • For a borrower in sector k, $1 \le k \le K$, default occurs as his financial health index Y_{kj} falls below the threshold $$\zeta_k = \Phi^{-1}(d_k)$$ d_k is the default probability, Φ is the CDF of a standard normal. ## The Aggregate Loss L $$L = A \sum_{1 \le k \le K} \left(\sum_{1 \le j \le m} w_{kj} Q_{kj} 1_{\{Y_{kj} < \zeta_k\}} \right)$$ where $$A = \sum_{1 \le k' \le K} \sum_{1 \le j' \le m} A_{k'j'}$$ and $$w_{kj} = \frac{A_{kj}}{A}$$ ## **Infinitely Fine-grained Portfolio** For all sectors, - The sector's aggregate exposure sizes $\to \infty$ as the number of borrowers $m \to \infty$, - The ratio of the largest exposure within a sector to the sector's aggregate exposure vanishes to zero as the number of borrowers $m \rightarrow \infty$. --Gordy (2003) ## Convergence of the Loss L (Gordy, 2003) • Conditional on the risk factors $Z=(Z_1, ..., Z_K)$, the aggregate loss L of an infinitely fine-grained portfolio converges almost surely to $$E[L \mid \mathbf{Z}] = A \sum_{1 \le k \le K} w_{k \bullet} \mu_{k}^{Q} \varphi(\mathbf{Z}_{k})$$ where **w**=($$w_{1\bullet}$$,..., $w_{k\bullet}$), $w_{k\bullet} = \sum_{1 \le j \le m} w_{kj}$ and $$\varphi(Z_k) = \Phi\left(\frac{\zeta_k - \lambda_k Z_k}{\sqrt{1 - \lambda_k^2}}\right)$$ ## Infinitely fine-grained portfolio The 99.9% VaR, being a function G(w) of the weight exposure w, is the 99.9% percentile of the random variable $$A \sum_{1 \le k \le K} w_{k \bullet} \mu_k^{\mathcal{Q}} \varphi(\mathbf{Z}_k)$$ # Sufficient Condition for Portfolio-Invariance: Single Risk Factor (Gordy, 2003) • When the risk factors $Z_1, ..., Z_K$ are all **completely** correlated with the macro risk factor Z_0 i.e., the correlation parameter $\beta_k=1$ for all $1 \le k \le K$, then the 99.9% VaR is $$G(w) = A \sum_{1 \le k \le K} w_k \cdot \Theta_k$$ - $q_p^{Z_0}$ is the p^{th} percentile of the macro risk factor Z_0 , - $\theta_k = \mu_k^\varrho \varphi \left(q_{0.001}^{Z_0}\right)$ is sector k's marginal capital change per dollar exposure. ## **Adjustment of Multiple Risk Factors** - Single risk factor approximation (Pykhtin, 2004), - Diversification factor (Cespedes and Herrero, 2006), #### **Two-Sector Example** - The default probability d_1 =0.01, d_2 =0.15, - The factor loading $\lambda_1 = \lambda_2 = 0.75$, - The mean of loss given default $E(Q_{ki})=0.5$, #### **Two-Sector Example** - The default probability $d_1=0.01$, $d_2=0.15$, - The factor loading $\lambda_1 = 0.3941$, $\lambda_2 = 0.2801$ (Lopes, 2004) - The mean of loss given default $E(Q_{ki})=0.5$, ## **Three-Sector Example** - The default probability d_1 =0.0052, d_2 =0.0120, d_3 =0.1912 - Sector correlation $\beta_1 = \beta_2 = \beta_3 = 0.25$ - The factor loading $\lambda_1 = \lambda_2 = \lambda_3 = 0.5$, - The mean of loss given default $E(Q_{kj})=0.5$, #### **Three-Sector Example** - The default probability d_1 =0.0052, d_2 =0.0120, d_3 =0.1912 - Sector correlation $\beta_1 = \beta_2 = \beta_3 = 0.25$ - The factor loading λ_1 =0.2125, λ_2 = 0.1859, λ_3 = 0.1200 (Lopes, 2004) - The mean of loss given default $E(Q_{ki})=0.5$, #### Response Surface of Quantile Regression Model - Choosing *n* portfolio compositions $\mathbf{w}_1, \dots, \mathbf{w}_a$, where $\mathbf{w}_i = (w_1^i, \dots, w_K^i)', 1 \le i \le a$. - For portfolio composition \mathbf{x}_i , generating K_i replicates of the risk factors \mathbf{Z}^1 ,..., \mathbf{Z}^{K_i} , where $\mathbf{Z}^j = (Z_{1j}, \ldots, Z_{K,K_j})$, $1 \le j \le K_i$. - Let $y_{ij} = A \sum_{1 \le k \le K} w_{k\bullet} \mu_k^{\mathcal{Q}} \varphi(Z_k)$, $1 \le j \le K_i$. #### **Response Surface of Quantile Regression Model** • Assuming the 99.9% percentile $Q(y_{ij})$ is a 2nd degree canonical polynomial $$Q(y_{ij}) = \sum_{k=1}^{K} \gamma_k w_{k\bullet} + \sum_{k=1}^{K} \sum_{j>k}^{K} \gamma_{jk} w_{k\bullet} w_{j\bullet}$$ Approximate by a 1st degree canonical polynomial, $$Q(y_{ij}) = \sum_{k=1}^{K} \theta_k w_{k\bullet}$$ --Koenker and Bassett (1978) ## **Quantile Regression Model** - Define $\mathbf{x}_{i1}' = \mathbf{w}_i = (w_{1\bullet}^i, \dots, w_{K\bullet}^i)',$ $\mathbf{x}_{i2}' = (w_{1\bullet}^i, w_{2\bullet}^i, \dots, w_{1\bullet}^i, w_{K\bullet}^i; \dots; \dots, w_{(K-1)\bullet}^i, w_{K\bullet}^i)$ - Full Model: $y_{ij} = \mathbf{x}_i' \gamma + \varepsilon_{ij}$ = $\mathbf{x}_{i1}' \gamma_1 + \mathbf{x}_{i2}' \gamma_2 + \varepsilon_{ij}$, $1 \le i \le n$, $1 \le j \le K_i$ - Reduced Model: $y_{ij} = \mathbf{x}_{i1}' \boldsymbol{\theta}_1 + \varepsilon_{ij}$, $1 \le i \le n$, $1 \le j \le K_i$ where the error terms ε_{11} , ..., ε_{ij} , ... are *i.i.d*. with distribution function F satisfying $F^{-1}(p)=0$ (Koenker and Bassett, 1978). #### **Least Absolute Deviation Estimation** • The p^{th} quantile regression estimator $\hat{\gamma}$ is the minimizer of the objective function $S(\gamma)$ $$\sum_{i} \sum_{j} \left\{ p \sum_{\{y_{ij} > x_{i}' \gamma\}} |y_{ij} - x_{i}' \gamma| + (1 - p) \sum_{\{y_{ij} < x_{i}' \gamma\}} |y_{ij} - x_{i}' \gamma| \right\}$$ --Koenker and Bassett (1978) #### **Least Absolute Deviation Estimation** • Define the observations $\Gamma_i = \{y_{i1}, ..., y_{i,K_i}\}$ for the i^{th} design point \mathbf{x}_i , $1 \le i \le a$, • y_{i1} is the p^{th} percentile of the subsample Γ_i , • Define $y_1 = (y_{11}, ..., y_{a1})'$ #### **Least Absolute Deviation Estimation** • **Lemma** (Kao, 2012) Consider a saturated design of full rank a=K+K(K-1)/2 in estimating the 2nd degree canonical polynomial. Let the design matrix $$Z = \left\{ \left(x_i' \right)_{i=1}^a \right\}$$ The estimator $\hat{\gamma} = Z^{-1}y_1$ minimizes the objective function $S(\gamma)$. In addition, $\hat{\gamma}$ is unique if and only if y_{i1} is the unique p^{th} sample percentile of the subsample $\Gamma_i = \{y_{i1}, ..., y_{i,K_i}\}$ for all $1 \le i \le a$. # Design Criteria of Fitting a 1st degree Polynomial When the True Model is Quadratic • The minimization of the mean squared deviation (MSD) between the fitted 1st degree polynomial \hat{y} and the true response surface of 2nd degree canonical polynomial averaged over an experimental region Ω $$MSD = \int_{\Omega} (\hat{y} - x'\gamma)^2 \omega(x) dx$$ --Box and Draper (1959) ## **Efficient Design with Minimum MSD** **Lemma** (Kao, 2012) Suppose a 1st degree polynomial is fitted to the data, when the true model is the 2nd degree canonical polynomial. For large replications K_i , $1 \le i \le n$, there exists a subset $I_1 = \{i_1, ..., i_q\} \subseteq \{1, ..., a\}$, so the optimal design that minimizes MSD minimizes $$det \left(Z_{21} Z_{11}^{-1} Z_{12} - Z_{22} \right)$$ where $$Z_{11} = \{(x'_{i1})_{i \in I_1}\}, \quad Z_{21} = \{(x'_{i2})_{i \in I_1}\} \quad \text{and } Z_{22} = \{(x'_{i2})_{i \notin I_1}\},$$ ## Efficient Mixture Design (Scheffe, 1963) - For the least squares estimation of: - (1) 1st degree canonical polynomial, the A- and D-optimal design is η_1 ; - (2) 2^{nd} degree canonical polynomial, the *D*-optimal design is $\xi_2^D = \frac{2}{a+1}\eta_1 + \frac{q-1}{a+1}\eta_2$ The A-optimal design $(q \ge 4)$ is $$\xi_2^A = \frac{\sqrt{4q-3}}{2(q-1)+\sqrt{4q-3}}\eta_1 + \frac{2(q-1)}{2(q-1)+\sqrt{4q-3}}\eta_2$$ • η_j : The j^{th} elementary centroid design contains all the permutations of the j-components (1/j, ..., 1/j, ... 0). ## **Three-Sector Mixture Design** | | Types of Mixture Designs | | | |--|--------------------------|----------------------------------|----------------------------------| | | (a) $3\eta_1 + 3\eta_2$ | (b) $2\eta_1 + 3\eta_2 + \eta_3$ | (c) $3\eta_1 + 2\eta_2 + \eta_3$ | | Panel A: The sub-design Z_{11} is $3\eta_1$ | | | | | Determinant | 1.562×10 ⁻² | | 6.944×10 ⁻³ | | MSD | 9.349×10^{-3} | | 1.168×10 ⁻² | | Panel B: The sub-design Z_{11} is $2\eta_1 + \eta_2$ | | | | | Determinant | 3.125×10 ⁻² | 3.472×10 ⁻³ | 3.472×10 ⁻³ | | MSD | 1.332×10 ⁻² | 3.042×10^{-3} | 3.364×10 ⁻³ | | Panel C: The sub-design Z_{11} is $\eta_1 + 2\eta_2$ | | | | | Determinant | 6.250×10 ⁻² | 6.944×10 ⁻³ | 2.778×10 ⁻² | | MSD | 1.069×10^{-2} | 1.645×10^{-2} | 1.874×10 ⁻² | | Panel D: The sub-design Z_{11} is $3\eta_2$ | | | | | Determinant | 6.250×10 ⁻² | 6.944×10^{-3} | | | MSD | 9.496×10 ⁻³ | 7.322×10 ⁻³ | | | Panel D: The sub-design Z_{11} is $2\eta_2 + \eta_3$ | | | | | Determinant | | 2.083×10 ⁻² | 8.333×10 ⁻² | | MSD | | 1.581×10 ⁻² | 2.521×10 ⁻² | ## Calibration of the Optimal Design $2\eta_1+3\eta_2+\eta_3$ Note. The predicted 99.9% VaR $Q(y_{ij}) = \sum_{k=1}^{3} \hat{\theta}_k w_{k\bullet}$ #### Marginal Capital Charge by Sectors One and Two ## **Marginal Capital Charge by Sector Three** #### **Conclusion** • Till now, estimation of the 99.9% percentile response surface of a 1st degree canonical polynomial based on efficient mixture designs is the only solution for portfolio-invariant capital allocation. #### **Conclusion** - Optimal design problems have mainly been considered in the context of maximum likelihood or least squares estimation, few results are for quantile regression models, - Dette, H., M. Trampisch (2013) Optimal designs for quantile regression models, To appear in *Journal of the American Statistical Association*. - Kao, L.J. (2012) "Efficient Mixture Design Fitting Quadratic Surface with Quantile Responses Using First Degree Polynomial", submitted to Communications in Statistics-Simulation and Computation. # Thank You!