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Coordinate-Exchange SA Algorithm 

Coordinate-Exchange Algorithm 

Set the tuning parameters of SA algorithm 
T0,  β, and Tε. Construct the initial design D.  

Compute the row deletion function dr(xi) for each row 
xi and column deletion function dc(Xj) for each 
column Xj. Random choose the row i* and column j* 
with probabilities proportional to dr(xi) and dc(Xj).  

Denote the delta function Δ(xi*, j*, x) as the 
measurement of improvement of the design criterion 
by exchanging the coordinate xi*, j* with another value 
x. Solve the optimization problem:  

Min or Max Δ(xi*, j*, x)  s.t. x in Ωj*(xi*),  

where Ωj*(xi*) is the projected constraints for x=xi*. 
Deonte the optimal solution as x*. 

•  Physical Experiments: mixture experiments. (Cornell, 2002) 
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Linear 
Constraints 

only!  

•  Computer Experiments 
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E.g. Nonlinear Constrain for the Mathematical 
Model for the Low Pressure Chamber.  

More Complex 
Constraints!  

Literature on Constrained DOE 
•  Physical Experiments: 

o  Mainly are mixture experiments (Cornell 2002) 

o  Montgomery et al. (2002): bond strength of adhesive 

o  Hung et al. (2010) and Hung (2011) 

•  Computer Experiments: 

o  Sasena et al. (2002): applied optimization 

o  Trosset (1999) and Stinstra et al (2003) 

o  Draguljie, Dean, and Santner (2012) 

All methods are 
for linear 

constraints only!  

Can work for nonlinear 
Constraints. But need 
advanced NLP solver!  

Can work for nonlinear 
Constraints. But need to 
generate huge candidate 

set!   Not accessible or Inefficient!  

•  Finding the optimal coordinate is a one-dimension optimization 
problem, easier and less computational!  

•  No sophisticated NLP solvers are needed. 
•  Coordinate-exchange method can handle broader range of constraints.  

•  Fix all the other p-1 dimensional variable value and vary only one 
variable value.  

•  If the p-dimensional constraints are convex, then the projected one-
dimension feasible region becomes a single-interval set.  

•  If the p-dimensional design space are non-convex or disconnected, 
then the one-dimension feasible region contains multiple intervals.  

•  Exchanging one coordinate of the design leads to less computation in 
updating the objective function. 

Simulated Annealing (SA) Algorithm 
•  Randomize the selection of coordinate Di,j to exchange. 
•  Always accept improvement, but also accept the setback with a 

probability.  
•  Simulate the metal cooling process, in order to avoid local optimum.  
•  Initial temperature T0: large, specified according to the setting of the 

design.  
•  Rate of temperature decreasing β between [0.96, 0.99].  

Exchange the optimal solution x* with xi*, j* according 
to  the probability π=min{1, exp(-Δ(xi*, j*, x) /T}. Then 
update all the deletion functions and design matrix. 
Update the temperature TçTβ.  

Iterate Step 1-3 until T<Tε. Return the current design 
D as the optimal design with the optimal criterion 
ψ(D).  

D: the design matrix of size n-by-d; Ω is the d-dimension constrained space;  
xi  is the design point in Ω; ψ(.) is design criterion.  
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Histogram of efficiencies of optimal designs returned by proposed method 
w.r.t. the ones returned by JMP. (a) D-optimal (b) A-optimal (c) ϕp space 
filling design. (with box constraints only!).  

Three design-criterion 
•  D-optimal:  ψ(D)=det(FTF) •  Linear-optimal:  ψ(D)=tr(M(FTF)-1) 

•  ϕp space filling:  ψ(D)=ϕp(D)= 
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Need to derive the delta function, 
deletion functions, and updating 
formula for different criteria.  Examples 

•  Convex Constraint: x
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D-optimal A-optimal Space Filling 

•  Non-convex Constraint: (0.7x1)2 + (x2 � 0.5)2 � 0.25
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