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What is a supersaturated design? 

Supersaturated designs have more factors than 
runs.  

That is you might be interested in the possible 
effects of 24 factors but only have the budget for 20 
runs. 

At first this may seem laughable… 
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Are supersaturated designs a bad idea? 

“Supersaturated designs are evil.” Randall Tobias 

Why did my colleague say this? 

1. Design matrix is singular so multiple regression fails. 

2. Factor aliasing is complex. 

3. “You can’t get something for nothing.” 

 

Why the laughter? 



Early Literature 

Booth and Cox (1962) E(s2) criterion 
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Re-introduction in the Literature 

Lin (1993) construction using Hadamard matrix 



Re-introduction in the Literature 

Wu (1993) construction using partially aliased interactions 

Wu, C. F. J. (1993) Construction of  supersaturated 

designs through partially aliased interactions. 

Biometrika, 80, 661-669. 



Why would you consider using such a design? 

1. Runs are expensive. 

2. Brainstorming often yields dozens of possible factors. 

3. You don’t want to eliminate factors in absence of data. 
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D-Optimal Design Definition 

  Xy

Given the usual linear regression model 

find a design matrix, X, to maximize the determinant 

of the information matrix,  XX T

But, if there are more factors than runs, this 

determinant is always zero no matter what X is. 
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Bayesian D-Optimal designs 

/IXXD T

Bayes 

Find a design matrix, X, to maximize 

where  is a tuning parameter. 

This determinant is never zero and you can improve it with a 

clever choice of X. 
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Benefits of Bayesian D-Optimal Supersaturated Design 

1. Easy and fast to compute 

2. Flexible formulation (sample size, factor type, etc.) 

References: 

DuMouchel and Jones, Technometrics (1994) vol.36 #1 pp. 37-47. 

Jones, B., Lin, D., and Nachtsheim, C. (2008) “Bayesian D-Optimal 
Supersaturated Designs.” Journal of Statistical Planning and 
Inference, 138, 86-92. 
 



14 

Drawbacks of Bayesian D-Optimal Design 

1. Bayesian D-Optimality requires you to be a Bayesian… 

2. What about that tuning parameter, ? 

3. You need an optimal design algorithm to generate these. 

4. Optimization code can take a while to run and you are rarely sure 
that you have the global optimum. 
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D-Optimal Definition – Supersaturated Designs 

TXX

Find a design matrix, X, to maximize 

XXT is n x n so you can always find an X so 

that the determinant above is nonzero. 

n is the number of experimental runs.  
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Why use this new criterion? 

1. Does not require a Bayesian framework. 

2. No tuning parameter. 

3. Results in good designs – minimum bias estimates 

4. Is a limiting case of Bayesian D-Optimality. 

 Prior variance goes to infinity 

5. Is also a limiting case of Es2 optimality. * 

 Prior variance goes to zero. 

6. Fast (and sometimes no) computation. 



Consider the standard linear model. 

Suppose there are n runs and p 

parameters and n < p. 

Estimating effects for supersaturated designs 



Re-write the model as below. 

Note that  is n x 1. So, equivalently, 



We then estimate  as, 

This leads to the minimum bias estimator for , 



So, given our minimum bias estimator, 

the variance of this estimator is 

This leads us to the previously stated optimality criterion. 



What about our D-optimality criterion? 

so its determinant is zero. 

But we can minimize the product of its non-zero eigenvalues. It 

turns out that minimizing that product is the same as maximizing 

But that is the D-optimality criterion we suggest. 
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Question:  

Can we generate globally “D-optimal” supersaturated designs? 

 

Answer: Yes! 

 

 

Note: I will show how to do this where p mod 4 = 0 but there are also 

constructions for the other 3 cases. 



Procedure: 

1. Choose n rows of a pxp Hadamard matrix where n < p 

2. Make sure that the first column of the Hadamard matrix is all +1. 

3. Do this by multiplying rows by -1 if necessary. 

Call the result, X  

The p – 1 non-constant columns of X are the factor settings. 

X is a globally D-optimal supersaturated design XXT equals nI where 

n is the number of runs and I is the identity matrix. 



[ 1   1   1   1   1   1   1   1,  

  1  -1   1  -1   1  -1   1  -1,  

  1   1  -1  -1   1   1  -1  -1,  

  1  -1  -1   1   1  -1  -1   1,  

  1   1   1   1  -1  -1  -1  -1,  

  1  -1   1  -1  -1   1  -1   1,  

  1   1  -1  -1  -1  -1   1   1,  

  1  -1  -1   1  -1   1   1  -1 ] 

Here is a Hadamard matrix with 8 rows and 8 columns. 

H = 

 H
T
H = HH

T
= 8I 

where I is the identity 

matrix 



Choose any 6 rows. 

Call the above X. Then XX
T
 = 8 I

6 



Globally D-optimal Supersaturated Design 



But in our example, there are 28 such designs.  

So, we need a secondary criterion to help us choose 

which n rows of the Hadamard matrix to use. 



Ideas for a secondary criterion: 

1. Minimize the maximum squared off-diagonal element of X
T
X. 

2. Minimize the sum of squared off-diagonal elements of X
T
X. 

3. Use “extra” columns in X in a clever way. 

Let’s think about option 3.  

Note: Many constructions require the column sums to be zero. 

The usual definition of Es2 assumes this restriction. We have 

lower bounds for an unrestricted Es2 (UEs2) that allows for 

unbalanced columns. 



Hadamard matrices exist with numbers of rows that are 

multiples of 4. Therefore, the number of columns in X will also 

be a multiple of 4.  

Generally, the number of factors is not a multiple of 4. What 

can we do with the “extra” columns? 

By extra I mean the columns we do not assign to factors. 

Answer: 

If we are clever, we can use them to aid in model selection. 



Let us partition X into W and Z where the columns of W are our 

factors and the columns of Z are our extra columns. 

Suppose we can make W
T
Z = 0. 

That means that the extra columns, Z, are orthogonal to the 

factor columns. The rank of W+Z is the rank of X, n.  

Usually we make W have rank n. But here we make Z have 

rank, q so W has rank n-q. 

That is, we make W even more supersaturated. In exchange 

we get an estimator for the error variance that we can use in 

model selection to screen the factors. 



Example 1 

Suppose there are 12 factors and we can do12 runs.  

Take the 16x16 Hadamard matrix and remove 4 rows to 

make W
T
Z = 0 



Correlation Color Plot 



Properties of Example 1 Design 

1. 3 independent groups of 4 factors. 

2. Each group has rank 3. 

3. Extra columns have rank 2 so you can 

estimate s2 with 2 df. 



Example 2 

Suppose there are 12 factors and we can do 8 runs.  

Use the same procedure as before. 



Correlation Plot 



Properties of Example 2 Design 

1. 6 independent groups of 2 factors. 

2. Each group has rank 1. Main effects are confounded in pairs. 

3. Extra columns have rank 1 so you can estimate s2 with 1 df. 

This may seem odd, but this is a group screening design. 

These have been advocated by Vine, et. al. 

A. E Vine, S. M Lewis, A. M Dean, D Brunson. A Critical Assessment of Two-

Stage Group Screening Through Industrial Experimentation Technometrics. 

February 1, 2008, 50(1): 15-25.  



Example 3 – 24 Factors in 20 Runs 



Example 3 – 24 Factors in 20 Runs 



Properties of Example 3 Design 

1. 3 independent groups of 8 factors. 

2. Each group has rank 5.  

3. Extra columns have rank 4 so you can estimate s2 with 4 df. 



How did we generate these designs again? 

We want two things: 

 1) Make the factor column correlations small – min E s2 

 2) Make the W
T
Z= 0 

 

We use a combined optimization criterion by minimizing the sum 
of E s2

 and  the sum of squares of W
T
Z 

We use a row exchange algorithm with the Hadamard matrix as 
the candidate set. 
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Procedure 

1. Do a principal components analysis for each of the 3 
groups of 8 factors. 

Note that you can explain each group with 5 PCs. 

2. Compute the sum of squares for each factor group 
by regressing the response on each set of PCs. 

3. Compute the error sum of squares from the extra 
columns. 

4. Do a separate F-test for each factor group. 

1. F = (Group SS/5)/(SSE/4) 

2. p = 1 – F CDF (Fa,num df,denom df) 



Demonstration  
y = 100 + 1.5(A + B + I + P) +  

where  ~ N(0,1) 

So, Group 1 and Group 2 are active but Group 3 is not. 
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Summary 

1. Introduced a new optimality criterion for SSDs. 

2. Gave some ideas for design construction. 

3. Showed examples of designs using the 
“orthogonal extra columns” construction idea. 

4. Demonstrated an analytical approach for the new 
supersaturated design type. 
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