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Overview

Introduce space-filling designs

A new class of space-filling designs for a
specific type of irregular regions

|dea of adaptive designs
Unbiased estimators
lllustrations



Latin Hypercube Designs (LHDs)

- A n-run LHD can be generated using a random
permutation of {1, 2, ..., n} for each factor.

- Space-filling design: One-dimensional balance.

- Limitation: Constructed based on rectangular
regions.
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A Naive Strategy with Irregular Regions

collapse

But ... Irregular experimental region

Q: How to construct space-filling design with
irregular experimental region?



Probability-Based Latin Hypercube Designs (PLHD)

Slid-rectangular regions:
] a specific type of irregular
I regions, where the desirable
range of one factor depends on
] the level of another factor.

How to construct design with the following properties?

- One-dimensional balance

- Number of design points is proportional to the length of
experimental region
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Probability-Based Latin Hypercube Designs (PLHD)

Optimal Design Criteria
- Maximin distance

- Minimize correlation
- etc.

New Algorithm

- A new heuristic algorithm for optimal
PLHD searching.

How to construct design with the following properties?

- One-dimensional balance

- Number of design points is proportional to the length of

experimental region

Reference: Y. Hung, Y. Amemiya, and C. F. Jeff Wu (2010). Probability-Based Latin

Hypercube Design, Biometrika, 97, 961-968.
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Definition of Probability-Based Latin Hypercube Designs

* Assume there are p factors and the first two factors, x; and x,, form a slid-
rectangular region.

* Factor x, has k levels and the ranges for x, are located irregularly on a
interval [4, B]. For the jth level of x,, the feasible interval for x, is denoted
by (4;, B)).

* A=min{4,;}, B=max{B;}

* Divide the interval [4, B] into n equally spaced sub-intervals and assigning
the n levels of by the middle ofx, these subintervals.

* For each level of x,, the feasible range of x, 1s defined by C,, and the level
of x, 1s assigned by

0, otherwise.
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Unbiased Estimator

* An unbiased estimator of the population mean based on the probability-
based LHDs can be written as

n
-1 -1
T=N"") > E(wj) ‘wi;g(Ysy),
1=1 j5€C;
where g(.) is an arbitrary function, Y;s are the responses, w;; is an

indicator variable with w,=1 1t ¥, 1s selected by the design, and w,;=0
otherwise.

 [ts variance can be written in the Yates-Grundy expression (Cochran,
1977, pp. 260)

Cl) - 1 N~ {Z Z ’ﬂ'zj’ﬂ'qt - 'ﬂ'ij.,qt)[g(Yij) - g(th)]Q}’

Mig Tat
ij qt(gt#ij) 7 1

mi; = E(w;;) = ci_l, mijit = 0 for t # j, and 7y g = TiTy = cz._lc(;1 for i # q.



Further Improvement

* PROPOSITION 1. Let n; denote the number of points with xo = j. Then

n . n I(] € Cz)
E(n;) = pr(ze; = j) = : :
2 25k G ed)
* Proposition 1 shows the expected number of points located in each

shaded area. For example:
17/6 ( = 4/3+1/2+1) for the upper shaded area, ’ e
17/6 (= 1+1/2+4/3) for the middle one,
7/3 (= 1/2+4/3+1/2) for the lower one. |

* Ideally, the n; values in Proposition 1 should be proportional to the
length of the shaded area, which can be written as B-A4;. This is
because the information from each area i1s assumed to be proportional
to its length.



Balanced PLHD

Inspired by the observation in Proposition 1, a modification is
introduced to incorporate the proportional balance property, where the
number of observations is proportional to the length of the interval.

We call this design a balanced probability-based LHD. It can be written
as modified probability-based LHDs with the constraints

n; (Bj — 4;)

n B Z?:I(Bj o Aj)

In practice, the quantities np; are not always integers for given » and p,.
In that situation, an approximate balance with |n-np| <1 should be
imposed.

=p;, for j=1,...,k.
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Example of Balanced PLHD

A design with three factors and 22 runs. For the slid-rectangular
region, factor x, has five levels and the proportional lengths of x, at
different levels of x, are 3:4:5:6:4.
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A Data Center Example
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Next Question...

How to construct a plan that can adaptively increase sample
effort in the neighborhood of the high temperature
observations.

Idea:
» Construct a probability-based LHD to collect initial sample

» Based on # initial observations, whenever the response of a selected
unit satisfies a given criterion, additional units in the neighborhood
of that unit are added to the sample.

» This procedure continues until no more units are found that meet
the condition.

» The final design contains every unit in the neighborhood of any
sample unit satisfying the condition.
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Adaptive Probability-based LHDs
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Definition

* Network: The set of all units satisfying the condition in the
neighborhood of one another. Section in the initial design of any point
in a network will result in the final sample of all units in that sample.

* For any unit that does not meet the condition, it forms a network with
size one.

* The population can be partitioned into K networks.

* The units that do not meet the condition but in the neighborhood of
some design points that satisfy the condition are call edge points.

Reference: Ying Hung (2011). Adaptive Probability-based Latin Hypercube Designs,
the Journal of American Statistical Association, 106, 213-219.



Unbiased Estimators for Adaptive Designs

Let Vi be the set of units in the kth network. The number of units
selected from the kth network in the initial sample is

A unbiased estimator for adaptive probability-based PLHDs
Z yil(ng > O
P(ng > 0)
where K is the number of networks in the population, /(n,>0) takes 1 1f
any unit of the kth network is in the initial sample and y; = Zje v, Yi-




Variance of the Unbiased Estimator

The variance of the unbiased estimator can be calcuated by

9 Yy [P(ng > 0,np, > 0) — p(ng > 0)P(ny > 0)]
var (4 ; hz_: P(n; > 0)P(n, > 0) ’

where

[Lico. (=) Ty, (@ —dn)  Ilewum,) (@ — druoni)
o— + .
[liey, @ [liey, @ Hle(wkuwh) G

and diyup, is the number of units in Wi U W, An unbiased estimator of the variance of fi is

P(nk>0,nh>0)=1—

5 ykyh[P nk > 0,np, > 0) — p(ng > 0)P(ny, > 0)]
'Ua'f' kzl; nk > 0 P(Tbh > O)P('I’Lk > 0,ny > O) I(nk > O)I(nh > 0)



Improved Unbiased Estimator

The foregoing unbiased estimator can be improved by
incorporating more of the information in the final sample.

For example, the observations from edge points are used in the
estimator only they are included in the initial sample.

Using the Rao-Blackwell method, an improved unbiased
estimator can be obtained by calculating the conditional
expectation of the original estimator, given a sufficient
statistics.

The most efficient choice 1s the minimum sufficient statistics.



Rao-Blackwell Unbiased Estimator

e The minimum sufficient statistics m 1s the unordered set of
distinct labeled observations, i.e., m = {(,¥;) : ¢ € s}.

* Define M as the sample space of m, g(s,) as the function that
maps an 1nitial design s, into a value of m, and S as the sample
space containing all possible samples.

* The resulting unbiased estimator

ARB = E(ulM =m)
K y:_,.];\-l:l—?’.::l Y -
{ Zk—l .P{n_x_.'.':'[cl:l Ll \L Zs JES {I SU — ) ‘ Zi{:s;l,e!—l yici} }a

where e* = ) .. €; and e; = 1 if unit ¢ is an edge point and e; = 0 otherwise.



e The variance can be written as
~RB ~ P (m ~  aRB)\2
var(A™®) =var() = 3~ > I(g(8) = m) (& — 4"%)7],
meM SpeS

where L is the number of initial designs that are compatible with m and P(m) is the proba-
bility that M = m. An unbiased estimator of the variance is

var(@*?) = var(g) — L™ I(g(30) = m)[( — 4*)’]

S()Eg

and a more efficient estimator can be further obtained by conditioning on the minimum

sufficient statistics as follows
var(a®®) = E(var(g®®) | M = m)
= % zgu—.s I(g(30) = m)var(i) — % Z.%(Jes I(g(30) = m) [(ﬂ - ﬂRB)Q]-




Further Improvement

* Although conditioning on the minimum sufficient statistics 1s
the most efficient one, 1t is computationally difficult for large
designs because one has to evaluate all the compatible designs
in order to obtain the estimation.

* Idea: Construct an unbiased estimator by conditioning on a
carefully chosen sufficient statistics, instead of the minimum
sufficient statistics.



Further Improved Unbiased Estimator

Let s denote the final sample and define s, as the set of all the distinct units in the sample
for which the condition to sample adaptively is satisfied. The remaining part is denoted by
sz. Define V' as a collection of z; coordinates with which edge points occurs in the initial
sample. For unit ¢, let f; be the number of times that the network to which unit ¢ belongs
is intersected by the initial sample. Using the above notation, a sufficient statistics can be

defined by
m* = {(isyiafi)’ ‘/1 (J: y]) 3 € SCij € 85}1
and the sample space for m* is defined by M*. Hence, the improved unbiased estimator by

conditioning on the sufficient statistics m* can be obtained by
pr= E(pM*=m’)

. lZK y,‘cI(n.k>0)(l—e;) n iz Yoies ety (i)
- N k=1 P(’Ilk>0) N leV e-"'(cf_l ?

where ¢;(¢) is an indicator variable taking 1 if the unit ¢ belongs to level [ in factor z; (column

[) and 0 otherwise and e,, = ). eit;(i).



The variance of the improved unbiased estimator is
var(i) = var(E) = £ e "5 s { 1a(s) =)
2
[27—1 N (ZiES{,,e,—l yiti(2) — e% D ics e,-y,;tl(i))] }’
An unbiased estimator of the variance is
(i) = var(i) =+ £ yes { Hateh) = m)
2
[Z?—l N ( Zies;),ep1 yiti(i) — % D ics eiyitl(i))] }
and a more efficient estimator of the variance can be obtained by
var(p*) = Evar(f*) | M™ = m7|

=} e H0(sh) =m)uir () ~ + s { Ho(sh) = m

2
[Z?—l ¥ ( Piespe—1 Yiti()) = - Yie, e.-y.-tz(z'))] }



Simulation 1: Probability-based LHD

66 | 3
5 | 62 | 47

2 | 1
Prob 1 1/2 1/2 1/2

All possible adaptive PLHDs and a comparison of the unbiased estimators

sampler v L pr | pRB | var(p) | var(pr) | var(aRB)

(11}, {21}, {32}, {42}; {33}, {22}, {43} | 4 |32.20| 26 | 26 |591.76| 277.47 | 320.24
{11}, {21}, {32}, {43}; {33}, {22}, {42} | 4 |19.71| 26 | 26 | 42.20 | 277.47 | 320.24
(11}, {21}, {33}, {42}; {32}, {42}, {22} | 4 |32.29| 26 | 26 |591.76| 277.47 | 320.24
(11}, {21}, {33}, {43); {32}, {22}, {42} | 4 | 19.71| 26 | 26 | 42.20 | 277.47 | 320.24
{11}, {22}, {32}, {42}; {33}, {43} | 2,4| 33.43| 27.14| 27.14| 634.53 | 320.24 | 320.24
{11}, {22}, {32}, {43}; {33}, {42} | 2,4| 20.86| 27.14| 27.14| 84.98 | 320.24 | 320.24
{11}, {22}, {33}, {42}; {32}, {43} | 2,4| 33.43| 27.14 | 27.14 | 634.53 | 320.24 | 320.24
{11}, {22}, {33}, {43}; {32}, {42} | 2,4| 20.86| 27.14| 27.14| 84.98 | 320.24 | 320.24
Mean 26.57 | 26.57 | 26.57 | 338.37 | 298.86 | 298.86
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Simulation 2: Balanced Probability-based LHD

0 10 3 0
/7 2/7) | 3/7) | (7/7)
2 8 24 25

4/7) | B/7) | 3/7) | (4/7)
1 0 0 4

(7/N | 3/7) | (2/7) | (2/7)

* All possible adaptive BPLHDs and a comparison of the unbiased estimators

sampler g | ARB | var(pg) | var(aR®B)
{11}, {21}, {32}, {42}, {53}, {63}; {52}, {43}, {41} | 6.99|8.15| 2.23 | 536
{11}, {21}, {32}, {43}, {52}, {63}; {42}, {41}, {53} 0.32| 8.15| 11.22 5.36
{11}, {21}, {33}, {42}, {52}, {63}; {32}, {41}, {43}, {53} | 4.85 4.85| 324 | 3.24
{11}, {22}, {31}, {42}, {53}, {63}; {52}, {32}, {41}, {43} | 5.72| 6.89| 250 | 5.40
{11}, {22}, {31}, {43}, {52}, {63}; {42}, {32}, {41}, {53} | 8.06 | 6.89| 11.02 | 5.40
{11}, {22}, {32}, {41}, {53}, {63) 368 3.68 311 | 311
.{11},{22},{33},{41},{52},{63};{42},{32},{43},{53} 6.42| 6.31| 0.23 0.23
mean 6.42| 6.42| 4.79 4.02




Data Center Example

e 24 initial sensors in the initial design

X2

 Comparison of adaptive design with non-adaptive design (simple random
sampling with same sample size)

o

[ K SRS
mean | 24.20 | 24.20| 24.21
variance  0.53 | 0.47 | 0.78




Conclusion

Most of the existing space-filling designs are
constructed for rectangular regions.

A new class of space-filling designs is introduced for
slid-rectangular regions.

Adaptive designs and unbiased estimators are
discussed.

Comparisons between adaptive designs and non-
adaptive designs are performed. It appears that
adaptive designs can reduced estimation variations.

Ongoing work: theoretical derivations, ratio and
regression estimators, etc.



Thank you!!



