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The model and the moment matrix

Design space X is a finite set of labels of all permissible
experimental conditions, under which the individual trials can be
performed. Without loss of generality X = {1, ...,N}.

We will select a sequence x1, ..., xn ∈ X of design points, perform the
trials, and collect the observations Y1, ...,Yn ∈ R satisfying the
linear regression model

Yi = βT f (xi ) + εi , i = 1, ...,n,

β = (β1, ..., βm)T ∈ Rm ... unknown regression parameters
f = (f1, ..., fm)T : X→ Rm ... known regression functions
ε1, ..., εn ... iid errors, E(εi ) = 0, Var(εi ) = σ2 ∈ (0,∞).

Moment matrix (or “information matrix for β”) is

M =
n∑

i=1

f (xi )f T (xi ).
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Exact and approximate designs

Exact design on X is any ξ ∈ {0,1,2, ...}N .

For x ∈ X the value ξ(x) ∈ {0,1,2, ...} represents the number of trials
to be performed under the experimental conditions labeled by x . The
set of all exact designs will be denoted by ΞE .

Approximate designs on X is any ξ ∈ [0,∞)N .

Approximate (or “continuous”) designs can be very useful as an
auxiliary tool for computing exact designs. The set of all approximate
designs will be denoted by Ξ. Clearly ΞE ⊂ Ξ.

The moment matrix of an experiment performed according to an
exact or approximate design ξ:

M(ξ) =
∑
x∈X

ξ(x)f (x)f T (x)
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Exact and approximate designs
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Figure: If X = {1, 2} then ΞE is the set of all points in R2 with nonnegative
integer coordinates, and Ξ is the first quadrant.
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Linear constraints on designs

Let C be a given K × N matrix and b a given K -dimensional vector.

Linearly constrained design is any design ξ that satisfies K scalar
inequalities

Cξ ≤ b.

We will denote the set of all approximate linearly constrained designs
by ΞC,b and the set of all exact linearly constrained designs by ΞE

C,b.

If K = 1, C = 1N = (1, ...,1) and b = n ∈ {1,2, ...} is a given “size” of
the experiment, i.e., the limit on the number of trials, we obtain
size-constrained designs ∑

x∈X

ξ(x) ≤ n.

Most research in DoEs deals (only) with the problem of constructing
exact or approximate size-constrained designs.
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Special cases of general linear constraints

If K = 1, C = c ∈ RN is a vector of “costs”, and b = b ∈ (0,∞) is a
given limit on the total costs of the experiment, we obtain
cost-constrained designs∑

x∈X

c(x)ξ(x) ≤ b.

The value c(x) can represent the costs of the material that is
consumed or destroyed by the trial x , it can represent variable wages
for the personnel performing the experiment, depending on x ...

The general linear constraints can also represent
direct constraints, i.e., upper and lower limits on the number of
replications in the design points
marginal constraints, i.e., upper limits on availability of material
shared by a group of design points

See Cook and Fedorov, Statistics (1995).
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Size-constrained designs
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Figure: If X = {1, 2} and n = 6 then Ξ1,n is the shaded triangle, and ΞE
1,n is

the set of all points with nonnegative integer coordinates in the shaded
triangle.
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Cost-constrained designs
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Figure: If X = {1, 2}, c(1) = 5, c(2) = 9, and b = 30, then Ξc,b is the shaded
triangle, and ΞE

c,b is the set of points with nonnegative integer coordinates
lying in the shaded triangle.
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General linearly constrained designs
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Figure: For X = {1, 2}, some 4× 2 matrix C and some b ∈ R4 the set ΞC,b is
the shaded quadrilateral, and ΞE

C,b is the set of all points with nonnegative
integer coordinates lying inside the shaded quadrilateral.
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Criterion of optimality and optimal designs

Define an optimality criterion, i.e., a function

Φ : Ξ→ [0,∞)

measuring the “quality” of approximate and exact designs.

Φ-optimal approximate linearly constrained design:

ξC,b ∈ argmax{Φ(ξ) : ξ ∈ ΞC,b}

Φ-optimal exact linearly constrained design:

ξE
C,b ∈ argmax{Φ(ξ) : ξ ∈ ΞE

C,b}

For specific constraints we can define:
Φ-optimal approximate size-n-constrained design ξ1,n

Φ-optimal exact size-n-constrained design ξE
1,n

Φ-optimal approximate cost constrained design ξc,b

Φ-optimal exact cost constrained design ξE
c,b
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Optimal size-constrained designs
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Figure: For X = {1, 2}, a hypothetical model and a criterion Φ, the red dot
denotes the Φ-optimal exact size-constrained design and the orange dot
denotes the Φ-optimal approximate size-constrained design.
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Optimal cost-constrained designs
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Figure: For X = {1, 2}, a hypothetical model and a criterion Φ, the red dot
denotes the Φ-optimal exact cost-constrained design and the orange dot
denotes the Φ-optimal approximate cost-constrained design.
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Optimal general linearly constrained designs
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Figure: For X = {1, 2}, a hypothetical model, a criterion Φ, some C4×2, and
some b ∈ R4, the red dot is the Φ-optimal exact linearly constrained design
and the orange dot is the Φ-optimal approximate linearly constrained design.
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Computing exact linearly constrained designs

For a general C, for majority of models and criteria Φ the problem of
computing a provably perfectly Φ-optimal exact cost-constrained
design is NP-hard. (It comprises very hard combinatorial and
combinatorial optimization problems as special cases.)
Most methods use heuristics that provide efficient but not always
Φ-optimal designs.

Classes of methods for computing efficient cost constrained designs:
Exchange (local search) methods
Stochastic optimization methods

Simulated annealing
Genetic algorithms

Rounding methods
Enumeration methods

“Brute-force” complete enumeration methods
Partial enumeration methods, such as branch-and-bound
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Exchange methods (general principle)
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Figure: The design ξini
c,b is the initial design and ξres

c,b is the resulting design. At
each iteration, a neighborhood of the current design is searched and the
best design (or the first better design) is chosen for the next iteration.
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Exchange methods

Advantages:
Can be fast even for very large models.
Can be simple to implement.

Disadvantages:
Sometimes stop in a locally optimal (i.e., not globally optimal)
exact design.
The principle is difficult to modify in a way that it produces
efficient designs for some more general linear constraints.

A “barrier” method combined with an exchange algorithm for
computing cost-constrained designs has been proposed in: Tack and
Vandebroek, Journal of Statistical Planning and Inference (2004).

An exchange method for computing cost-constrained designs has
been suggested in: Wright, Sigal, and Bailer, Journal of Agricultural,
Biological, and Environmental Statistics (2010).
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Stochastic optimization methods

Update a single permissible exact design (annealing-type methods)
or a population of permissible exact designs (evolution-type methods)
using a sequence of operations involving random “mutations”.

Advantages:
Provide useful results even for very complex models.
Can converge to a perfectly optimal exact design (in theory).

Disadvantages:
Are usually slow compared to the exchange methods.
Often do not provide perfectly optimal exact designs (in practice).

A genetic algorithm for cost-constrained design has been presented
in: Park, Montgomery, Fowler and Borror, Quality and Reliability
Engineering International (2006).
An annealing-type method for linearly constrained designs has been
suggested in: Bachratá and Harman, Linstat Conference (2012).
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Rounding methods (general principle)
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Figure: The optimal approximate design ξc,b is “rounded” to a “closest”
permissible exact design ξres

c,b.
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Rounding methods

Advantages:
Can be fast even for very large models.
Can be simple to implement and use.

Disadvantages:
Sometimes provide inefficient exact design, especially if the
number of parameters is equal or only slightly higher than the
number of trials.
Can be difficult to adjust to some linear constraints.

A rounding method for cost-constrained designs has been suggested
in: Sagnol, Discrete Applied Mathematics (2013).

A different method of using optimal approximate constrained designs
to construct optimal exact designs has been suggested by Harman
and Filová, submitted. (Can be used with general linear constraints.)
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Branch-and-bound (general principle)
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Figure: The green dot is a reference exact design and the orange dot is the
Φ-optimal approximate design in the pink region. Since Φ(ξC,b) < Φ(ξ0) we
can skip enumerating the designs in the pink region.

Radoslav Harman Computing designs under cost constraints



Branch-and-bound methods

Advantages:
Can be implemented to provide the complete list of all perfectly
optimal exact designs.
Can solve problems with general linear constraints on the design.

Disadvantages:
Usually more difficult to implement.
Very slow for large size problems.

The idea to use a branch-and-bound method for computing D-optimal
exact designs of experiments: Welch, Technometrics (1982).
A branch-and-bound method for a problem with direct constraints on
is used in: Ucinski and Patan, Journal of Global Optimization (2007).

Crucial requirement of application:
Ability to compute the optimal value of the chosen optimality
criterion on special constrained sets of approximate designs.

Radoslav Harman Computing designs under cost constraints



Criterion of DA-optimality

Let A be a full rank m × s matrix, s ≤ m. DA-optimality:

ΦA(ξ) = [det(AT M−(ξ)A)]−1/s if span(A) ⊆ span(M(ξ)),

and ΦA(ξ) = 0 otherwise, where M− is a generalized inverse of M.

Under ξ, the value ΦA(ξ) is a measure of quality of estimation of
ATβ by its best linear unbiased estimator (e.g., Pukelsheim
(2006)).
The most important special cases are the criteria of D-optimality
if A = Im, and linear optimality if s = 1.
Using DA-optimality we can solve optimum design problems for
the models with nuissance parameters, such as models with time
or spatial trend, or block models.

It is possible to prove (Harman, submitted):

Theorem (Max-det programming characterization of DA-optimality)

ΦA(ξC,b) = max{[det(N)]1/s : N ∈ Sm
++,ANAT � M(ξ), ξ ∈ ΞC,b}

Can be computed by sedumi or sdpt3.
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Example: Trend resistant cost constrained designs

Yi = τt(i) + θ1p0(i) + θ2p1(i) + θ3p2(i) + θ4p3(i) + εi , i = 1, ...,n

t(i) ∈ {1,2,3} ... treatment applied to the time point i
τ1, τ2, τ3 ... effects of treatments
θ1, θ2, θ3, θ4 ... (nuisance) parameters of the time trend
p0,p1,p2,p3 ... polynomials of degrees 0,1,2,3
εi ... iid random errors

The aim is to select the D-optimal sequence of treatments that
minimizes the determinant of the variance-covariance matrix of the
BLUE of contrasts τ2 − τ1 and τ3 − τ1. (Closely related problems have
been solved in Atkinson and Donev, Technometrics (1996).)

It turns out that this can be equivalently formulated as a problem of
constructing a DA-optimal exact marginally constrained design for
some matrix A, some design space X with 3n design points, specific
vector f of regressors, and a vector β ∈ R7 of unknown parameters.
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Example: Trend resistant designs

The list of all D-optimal design sequences of treatments for estimating
τ2 − τ1 and τ3 − τ1 can be computed using a branch-and-bound
method with the max-det characterization of DA-optimality.

For instance, for n = 18 time points the set of D-optimal designs
consists of exactly 12 design, which can be obtained by any
relabeling of the treatments of the sequences:
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Example: Trend resistant cost constrained designs

Assume that we want to construct a D-optimal cost-constrained
sequence of treatments for estimating τ2 − τ1 and τ3 − τ1. It is simple
to add the cost constraints to the branch-and-bound algorithm.

For instance, if n = 18, the costs of treatments 1,2,3 are 0,1,2 price
units, and the budget limit is 15, there are exactly two D-optimal
treatment sequences:
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Conclusions

Linearly constrained designs (especially cost, marginal, and
directly constrained designs) can be found in many applications.
Often, it is non-trivial to adjust the standard methods of
computing size-constrained designs to the problem with more
general linear constraints. The adjustments usually use specifics
of some particular type of linear constraints.
For the construction of efficient but not always optimal linearly
constrained designs in large size models we can use methods
such as modified exchange algorithms, stochastic optimization
methods, and rounding methods.
For small and medium size problems it is possible to use
“intelligent” enumeration methods that can provide a complete
list of perfectly optimal exact designs under general linear
constraints. As a fundamental element they use methods for
constructing optimal approximate linearly constrained design.

Thank you!

Radoslav Harman Computing designs under cost constraints


