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1. INTRODUCTION




Choice experiments WY Queen My

Procedure: From each of N choice sets of fixed size m choose the
‘best’ alternative or profile.

Alternatives are specified by K usually qualitative attributes.
Design arranges attribute levels into alternatives and choice sets.

Common model: Multinomial logistic model (MNL) for choice

probabilities
exp[f(Xn,i) ' B]
P(Xn,i|Cn) = ’ ;
OO = S enplt(xn) ]
where X, 1, ...,Xn,m are the alternatives in the nth choice set C, and f

is a vector of known regression functions.



Information matrix for MNL model W Queen Mery

Quality of a design ¢ for MNL with N choice sets Cy, ..., Cy usually
assessed by functional of the information matrix

2

Z (Diag(pn) — PP, )Xn,

where X, is a matrix with rows f(x,1)",...,f(Xnm)". Further, p,is a
column vector with elements P(x, 1|Cp), . . ., P(Xn,m| Cn).

M(¢, 3) depends on the unknown parameter vector 3.

Popular criterion: D-optimality, which aims at finding a design ¢ that
maximizes the determinant of M(¢, 3).



Relationship with linear models

Under the assumption 3 = 0 the matrix M(¢, 3) depends only on the
design &.

For example, for N choice sets C, = (X5,1,Xn,2) of size m= 2, that is
for pairs of alternatives
1 T 1
M(s.B) = ZX X = ZM(©).

where X with rows [f(X,.1) — f(x,,’g)]T is the design matrix and M(¢)
the information matrix for the linear paired comparison model

Y(Xn,1 ) xn,2) = [f(xn,1 ) - f(xn,Z)]T/B +e (1)
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2. PARTIAL PROFILES




Types of profiles

Full profiles ...
... use all attributes in every pair

A2 At
B1 B2
Cc2 C1
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Setting for PCs of partial profiles WY Queen My

For the remainder of the talk we assume
» choice set size m = 2,
> 3=0,
» alternatives are described by Kj attributes with uy levels and K>
attributes with u,, levels, where u; < uo,
» only main effects are to be estimated,

» alternatives in each pair C, = (Xn,1,Xn,2) have different levels for
only S of the K = K; + K attributes, where S is the profile
strength,

» the D-optimality criterion.

e



Results for two groups of factors in PC model ¢

GGS (2009) derive optimality results considering the type of a set of
pairs.

A set of pairs is of type (ny, n2) with ny + n, = S, if
for every pair (X1, X2) in the set the profiles Xy and x; differ in
ny attributes with uy levels and
no attributes with u, levels.

Case Conditions Types of pairs in optimal designs
(a) Ki,Ko > S (S,0)and (0, S)

(b) Ky > S > K (K1, S — Ky) and (0, S)
(c) Ki>S>KandgpS<p (S— K Ky)and(S,0)
(d (
(e) (

S>Ki,Koand .S < p Ki,S — Ki)and (S — Ko, K>)

S>Kyand S >p S — Kz, Ko)




Information matrices of optimal designs Y Queon ey

In the PC model (1), under effects-coding the optimal designs in GGS
(2009) have information matrices

c1(lk, @ My, 0
M(¢) = ( 1 0 ) C(lk, ® MUZ))

where My = 25 (lo—1 + 1,-41)_;) and (with g; = u; — 1, i = 1,2, and

p = Kigr + Kz2q2)

Case Cy Co

(@)-(d) q:1S/p %S/p
(e) 1-(K-S)/Ki 1
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3. ALGORITHMIC DESIGNS
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Optimal exact designs

By using Hadamard and weighing matrices, GGS (2009) also
derive optimal designs with practical numbers of pairs.

For each of the cases (a)-(e) several constructions are proposed
such that the corresponding information matrices in the PC model (1)
are equal to

Mgy 1 (ol @My, 0
M(g)_NXTX_N< o az(h@@MuZ))

By imposing appropriate conditions on the building blocks of the
designs the constants oy and a, become equal to the optimal values
¢y and ¢, which shows that the ‘smaller’ designs are also optimal.
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Constructions for exact optimal designs Y Queon ey

D Design matrix X Number of pairs N
<1~‘ eW, 2 X 0 )
- 0 1y, oWz 0 Xz KiNyC(11,2) + KoNo (3, 2)
(lm @ W 8 X; )
- 0 1y, @ P, KiNiC(uy,2) + Na#(P;)
a3 ((a2)) KoNoCltiz, 2) + Ni#(Py)
1y, 0P| 0 )
a4 ( DN Ni#(P,) + No#(P2)
(H. ®L @ Xi|Hf ®Wayz @1, 8 X )
b1 0 W; 8 1g, @ X; (a1my/z1 + a2)Kx C(uz, 2)
(H\gL, @ Xi| Hf ®Wpz 814, RXQ)
b2 0 1o, P2 a3y Ko Clutz, 2)/2) + ap#(Py)
1y, @ F; © 1y, | 1y, ®1a, ® Py )
9 ( 0 W01, 8%, 0N #(Pay) + 0K, C(11,2)
1y, @F1 @1y, Iy, ® 14, ® P2
b4 ( 0 1o, ®P; ) Ny #(Ps,;) + a#(P,)
c ((b1)) (a2ma/z2 + @ Ko C(111,2)
2 ((b2)) azmzKiC(us,2)/z2 + ar#(P1)
a3 ((b3)) N #(P12) + a1 Ki C(uy,2)
4 ((b4)) N, #(Py2) + 0, #(Py)
HioLioX; |HieWy, 01,,8X )
di ( Hf @ Wi2z, ®1a, ® X1 Hyol X JJ s Cluy, 2) + My, 2)
HioLigX) [Hf @Wiz ©15 X2 )
® (1,,, @1, 0P| 1yoRoly, minyClu,2) + BN #(Py )
d3 ((d2)) mnyC(uz, 2) + a1 Ni#(P.1)

( 1y, ®F1 @ 1y, | Iy, ® 10y ® P2 )
a4 1y, @15, 8 P12 1y, @2 @ 1, @ Ny #(Pyy) + a;Ny#(Py 5)

- HE o Wiz 010, 0 X[ Kool 0X; ) Mo C(s,2)

(
o (15, @P12| 2o 1w, ) a#(P2)
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Conditions on dimensions A Queen Mary

1D Conditions
al N=N, 2
u
& e i
a3 N =N, :{ ‘Lﬁfs‘fﬁ

1 ged(K,5)

& M =Ny ged(e.S)
K3 u2q; m ( P )
1 —q et o™ ( P 4
P N e T2 g
Kz u2q2 m ( P )gcd(Kz,S)
—q et o oM ( P _ ) EcdeS)
b2 T e T2 g H(S)
b3 My =#(Py1), @ =#(F,)
_ p HKOHS - K1) (|t modZ)
a=tn (§-0) g —x) (1
b4 M; = #(Py;), a1 = #(F1)

_ P ged(K6,5)  H(K\H(S = K1) < T modZ)
=l (§ - "‘) gcdKe,S—K)  H(S) ! 2

Ki u;q m, < P
- L m=a
. B i e Sz TS
K wq m; ( P )gfd(KmS)
=G B = T2 (1D 7)) EEGD)
& = g =7 s HE)
a3 Mp = #(P12), @ = #(F2)
_ P\ HKJH(S - Ka) ( o modZ)
“”Nz“z(s "2) ged(K,5—K) \! 2
c4 M, =#(Py), a; = #(F;)

a =Ny (E, )Mwo,“wmdz)
s ) e, S K) A 3
Kouwage  Kiwige
DD =y S
z g Z 22
@ 2, UzG2 S —p
fitp =iy . 2 BB
TG 2 g GS—p
Kz urq>

d2 M, =#(P1,), @ =#(F,), my =a, —

Z1 iiqu
21 P — S HIKG)H(S — K) ( u modz>
= 2 LS K )Y (i moc
™ =Nathh g 08 ged (K S—Ko) 2
_ _ _, Kwma
d3 Ml—#(l’z\),m—#(F\),nz—azgm
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Detailed look at case (a): Ki, K> > S

Constructions, conditions and numbers of pairs for optimal designs in

case (a):
ID Design matrix X Conditions Number of pairs N
1y, Wi @ X1 | 0 o
a ( 0 [, ® W2 ® Xz Ny = No g2 KiN; C(uy, 2)+
KoNo C(uz, 2)
v, @ Wi @ X4 0 H(S
2 ( 1 % 1y, ® P2 > Ny = Nog? uq ch(i(z)s) KiNi C(ur, 2) + Ne#(P2)
a3 ((a2)) Ny = N2 S 1N C(up, 2) + No#(P1)
1y @P | 0 up ged(Ky,S)
a4 ( 0 [Tn, @ P2 ) N = Ne 2 gy Mi#(P1) + No#(P2)

Note: W; is weighing matrix order K; and weight S,

P; and X; are fixed known matrices,
1y, is all-one column vector of length N;.

15/23



Sketch of algorithm for D-optimal designs WY Queen My

For illustrative purposes consider only case (a).
1. Check existence of Wy and Wo.
2. For each of at—a4 for which the weighing matrices exist:

2.1 Set N, =1.
2.2 Evaluate condition for N;.
2.3 While N; is not an integer, increase N, by 1. Repeat 2.2.

3. For each of the applicable constructions al—a4 generate X.
Choose the design with the smallest number of pairs.
Remarks:
» The resulting design is D-optimal.
» Construction a4 can always be applied.
» Similar but more complicated algorithms exist for the cases

(b)—(e).

16/23
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Comparison with JMP10 software Y Queen Vary

» JMP10 implements so-called unrestricted algorithm of Kessels et
al. (2011)

» Allows to include prior information about 3, but here 3 =0
(‘utility-neutral’ designs)

» Comparison for all designs on previous slide with K =4 or K =5

» JMP10 run with

» 30 random starts in each case (because of run time)
» options to ignore prior mean and prior variance

18/23



Comparison with JMP10 software Y Queen Vary

Efficiency of JMP10 relative to optimal designs

K Ky Ko uy up S ID Pairs D-Efficiency (%)
4 1 3 2 3 3 b4 42 92.60
4 2 2 2 3 2 atl 18 89.44
4 2 2 2 3 3 el 12 85.17
4 2 2 2 4 2 al 16 75.45
4 2 2 2 4 3 el 24 83.32
4 2 2 2 5 2 al 50 77.15
4 2 2 2 5 3 el 40 78.93
4 2 2 3 4 2 al 60 93.76
4 2 2 3 5 2 al 90 90.26
4 3 1 2 3 2 c2 30 93.36
4 3 1 2 3 3 e2 36 93.51
4 3 1 2 4 2 el 12 76.56
4 3 1 2 4 3 e2 72 90.42
4 3 1 2 5 2 el 60 73.38
4 3 1 3 4 2 c2 54 94.27
5 1 4 2 3 3 b3 36 90.94
5 2 3 2 3 2 a2 24 82.69
5 2 3 2 3 3 b2 96 93.00
5 2 3 2 4 2 a2 44 78.97
5 2 3 2 5 2 a2 70 75.53
5 3 2 2 3 2 a3 42 88.89
5 3 2 2 3 3 c2 28 89.49
5 3 2 2 4 2 a3 18 70.21
5 3 2 2 4 3 el 24 74.28
5 3 2 3 4 2 a3 72 92.62
5 3 2 3 4 3 c2 96 93.71
5 4 1 2 3 2 cl 36 92.27
5 4 1 2 3 3 el 24 89.81
5 4 1 2 4 2 c1 28 78.28
5 4 1 2 4 3 el 24 84.21
5 4 1 2 5 2 el 40 68.89
5 4 1 2 5 3 el 40 78.97
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Modification for designs with fewer pairs Y Queon ey

Consider again case (a).

In order to generate efficient, but not necessarily optimal designs with

fewer pairs, only Steps 2. and 3. of the previous algorithm need to be
modified:

1. Check existence of Wy and W5.
2. For each of a1—a4 for which the weighing matrices exist:
2.1 SetN, =1.
2.2 Evaluate condition for N;. Round N; upwards to the nearest
integer, generate X and calculate its efficiency.
2.3 While efficiency is smaller than target value and total number of
pairs is smaller than allowed maximum, increase N> by 1. Repeat
2.2.

3. Choose the design with the smallest number of pairs and the
required efficiency (or make a trade-off).

20/23



An example

Design with N = 10 pairs for K; = 2 attributes with vy =2 and K> = 2

attributes with u, = 3 levels, profile strength S = 2.

Optimal design using construction a1 requires N = 18 pairs.

al with Ny =2, Nb =1 and

W, = W, = Hadamard order 2:
D-efficiency: 99.06%

Alternative 1

1

* ok % % % F — L
PRI Ny \)

21/23

N = = N = = % % %

WWMNN = = % * % %

* % * % * *NDNDNN

Alternative 2

* % x % o+ DN N

WWNWWN * * *

N = = WWN * * * *

New algorithm by Kessels et al.
with ~ 200 starts (> 30min):

N ¢ A koo x o ok

D-efficiency: 93.06%

Alternative 1

*PN) = * * *PNON *

1

¥k 2 AN N

WWW *—= % % 2N

N I I

Alternative 2

P N

ok AW = DWW

S PON FN o+ o % —



Concluding remarks WY Queen My

Designs are (locally) optimal for the multinomial logit model under
assumption that parameters are equal to 0.

Tables of optimal designs with up to 100 pairs are available at:
http://www.maths.gqmul.ac.uk/~hg/PP2G/

More comprehensive assessment of algorithms needed.

Extension to three groups of factors is possible, but more
complicated (GGS, accepted).

22/23
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