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1. INTRODUCTION
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Choice experiments

Procedure: From each of N choice sets of fixed size m choose the
‘best’ alternative or profile.

Alternatives are specified by K usually qualitative attributes.

Design arranges attribute levels into alternatives and choice sets.

Common model: Multinomial logistic model (MNL) for choice
probabilities

P(xn,i |Cn) =
exp[f(xn,i)

>β]∑m
j=1 exp[f(xn,j)>β]

,

where xn,1, . . . ,xn,m are the alternatives in the nth choice set Cn and f
is a vector of known regression functions.
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Information matrix for MNL model

Quality of a design ξ for MNL with N choice sets C1, . . . ,CN usually
assessed by functional of the information matrix

M(ξ,β) =
1
N

N∑
n=1

X>n (Diag(pn)− pnp>n )Xn,

where Xn is a matrix with rows f(xn,1)
>, . . . , f(xn,m)>. Further, pn is a

column vector with elements P(xn,1|Cn), . . . ,P(xn,m|Cn).

M(ξ,β) depends on the unknown parameter vector β.

Popular criterion: D-optimality, which aims at finding a design ξ that
maximizes the determinant of M(ξ,β).
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Relationship with linear models

Under the assumption β = 0 the matrix M(ξ,β) depends only on the
design ξ.

For example, for N choice sets Cn = (xn,1,xn,2) of size m = 2, that is
for pairs of alternatives

M(ξ,β) =
1

4N
X>X =

1
4

M(ξ),

where X with rows [f(xn,1)− f(xn,2)]
> is the design matrix and M(ξ)

the information matrix for the linear paired comparison model

Y (xn,1,xn,2) = [f(xn,1)− f(xn,2)]
>β + ε (1)

5/23



2. PARTIAL PROFILES
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Types of profiles

Full profiles ...
... use all attributes in every pair

C2

B1

A2

C1

B2

A1

Partial profiles ...
... differ only in subset of
attributes with a given profile
strength

C2

B1

A3

C1

B1

A1
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Setting for PCs of partial profiles

For the remainder of the talk we assume
I choice set size m = 2,
I β = 0,
I alternatives are described by K1 attributes with u1 levels and K2

attributes with u2, levels, where u1 < u2,
I only main effects are to be estimated,
I alternatives in each pair Cn = (xn,1,xn,2) have different levels for

only S of the K = K1 + K2 attributes, where S is the profile
strength,

I the D-optimality criterion.
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Results for two groups of factors in PC model

GGS (2009) derive optimality results considering the type of a set of
pairs.

A set of pairs is of type (n1,n2) with n1 + n2 = S, if
for every pair (x1,x2) in the set the profiles x1 and x2 differ in

n1 attributes with u1 levels and
n2 attributes with u2 levels.

Case Conditions Types of pairs in optimal designs

(a) K1, K2 ≥ S (S, 0) and (0, S)

(b) K2 ≥ S > K1 (K1, S − K1) and (0, S)

(c) K1 ≥ S > K2 and q2S < p (S − K2, K2) and (S, 0)

(d) S > K1, K2 and q2S < p (K1, S − K1) and (S − K2, K2)

(e) S > K2 and q2S ≥ p (S − K2, K2)
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Information matrices of optimal designs

In the PC model (1), under effects-coding the optimal designs in GGS
(2009) have information matrices

M(ξ) =

(
c1(IK1 ⊗Mu1) 0

0 c2(IK2 ⊗Mu2)

)

where Ma = 2
a−1 (Ia−1 + 1a−11>a−1) and (with qi = ui − 1, i = 1,2, and

p = K1q1 + K2q2)

Case c1 c2

(a)-(d) q1S/p q2S/p

(e) 1− (K − S)/K1 1
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3. ALGORITHMIC DESIGNS
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Optimal exact designs

By using Hadamard and weighing matrices, GGS (2009) also
derive optimal designs with practical numbers of pairs.

For each of the cases (a)-(e) several constructions are proposed
such that the corresponding information matrices in the PC model (1)
are equal to

M(ξ) =
1
N

X>X =
1
N

(
α1(IK1 ⊗Mu1) 0

0 α2(IK2 ⊗Mu2)

)

By imposing appropriate conditions on the building blocks of the
designs the constants α1 and α2 become equal to the optimal values
c1 and c2, which shows that the ‘smaller’ designs are also optimal.
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Table 1
Constructions for exact D-optimal designs

ID Design matrix X Number of pairs N

a1 K1N1C(u1, 2) + K2N2C(u2, 2)

a2 K1N1C(u1, 2) + N2#(P2)

a3 ((a2)) K2N2C(u2, 2) + N1#(P1)

a4 N1#(P1) + N2#(P2)

b1 (a1m1/z1 + a2)K2C(u2, 2)

b2 a1m1K2C(u2, 2)/z1 + a2#(P2)

b3 a1N1#(P2,1) + a2K2C(u2, 2)

b4 a1N1#(P2,1) + a2#(P2)

c1 ((b1)) (a2m2/z2 + a1)K1C(u1, 2)

c2 ((b2)) a2m2K1C(u1, 2)/z2 + a1#(P1)

c3 ((b3)) a2N2#(P1,2) + a1K1C(u1, 2)

c4 ((b4)) a2N2#(P1,2) + a1#(P1)

d1 m1n1C(u1, 2) + m2n2C(u2, 2)

d2 m1n1C(u1, 2) + a2N2#(P1,2)

d3 ((d2)) m2n2C(u2, 2) + a1N1#(P2,1)

d4 a1N1#(P2,1) + a2N2#(P1,2)

e1 m2n2C(u2, 2)

e2 a2#(P1,2)

Example. Suppose that K1 = 4, K2 = 2, u1 = 2, u2 = 3 and S = 3. We construct an optimal exact design with N = 32 pairs using
method c1. For the given values of u1 and u2 the matrices X1 and X2 are given by

X1 = (2) and X2 =
⎛
⎝1 −1
2 1
1 2

⎞
⎠ ,

respectively. Possible choices for the weighing matrices in (4) are

W1 =

⎛
⎜⎜⎝
0 −1 −1 −1
1 0 1 −1
1 −1 0 1
1 1 −1 0

⎞
⎟⎟⎠

and W1,2,z2
= I4 where z2 = 1. The first constraint for c1 in Table 3 then simplifies to n2 = 4a2/3. Hence choosing a2 = 3 we get

n2 = 4. With these choices the second constraint for c1 in Table 3 becomes a1 =m2. Settingm2 = a1 = 2 ensures that appropriate
building blocks H2 and H⊥

2 in (4) can be found. Finally, using

H2 =
(
1
1

)
, H⊥

2 =
(

1
−1

)
and L2 =

⎛
⎜⎜⎝

−1 −1
−1 1
1 1
1 −1

⎞
⎟⎟⎠

Please cite this article as: Gro�mann, H., et al., Approximate and exact optimal designs for paired comparisons of partial profiles when
there are two groups of factors. J. Statist. Plann. Inference (2008), doi: 10.1016/j.jspi.2008.07.006
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having the same level in both options in a pair are indicated by asterisks. All designs in Table 2 are available on the Internet at
www.maths.qmul.ac.uk/∼hg/PP2G/.

5. Concluding remarks

In paired comparison experiments with many factors there is a danger that respondents are overwhelmed by the large
amount of information to be processed. Partial profiles represent a viable option for dealing with this potential problem.We have
presented new optimal designs for the practically important case in which there are only two groups of factors with different
numbers of levels.

According to our experience, this and the corresponding casewith three groups of factors covermany applications. The results
presented herein indicate that the structure of optimal designs in terms of support points and weights critically depends on the
setting considered, that is the number of factors and levels and the profile strength. This dependance is even stronger when there
are three groups of factors. It therefore seems that there are possibly no simple general constructions for generating optimal
designs that can be applied in all asymmetric situations and that more restricted settings need to be considered. In this regard,
to consider groups with different numbers of levels appears to be a promising approach.
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Appendix

Conditions for dimensions of building blocks of D-optimal exact designs are shown in Table 3.

Table 3
Conditions for dimensions of building blocks of D-optimal exact designs

ID Conditions

a1 N1 = N2
u2

u1

a2 N1 = N2
u2

u1

H(S)
gcd(K2, S)

a3 N1 = N2
u2

u1

gcd(K1, S)
H(S)

a4 N1 = N2
u2

u1

gcd(K1, S)
gcd(K2, S)

b1 n1 = a1
K2

z1

u2q2

u1q1
, a2 = a1

m1

z1

(
p
q1S

− 1
)

b2 n1 = a1
K2

z1

u2q2

u1q1
, a2 = a1

m1

z1

(
p
q1S

− 1
)

gcd(K2, S)
H(S)

b3 M1 = #(P2,1), a1 = #(F1)

a2 = N1u1

(
p
S

− q1

)
H(K1)H(S − K1)
gcd(K2, S − K1)

(
1 − u2 mod2

2

)

b4 M1 = #(P2,1), a1 = #(F1)

a2 = N1u1

(
p
S

− q1

)
gcd(K2, S)

gcd(K2, S − K1)
H(K1)H(S − K1)

H(S)

(
1 − u2 mod2

2

)

c1 n2 = a2
K1

z2

u1q1

u2q2
, a1 = a2

m2

z2

(
p
q2S

− 1
)

c2 n2 = a2
K1

z2

u1q1

u2q2
, a1 = a2

m2

z2

(
p
q2S

− 1
)

gcd(K1, S)
H(S)

c3 M2 = #(P1,2), a2 = #(F2)

a1 = N2u2

(
p
S

− q2

)
H(K2)H(S − K2)
gcd(K1, S − K2)

(
1 − u1 mod2

2

)

c4 M2 = #(P1,2), a2 = #(F2)

a1 = N2u2

(
p
S

− q2

)
gcd(K1, S)

gcd(K1, S − K2)
H(K2)H(S − K2)

H(S)

(
1 − u1 mod2

2

)

d1 n1 = a1
K2

z1

u2q2

u1q1
, n2 = a2

K1

z2

u1q1

u2q2

m2 = m1
a1

a2

z2
z1

u2q2

u1q1

q1S − p
q2S − p

d2 M2 = #(P1,2), a2 = #(F2), n1 = a1
K2

z1

u2q2

u1q1

m1 = N2u1q1
z1
a1

p − q2S
p − q1S

H(K2)H(S − K2)
gcd(K1, S − K2)

(
1 − u1 mod2

2

)

d3 M1 = #(P2,1), a1 = #(F1), n2 = a2
K1

z2

u1q1

u2q2

Please cite this article as: Gro�mann, H., et al., Approximate and exact optimal designs for paired comparisons of partial profiles when
there are two groups of factors. J. Statist. Plann. Inference (2008), doi: 10.1016/j.jspi.2008.07.006

14/23



Detailed look at case (a): K1, K2 > S

Constructions, conditions and numbers of pairs for optimal designs in
case (a):

ID Design matrix X Conditions Number of pairs N

a1
(

1N1 ⊗W1 ⊗ X1 0
0 1N2 ⊗W2 ⊗ X2

)
N1 = N2

u2
u1

K1N1C(u1, 2)+

K2N2C(u2, 2)

a2
(

1N1 ⊗W1 ⊗ X1 0
0 1N2 ⊗ P2

)
N1 = N2

u2
u1

H(S)
gcd(K2,S) K1N1C(u1, 2) + N2#(P2)

a3 ((a2)) N1 = N2
u2
u1

gcd(K1,S)

H(S) K2N2C(u2, 2) + N1#(P1)

a4
(

1N1 ⊗ P1 0
0 1N2 ⊗ P2

)
N1 = N2

u2
u1

gcd(K1,S)

gcd(K2,S) N1#(P1) + N2#(P2)

Note: Wi is weighing matrix order Ki and weight S,
Pi and Xi are fixed known matrices,
1Ni is all-one column vector of length Ni .

15/23



Sketch of algorithm for D-optimal designs

For illustrative purposes consider only case (a).

1. Check existence of W1 and W2.
2. For each of a1–a4 for which the weighing matrices exist:

2.1 Set N2 = 1.
2.2 Evaluate condition for N1.
2.3 While N1 is not an integer, increase N2 by 1. Repeat 2.2.

3. For each of the applicable constructions a1–a4 generate X.
Choose the design with the smallest number of pairs.

Remarks:
I The resulting design is D-optimal.
I Construction a4 can always be applied.
I Similar but more complicated algorithms exist for the cases

(b)–(e).
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Table 2
Parameters of D-optimal exact designs

K K1 K2 u1 u2 S ID N1 N2 M1 M2 a1 a2 m1 r1 n1 s1 z1 m2 r2 n2 s2 z2 Pairs

4 1 3 2 3 3 b4 1 – 18 – 1 2 – – – – – – – – – – 42
4 2 2 2 3 2 a1 3 2 – – – – – – – – – – – – – – 18
4 2 2 2 3 3 e1 – – – – – 3 – – – – – 2 1 2 2 1 12
4 2 2 2 4 2 a1 2 1 – – – – – – – – – – – – – – 16
4 2 2 2 4 3 e1 – – – – – 3 – – – – – 4 2 1 1 1 24
4 2 2 2 5 2 a1 5 2 – – – – – – – – – – – – – – 50
4 2 2 2 5 3 e1 – – – – – 5 – – – – – 4 2 1 1 1 40
4 2 2 3 4 2 a1 4 3 – – – – – – – – – – – – – – 60
4 2 2 3 5 2 a1 5 3 – – – – – – – – – – – – – – 90
4 3 1 2 3 2 c2 – – – – 1 1 – – – – – 8 1 1 1 1 30
4 3 1 2 3 3 e2 – – – 12 – 3 – – – – – – – – – – 36
4 3 1 2 4 2 e1 – – – – – 2 – – – – – 2 1 1 1 1 12
4 3 1 2 4 3 e2 – – – 12 – 6 – – – – – – – – – – 72
4 3 1 2 5 2 e1 – – – – – 10 – – – – – 2 1 3 1 1 60
4 3 1 3 4 2 c2 – – – – 1 2 – – – – – 2 1 3 1 1 54
5 1 4 2 3 3 b3 1 – 12 – 1 2 – – – – – – – – – – 36
5 2 3 2 3 2 a2 3 1 – – – – – – – – – – – – – – 24
5 2 3 2 3 3 b2 – – – – 1 5 4 2 9 1 1 – – – – – 96
5 2 3 2 4 2 a2 4 1 – – – – – – – – – – – – – – 44
5 2 3 2 5 2 a2 5 1 – – – – – – – – – – – – – – 70
5 3 2 2 3 2 a3 3 4 – – – – – – – – – – – – – – 42
5 3 2 2 3 3 c2 – – – – 1 1 – – – – – 8 2 1 1 1 28
5 3 2 2 4 2 a3 1 1 – – – – – – – – – – – – – – 18
5 3 2 2 4 3 e1 – – – – – 2 – – – – – 4 2 1 1 1 24
5 3 2 3 4 2 a3 2 3 – – – – – – – – – – – – – – 72
5 3 2 3 4 3 c2 – – – – 2 2 – – – – – 4 2 3 1 1 96
5 4 1 2 3 2 c1 – – – – 3 3 – – – – – 2 1 4 1 1 36
5 4 1 2 3 3 e1 – – – – – 3 – – – – – 4 1 2 1 2 24
5 4 1 2 4 2 c1 – – – – 1 3 – – – – – 2 1 2 1 1 28
5 4 1 2 4 3 e1 – – – – – 3 – – – – – 4 1 1 1 2 24
5 4 1 2 5 2 e1 – – – – – 5 – – – – – 2 1 2 1 1 40
5 4 1 2 5 3 e1 – – – – – 5 – – – – – 4 1 1 1 2 40
6 2 4 2 3 2 a1 3 2 – – – – – – – – – – – – – – 30
6 2 4 2 4 2 a1 2 1 – – – – – – – – – – – – – – 28
6 2 4 2 5 2 a1 5 2 – – – – – – – – – – – – – – 90
6 2 4 3 4 2 a1 4 3 – – – – – – – – – – – – – – 96
6 3 3 2 3 2 a4 3 2 – – – – – – – – – – – – – – 54
6 3 3 2 3 3 a4 3 2 – – – – – – – – – – – – – – 36
6 3 3 2 4 2 a4 2 1 – – – – – – – – – – – – – – 48
6 3 3 2 4 3 a4 2 1 – – – – – – – – – – – – – – 32
6 3 3 2 5 3 a4 5 2 – – – – – – – – – – – – – – 100
6 4 2 2 3 2 a1 3 2 – – – – – – – – – – – – – – 24
6 4 2 2 3 3 c1 – – – – 2 3 – – – – – 2 1 4 2 1 32
6 4 2 2 4 2 a1 2 1 – – – – – – – – – – – – – – 20
6 4 2 2 4 3 c1 – – – – 2 3 – – – – – 6 1 2 2 1 80
6 4 2 2 5 2 a1 5 2 – – – – – – – – – – – – – – 60
6 4 2 2 5 3 e1 – – – – – 5 – – – – – 2 1 2 2 1 40
6 4 2 3 4 2 a1 4 3 – – – – – – – – – – – – – – 84
6 5 1 2 4 2 c2 – – – – 2 6 – – – – – 2 1 5 1 1 80
6 5 1 2 5 2 c2 – – – – 1 2 – – – – – 8 1 1 1 1 90

it is tested whether the value (a2) on the left of the equation in Table 3 that involves both a1 and m1 is an integer. If not, m1 is
increased and the test is repeated. If several designs can be constructed in this way (for different z or choices of H1, H

⊥
1 and L1,

respectively), the design with the smallest overall number of pairs is retained. The remaining constructions are treated similarly.
Algorithms formalizing the outlined procedure for determining the free parameters of the designs in Table 1 can be easily

derived and implemented. Table 2 provides the parameters of optimal designs with up to N = 100 pairs for all situations with
4�K�6 factors, u1 = 2, 3, 4, u1 <u2�5 levels and profile strength S <K equal to 2 or 3. In each case, the method of construction
is shown in column seven.

Before the designs described in this section can be applied in practice the coding of the levels in the design matrix X needs to
be reversed. Each row ofX represents one pair (s, t) of options s= (s1, . . . , sK ) and t= (t1, . . . , tK ). For every k=1, . . . ,K and any given
row x of X the levels sk and tk are recovered from the values in columns

∑k−1
j=1 pj + 1, . . . ,

∑k
j=1 pj of that row, where pj = vj − 1

for every j. If the corresponding part xk of x contains only zeros, then the level of factor k is the same in both s and t and can
be chosen arbitrarily. In practice, these common levels are often not shown in the pairs presented for evaluation. If xk contains
the value 1 in its a-th and the value −1 in its b-th column, where 1�a, b < vk, then sk = a and tk = b. If the element in column
a of xk is equal to 2 and if all other elements are equal to 1, then sk = a and tk = vk. Finally, if the a-th element of xk is equal to
−2 and if all other elements are equal to −1, then sk = vk and tk = a. Thus for example the first row of the design matrix X in
(5) corresponds to the pair ((∗, 2, 2, 2, ∗, ∗), (∗, 1, 1, 1, ∗, ∗)) and the last row to the pair ((∗, ∗, ∗, 2, 2, 3), (∗, ∗, ∗, 1, 3, 2)), where factors

Please cite this article as: Gro�mann, H., et al., Approximate and exact optimal designs for paired comparisons of partial profiles when
there are two groups of factors. J. Statist. Plann. Inference (2008), doi: 10.1016/j.jspi.2008.07.006
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Comparison with JMP10 software

I JMP10 implements so-called unrestricted algorithm of Kessels et
al. (2011)

I Allows to include prior information about β, but here β = 0
(‘utility-neutral’ designs)

I Comparison for all designs on previous slide with K = 4 or K = 5
I JMP10 run with

I 30 random starts in each case (because of run time)
I options to ignore prior mean and prior variance
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Comparison with JMP10 software

Efficiency of JMP10 relative to optimal designs
K K1 K2 u1 u2 S ID Pairs D-Efficiency (%)
4 1 3 2 3 3 b4 42 92.60
4 2 2 2 3 2 a1 18 89.44
4 2 2 2 3 3 e1 12 85.17
4 2 2 2 4 2 a1 16 75.45
4 2 2 2 4 3 e1 24 83.32
4 2 2 2 5 2 a1 50 77.15
4 2 2 2 5 3 e1 40 78.93
4 2 2 3 4 2 a1 60 93.76
4 2 2 3 5 2 a1 90 90.26
4 3 1 2 3 2 c2 30 93.36
4 3 1 2 3 3 e2 36 93.51
4 3 1 2 4 2 e1 12 76.56
4 3 1 2 4 3 e2 72 90.42
4 3 1 2 5 2 e1 60 73.38
4 3 1 3 4 2 c2 54 94.27
5 1 4 2 3 3 b3 36 90.94
5 2 3 2 3 2 a2 24 82.69
5 2 3 2 3 3 b2 96 93.00
5 2 3 2 4 2 a2 44 78.97
5 2 3 2 5 2 a2 70 75.53
5 3 2 2 3 2 a3 42 88.89
5 3 2 2 3 3 c2 28 89.49
5 3 2 2 4 2 a3 18 70.21
5 3 2 2 4 3 e1 24 74.28
5 3 2 3 4 2 a3 72 92.62
5 3 2 3 4 3 c2 96 93.71
5 4 1 2 3 2 c1 36 92.27
5 4 1 2 3 3 e1 24 89.81
5 4 1 2 4 2 c1 28 78.28
5 4 1 2 4 3 e1 24 84.21
5 4 1 2 5 2 e1 40 68.89
5 4 1 2 5 3 e1 40 78.97
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Modification for designs with fewer pairs

Consider again case (a).

In order to generate efficient, but not necessarily optimal designs with
fewer pairs, only Steps 2. and 3. of the previous algorithm need to be
modified:

1. Check existence of W1 and W2.
2. For each of a1–a4 for which the weighing matrices exist:

2.1 Set N2 = 1.
2.2 Evaluate condition for N1. Round N1 upwards to the nearest

integer, generate X and calculate its efficiency.
2.3 While efficiency is smaller than target value and total number of

pairs is smaller than allowed maximum, increase N2 by 1. Repeat
2.2.

3. Choose the design with the smallest number of pairs and the
required efficiency (or make a trade-off).
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An example

Design with N = 10 pairs for K1 = 2 attributes with u1 = 2 and K2 = 2
attributes with u2 = 3 levels, profile strength S = 2.

Optimal design using construction a1 requires N = 18 pairs.

a1 with N1 = 2, N2 = 1 and
W1 = W2 = Hadamard order 2:

D-efficiency: 99.06%

Alternative 1 Alternative 2
1 1 * * 2 2 * *
1 2 * * 2 1 * *
1 1 * * 2 2 * *
1 2 * * 2 1 * *
* * 1 1 * * 2 2
* * 1 1 * * 3 3
* * 2 2 * * 3 3
* * 1 2 * * 2 1
* * 1 3 * * 3 1
* * 2 3 * * 3 2

New algorithm by Kessels et al.
with ∼ 200 starts (> 30min):

D-efficiency: 93.06%

Alternative 1 Alternative 2
* * 1 2 * * 3 1
* * 2 1 * * 3 3
* 2 3 * * 1 2 *
1 2 * * 2 1 * *
1 * 2 * 2 * 1 *
* * 1 1 * * 3 2
1 * 1 * 2 * 2 *
* 1 * 3 * 2 * 2
* 2 * 3 * 1 * 2
2 * * 3 1 * * 1
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Concluding remarks

Designs are (locally) optimal for the multinomial logit model under
assumption that parameters are equal to 0.

Tables of optimal designs with up to 100 pairs are available at:
http://www.maths.qmul.ac.uk/~hg/PP2G/

More comprehensive assessment of algorithms needed.

Extension to three groups of factors is possible, but more
complicated (GGS, accepted).
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