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General constrained optimization

min f(x), s.t., ¢(x) <0,

X —

where f and ¢ may be blackboxes.

Except in a few special cases, we don't have statistical tools to
solve this problem.

» ¢(x) is linear, you can use El (Jones, et al. 1998)
» c(x) € {0,1}, you can try IECI (G. & Lee, 2011)

That's a shame because stats methods have lots to offer:
» global solutions/robustess/UQ

» a monopoly on methods for noisy simulator evaluations



In fact, in many real constrained optimization problems are
easier, but we still don't have solutions:
» the objective f may be known and linear

» the hard part is the constraint function

Examples include any problem where resource costs can be
summed, but one cannot know whether the allocation is
sufficient without expensive simulation/experimentation.

» Goal: tackle problems like these while retaining benefits
of statistical optimization.



Motivation: pump-and-treat

A “hypothetical’ groundwater contamination scenario based
on the Lockwood Solvent Groundwater Plume Site located
near Billings, Montana (Tetra Tech Inc., 2003)

» Industrial practices have resulted in the development of
two separate plumes containing chlorinated solvents that
threaten the Yellowstone river.

» Six pump-and-treat wells have been proposed to prevent
further expansion.

» The optimization objective is to contain both plumes
using the minimum amount of pumping.
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An analytic element method (AEM) groundwater model is
used to simulate the amount of contaminant exiting both
boundaries under pumping scenarios (Craig & Matott, 2005).

So the constrained optimization problem is:

6
min E xj, st ca(x) <0,
0<x<2x10° 4

J:

» a linear objective (pumping rates), and

» two expensive (to evaluate) quantified constraints on the
amount of contaminant existing the system.

» a large highly non-convex satisfaction region; very
narrow in the neiighborhood of the optimum



MATLAB and Python optimizers usign an additive penalty
method (APM; Matott, et al, 2011; Hilton and Culver, 2000)
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New best is MADS, from S. Le Digabel, et al.
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A baseline

Here is a strategy that leverages the simplicity of the
underlying objective:

For n = nga, ... (i.e., at each trial), do

> Let y:; = min,-zl,m,,,{zj X,'J' : C1’2(X,') = 0}
> Choose x,.1 ~ Unif([0,2 x 10°]°) s.t. 3 Xpy15 < yi

A good starting point is x = (1 x 10°)®, which is valid.

» No modeling or other calculation required,

» except maybe a rejection sampling routine.



Sampling only from the objective improvement region.
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Finding the constraint boundary

Due to the linearity of the objective, the solution must lie on
the constraint boundary.

At each trial, fit a classification model to data pairs comprised
of (x1,y1),- -, (Xn, ¥n) Where

Yi = ]I(Cl(X,') = 0) X ]I(CQ(X,') = O)
» we use a classification GP (CGP) via plgp package for R

Among candidates improving on the objective, choose x,; via
an active learning heuristic

» we use predictive class-entropy
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CGP /entropy active learning.
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Pros:
» Global.
» Uses important analytic information (about the objective)

» Make a use of rich constraint information (by forecasting)

Cons:
» Does not use constraint quantification information.

» Entropy is a poor active learning heuristic—too myopic,
although choosing from the improvement region helps.
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Augmented Lagrangian

The augmented Lagrangian is a penalty function often used in
optimization contexts due to favorable asymptotic properties.

It offers an amenable framework for balancing a scalar
objective f and vector-valued constraints c:

Ly (x) = £(x) + ATe(x) + p" c(x)?

see, e.g., Kannan & Wild (2012).

Optimizing Li\’“(x) by unconstrained methods leads to good
intermediate solutions.
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When the tuning parameters A, i follow particular updating
rules, e.g.,

N=X+p'c(x), u=pu forp>1

implementing heavier penalization of constraint violations in
the composite objective as the algorithm progresses

» convergence is guaranteed to a local, valid, solution under
very mild conditions.

» A little like simulated annealing but not guarenteeing a
global solution.
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Expected Improvement (El) offers global scope and the ability
to accomodate noise.

In each trial:
> Let y(x) = L,*(x), and fit a surrogate model to

(Xl,yl)7 ey (men)-
» Let y* = min{y1,...,y,} and define

I(x) = max{y* — Y(x),0}, for surrogate Y(x).

» Choose x,;1 to maximize E{/(x)} using candidates x,
possibly only those improving on the objective;

» update )\ and p at convergence and restart with new y.
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El on augmented Lagrangian objective with GP surrogate.
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Pros:
» Uses quantified constraint information.

» Easily extended to non-trivial objective functions.*

Cons:

» Does not leverage that the solution is on the constraint
boundary.

» El behaves strangely: global scope is hurting.

» Composite objective is pathologically non-stationary,
which makes choosing surrogate modeling hard.

» Unnecessarily models a known objective.”
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One thought is to use a non-stationary surrogate model, like

tgp.
» that helps a little, but it only addresses one of the cons.

A better idea may be to separately model each of the
components of Ly"(x): f, ¢, ..., Cm.
» In many cases, surrogate Y7(x) may not be needed for f.
» GPs can be used for each ¢;, producing surrogates Y, (x).
» Then Y(x) = Yr(x) + AT Yo(x) + " Yo(x)? is a surrogate
for Ly*(x).
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Unfortunately, the composite Y'(x) does not easily emit an
analytic El statistic.

» We're working on it.

» Numerical evaluation is harder than you might think.

But it can still be useful, since E{Y(x)} is analytic.

For each trial

» choose Xx,41 to maximize E{Y(x)} using candidates x,
possibly only those improving on the objective, f

» update )\ and p at convergence and restart with new Y%,
and Y
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Separated augmented Lagrangian surrogate model(s).
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Pros:
» Uses quantified constraint information.

» Easily extended to non-trivial objective functions.

Cons:
» Without El, no loger global in scope.

» Does not leverage that the solution is on the constraint
boundary.

» GP surrogate models Y (x) may find the limiting “kink”
at zero difficult to emulate.
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Wrapping up

El and related methods offer very compelling solutions to hard
(global) optimization problems.

But not ones that are often encountered in practice.

» We are lacking good ideas for dealing with constraints.

This talk has shown that the integration of several small ideas
can add up in a big way.

More synergies are need:
» new surrogate modeling ideas

» new improvement heuristics combining quantifiable
constraints and analytic structure
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