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General constrained optimization

min
x

f (x), s.t., c(x) ≤ 0,

where f and c may be blackboxes.

Except in a few special cases, we don’t have statistical tools to

solve this problem.

I c(x) is linear, you can use EI (Jones, et al. 1998)

I c(x) ∈ {0, 1}, you can try IECI (G. & Lee, 2011)

That’s a shame because stats methods have lots to offer:

I global solutions/robustess/UQ

I a monopoly on methods for noisy simulator evaluations
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In fact, in many real constrained optimization problems are

easier, but we still don’t have solutions:

I the objective f may be known and linear

I the hard part is the constraint function

Examples include any problem where resource costs can be

summed, but one cannot know whether the allocation is

sufficient without expensive simulation/experimentation.

I Goal: tackle problems like these while retaining benefits

of statistical optimization.
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Motivation: pump-and-treat

A “hypothetical” groundwater contamination scenario based

on the Lockwood Solvent Groundwater Plume Site located

near Billings, Montana (Tetra Tech Inc., 2003)

I Industrial practices have resulted in the development of

two separate plumes containing chlorinated solvents that

threaten the Yellowstone river.

I Six pump-and-treat wells have been proposed to prevent

further expansion.

I The optimization objective is to contain both plumes

using the minimum amount of pumping.
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between simulated outputs and corresponding observational data
(Massoudieh et al., 2008).

For a given application, researchers have generally used optimi-
zation routines that are embedded within the code of the underlying
geoscience model (e.g., Akin et al., 2010; Lim et al., 2010). However,
various efforts by commercial entities, research labs, academics, and
independent enthusiasts have led to the development of numerous
general-purpose optimization libraries using the MATLAB and
Python programming languages (Dahl and Vandenberghe, 2008;
Hart, 2009; Kelley, 1999; Venkataraman, 2009). These libraries can
potentially eliminate the need to implement embedded optimiza-
tion codes if the associated external optimizers are sufficiently
robust and deliver good performance when applied to problems of
interest.

To assist practitioners with identifying ‘‘best-in-class’’ MATLAB
and Python optimizers for a given simulation-based optimization
problem, a series of numerical experiments were performed
involving two case studies relevant to the geosciences community
and a suite of 12 MATLAB and Python optimizers. The case studies
consider optimization from two distinctly different contexts—a
pump-and-treat case study emphasizes least-cost remedial sys-
tem design, while a subsurface strontium transport application
considers the best-fit calibration of model parameters.

The remainder of the paper is organized as follows: Section 2
describes the selected case-study simulation-based optimization
problems; Section 3 describes the optimizers that were selected
for consideration in this study along with the associated numer-
ical experiments; Section 4 presents the results of the numerical
experiments and compares the performance of the selected
optimizers; and Section 5 provides some concluding remarks.

2. Case-study simulation-based optimization problems

To evaluate the usefulness of MATLAB and Python optimizers
in a geosciences context, selected algorithms were applied to two
case-study simulation-based optimization problems involving
groundwater flow and contaminant transport. The first case study
(i.e., ‘‘the calibration problem’’) considers the calibration of a
subsurface reactive transport model where the primary solute of
interest is strontium. The second case study (i.e., ‘‘the pump-and-
treat problem’’) involves the design of a pump-and-treat contain-
ment system for a site containing contaminated groundwater.
Additional case study details are given below.

2.1. The calibration problem

The calibration benchmark problem is motivated by the use of
a natural zeolite permeable reactive barrier (PRB) to remediate
groundwater contaminated with strontium 90 at the West Valley
Demonstration Project site in western New York State (Rabideau
et al., 2005). To assess the effectiveness of the PRB, a one-
dimensional reactive transport model was developed using the
MOUSER (MOderately USEr-friendly Reactive transport model)
software (Rabideau, 2003). MOUSER is a multipurpose finite-
element reactive transport model which uses an operator split-
ting algorithm in which the nodal reaction equations are solved
sequentially over each time step. In addition to simulating
advective–dispersive transport, MOUSER incorporates competitive
cation-exchange reaction processes, wherein the Gaines–Thomas
convention is used for sorbed phase activity (Gaines and Thomas,
1953). Data from laboratory column experiments served as obser-
vations for a calibration exercise in which the values of four species
selectivity coefficients (CK, CMg, CCa, and CSr) were estimated by
minimizing the weighted sum of squared residuals (WSSR)
between observed data and corresponding MOUSER-generated

outputs. In the WSSR formulation, data uncertainty may be
accommodated via an appropriate assignment of residual weights
(Poeter and Hill, 1999). As shown in Fig. 1, sampling of the column
effluent yielded multiple observations of Na (the reference ion-
exchange species), K, Mg, Ca, and Sr.

2.2. The pump-and-treat problem

The pump-and-treat benchmark problem involves a hypothe-
tical groundwater contamination scenario based on the Lockwood
Solvent Groundwater Plume Site (LSGPS) located near Billings,
Montana (Tetra Tech Inc., 2003). At the site, industrial practices
have resulted in the development of two separate plumes con-
taining chlorinated solvents. As illustrated in Fig. 2, the plumes
(i.e., Plume A in the south and Plume B in the north) are migrating
toward Yellowstone River and six pump-and-treat wells (2 for
Plume A and 4 for Plume B) have been proposed to prevent
further expansion. Therefore, optimization objectives are to
successfully contain both plumes using a minimum amount of
pumping.

Alternative configurations of the proposed pump-and-treat sys-
tem were modeled using the Bluebird (Craig and Matott, 2005)
engine, which uses a high-order implementation (Jankovic and
Barnes, 1999) of the analytic element method (AEM) (Hunt, 2006)
and assumes two-dimensional steady-state flow in a single-layer
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Fig. 1. Measured column effluent for the MOUSER calibration problem (adapted
from Rabideau et al. (2005)).
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Pressure gradients
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An analytic element method (AEM) groundwater model is

used to simulate the amount of contaminant exiting both

boundaries under pumping scenarios (Craig & Matott, 2005).

So the constrained optimization problem is:

min
0≤xj≤2×105

6∑
j=1

xj , s.t. c1,2(x) ≤ 0,

I a linear objective (pumping rates), and

I two expensive (to evaluate) quantified constraints on the
amount of contaminant existing the system.

I a large highly non-convex satisfaction region; very

narrow in the neiighborhood of the optimum
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MATLAB and Python optimizers usign an additive penalty

method (APM; Matott, et al, 2011; Hilton and Culver, 2000)
Figures (continued) 
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New best is MADS, from S. Le Digabel, et al.
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A baseline

Here is a strategy that leverages the simplicity of the

underlying objective:

For n = nstart, . . . (i.e., at each trial), do

I Let y ∗n = mini=1,...,n{
∑

j xij : c1,2(xi) = 0}
I Choose xn+1 ∼ Unif([0, 2× 105]6) s.t.

∑
j xn+1,j < y ∗n

A good starting point is x = (1× 105)6, which is valid.

I No modeling or other calculation required,

I except maybe a rejection sampling routine.
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Sampling only from the objective improvement region.
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Finding the constraint boundary

Due to the linearity of the objective, the solution must lie on

the constraint boundary.

At each trial, fit a classification model to data pairs comprised

of (x1, y1), . . . , (xn, yn) where

yi = I(c1(xi) = 0)× I(c2(xi) = 0).

I we use a classification GP (CGP) via plgp package for R

Among candidates improving on the objective, choose xn+1 via

an active learning heuristic

I we use predictive class-entropy
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CGP/entropy active learning.
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Pros:

I Global.

I Uses important analytic information (about the objective)

I Make a use of rich constraint information (by forecasting)

Cons:

I Does not use constraint quantification information.

I Entropy is a poor active learning heuristic—too myopic,

although choosing from the improvement region helps.
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Augmented Lagrangian

The augmented Lagrangian is a penalty function often used in

optimization contexts due to favorable asymptotic properties.

It offers an amenable framework for balancing a scalar

objective f and vector-valued constraints c :

Lλ,µA (x) = f (x) + λ>c(x) + µ>c(x)2

see, e.g., Kannan & Wild (2012).

Optimizing Lλ,µA (x) by unconstrained methods leads to good

intermediate solutions.
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When the tuning parameters λ, µ follow particular updating

rules, e.g.,

λ′ = λ + µ>c(x∗), µ′ = ρµ, for ρ > 1

implementing heavier penalization of constraint violations in

the composite objective as the algorithm progresses

I convergence is guaranteed to a local, valid, solution under

very mild conditions.

I A little like simulated annealing but not guarenteeing a

global solution.
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Expected Improvement (EI) offers global scope and the ability

to accomodate noise.

In each trial:

I Let y(x) = Lλ,µA (x), and fit a surrogate model to

(x1, y1), . . . , (xn, yn).

I Let y ∗ = min{y1, . . . , yn} and define

I (x) = max{y ∗ − Y (x), 0}, for surrogate Y (x).

I Choose xn+1 to maximize E{I (x)} using candidates x,

possibly only those improving on the objective;

I update λ and µ at convergence and restart with new y .
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EI on augmented Lagrangian objective with GP surrogate.
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Pros:

I Uses quantified constraint information.

I Easily extended to non-trivial objective functions.∗

Cons:

I Does not leverage that the solution is on the constraint

boundary.

I EI behaves strangely: global scope is hurting.

I Composite objective is pathologically non-stationary,

which makes choosing surrogate modeling hard.

I Unnecessarily models a known objective.∗
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One thought is to use a non-stationary surrogate model, like

tgp.

I that helps a little, but it only addresses one of the cons.

A better idea may be to separately model each of the

components of Lλ,µA (x): f , c1, . . . , cm.

I In many cases, surrogate Yf (x) may not be needed for f .

I GPs can be used for each ci , producing surrogates Yci (x).

I Then Y (x) = Yf (x) + λ>Yc(x) + µ>Yc(x)2 is a surrogate

for Lλ,µA (x).
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Unfortunately, the composite Y (x) does not easily emit an

analytic EI statistic.

I We’re working on it.

I Numerical evaluation is harder than you might think.

But it can still be useful, since E{Y (x)} is analytic.

For each trial

I choose xn+1 to maximize E{Y (x)} using candidates x,

possibly only those improving on the objective, f

I update λ and µ at convergence and restart with new Yf ,

and Yci

20



Separated augmented Lagrangian surrogate model(s).
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Pros:

I Uses quantified constraint information.

I Easily extended to non-trivial objective functions.

Cons:

I Without EI, no loger global in scope.

I Does not leverage that the solution is on the constraint

boundary.

I GP surrogate models Yci (x) may find the limiting “kink”

at zero difficult to emulate.
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Wrapping up

EI and related methods offer very compelling solutions to hard

(global) optimization problems.

But not ones that are often encountered in practice.

I We are lacking good ideas for dealing with constraints.

This talk has shown that the integration of several small ideas

can add up in a big way.

More synergies are need:

I new surrogate modeling ideas

I new improvement heuristics combining quantifiable

constraints and analytic structure
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