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Regular FFD vs Nonregular FFD vs QCD

- Regular FFDs Nonregular FFDs QC Designs
Design Good enough for Better than regular Better than regular
Properties most users designs designs
Avoid Analytical

Pitfalls via
Disentanglement

Construction :
Ana!VSI§ Simple Difficult Difficult
Complication

O ipawRb TL i

No (Full Aliased Yes (Full & Partial Yes (Full & Partial
Structure) Aliased Structure) Aliased Structure)
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Quaternary Codes and Gray Map
~ (Phoa and Xu, Annals of Statistics 2009)

What is Quaternary Code (QC) Design?

1. QC takes on values from {0,1,2,3} (mod 4), an analogue to Z, = {0,1} (mod 2).

2. QC design shares the same linear combination procedure as regular FFDs to
construct 4-level designs from the generating matrix over Z,.

3. A Gray map is used to transform 4-level designs to 2-level designs, which is
mostly nonregular.

General Method of Design Construction via Quaternary Code:

Generator Matrix Linear | 4-Level Design | Gray ,| 2-Level Design
G (over Z,) Combination C (over Z,) Map D (over Z,)
Gray Map:
0 > (+1,+1)
1 > (+1,-1)
2 > (-1,-1)
3 > (-1,+1)

N
S

N
N




General Matrix of QC Designs

o — e —————— —— i S —— M M ——————— A A — e A e — e — A A —— e ——————

Generating Matrix G:

General Structure of Generator Matrix: G = [V ;]

L, is an n X n identity matrix with 1 on the diagonal entries.

V'isan X k matrix over Z,.

GiE VA b
1
0

2 1[0
1l 2

Example:

B




Quaternary-code Even Designs

Example:

1
G=|1
2

+1 +1 +1 +1 +1 +1 +1 +1
+1 -1 +41 -1 +1 +1 +1 +1
-1 -1 -1 -1 +41 +1 +1 +1
-1 +1 -1 +1 +1 +1 +1 +1
+1 -1 +1 +1 +1 -1 +1 +1
S B B B R B B
+1
+1 +1 -1 +1 +1 -1 +1 +1
+1
-1 +1 +1 -1 -1 -1 +1 +1
+1 +1 -1 -1 -1 -1 +1 +1
+1 -1 -1 +1 -1 -1 +1 +1
-1 +1 +1 +1 -1 +1 +1 +1
64 x 8 Two-level +1 41 41 -1 -1 +1 +1 +1

Design +1 -1 -1 -1 -1 +1 +1 +1
-1 -1 -1 +41 -1 +1 +1 +1

o O -
v
O
Il
|
-
|
=
+
=
+
-
|
-
|
[y
+
=

© B O
B O O
v
O
Il
NN NDNPEP P PR P OO o o

D W N P O WD PEFkE O wDN P+, O
D O O O O O O O O o o o o

|

-

o

-

[

=

|

-

e

=

|

[y

e

-

TN P O Wk O WNOWDNPE WDNDPE, O




Trigonometric Approach of QC Designs
(Zhang, Phoa, Mukerjee and Xu, Annals of Statlstlcs 2011)

e ———— e —— N S —

e — e et

Quaternary-code Designs via an Trigonometric Approach.

Quaternary-code Method:

G=1|V L)]=1|vy, v L, 1]

Gray Map re-definition: For k=0,1,2,3,

k—>(\/§sin( )\/—cos( + = k))

> (+1,+1)
> (+1,-1)
1 ('11'1)
> (-1,+1)

4 ZZ

D = \/—[sm( + = avl) \/_COS(ﬂ+72Tav1) sin(Z+72Tavk) \/Ecos(z+gavk)

W INE=O

N

sm(n+nal),\/fcos(ﬂ+ﬂa1),---,sin(n+ﬂan) \/_cos(n+7ztan)]

4 2 4 2 4




Column Branching and Deletion

o A e e —— A — —— il i —— e A e v e e A —— e m— e

Generating Matrix G

Quaternary Codes
+ Gray Map

2Even x Even QC Designs

Column Deletion Column Branching

2Even v Odd QC Designs 20dd x Odd QC Designs

Column Branching

20dd x Even QC Designs
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1/4%-Fraction QC Designs: Comparison

R

1/4*h-Fraction

Design

esult of the best 1/4t-Fraction Designs:

(Phoa and Xu, Annals of Statistics 2009)

-

Comparison between QC and Regular Designs

27-2 design
282 design
2°-2 design
210-2 design
211-2 design
2122 design
213-2 design
2142 design
2152 design

216-2 design

No. of | No. of
Factors | Trials
7 32

8
9
10
11
12
13
14
15
16

64
128
256
512

1024
2048
4096
8192
16384

QC Better
QC Better
Equivalent
QC Better
QC Better
Equivalent
QC Better
QC Better
Equivalent
QC Better

Equivalent
Equivalent
Equivalent
Equivalent
Equivalent
Equivalent
Equivalent
Equivalent
Equivalent

Equivalent

O kb

QC Better
QC Better
QC Better
QC Better
QC Better
QC Better
QC Better
QC Better
QC Better
QC Better

Projectivity

o\ 5t
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1/8%-Fraction QC Designs: Comparlson
e (Phoa, Mukerjee and Xu, JSPI 2012) P

- Result of the best 1/8-Fraction Designs: .

1/8th-Fraction Comparison between QC and Regular Designs

No. of | No. of
Factors | Trials Projectivity
8 32

Design
283 design QC Better Equivalent QC Better
2°-3 design 9 64 QC Better Equivalent QC Better
210-3 design 10 128 QC Better Equivalent QC Better
211-3 design 11 256 QC Better Equivalent QC Better
212-3 design 12 512 QC Better Equivalent QC Better
213-3 design 13 1024 QC Better Equivalent QC Better
214-3 design 14 2048 Equivalent Equivalent QC Better
2153 design 15 4096 QC Better Equivalent QC Better
216-3 design 16 8192 QC Better Equivalent QC Better
217-3 design 17 16384  QC Better Equivalent QC Better

O kb

o\ #i st

™ nstituteiofiStatisticallScien

2 1 7% n!Pﬁ[
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A BIG THEORETICAL QUESTION

Glven properties of a QC design D generated from

Determine properties of QC design D’ generated from

Grxni1si) = Vaxs1) In):

nle i Mk vﬂ(’ﬂ'l)' : -’u! -’ma




| Fundamental Theorems of
Quaternary-code Desigr
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Code Arithmetic (CA) Approach

(_Phoa 2012, in re_vieV\_()

— — o —— — — - — - — — — - - - ———— - — - - —————

K-equation Labeling in Code Arithmetic Approach:

k-equation in QC designs is similar to wordlengths in Regular FFDs.
Consider G = (V,I,,) and D is generated from G.

x = (xq,,x,): ncolumnsin V.

x; € {0,1,2,3}.

0 = None of two columns of D are included.

1 = One of two columns of D is included.

x 2 = All two columns of D are included.

3 = One of two columns (opposite to 1) is included.

A

Example: k15:

This is a k-equation for (1/16)"-fraction QCD
D generated from G = (v, v,, I,,).

Among the first four columns of D, this k- :
equation considers the subset including d. d d d
columns #1,3,4 or #2,3,4 plus some columns In "2n  ¥3n 4n
from [,.
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Code Arithmetic (CA) Approach

Arithmetic of k-equations via Code Arithmetic Operator:

kwl@kw2=<z Ci z>€B<z C'sz>= Z L(ci +c'Dfi

1eC(p) 1eC(p) 1eC(p)
where L(x) is the Lee Weight of x: L(0) =0, L(1) =1, L(2) = 2,L(3) = 1.

Example: For Quarter-fraction QC designs,
ki =fi+2f; +f3

ko =2f1 +2f;
Then if we perform k; @ k,: D I
ky @ ky = (fi + 2 + £3) ® f1 +2f5) ! Ly
=L(1+2)fi +L2 +2)f, + L(1 + 2)f; l

=(i+2f+f3) =k d; d; a,
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Code Arithmetic (CA) Approach

Matrix Representation:

Given a QC design D characterized by F, we can always write down

K =CF

where K are the wordlength equations or k-equations
C is the coefficient matrix for k-equation, or k-matrx.
Example: For Quarter-fraction QC designs,
ki =fi+2fL+f3
ko =2f1 +2f3

K =CF
where K=(ky k)", F=(o fi f2 f3)', and

c=(0 2 0 2)

Similarly, for aliasing indexes, we can always write down

A = BF

where A are the aliasing index equations or a-equations ‘ e
B is the coefficient matrix for a-equation, or a-matrxs * 45 =1 T B




K-matrix and A-matrix of
1/16t*-Fraction QCD

K = (kow, k1o, koo, k11, k13, koo, k12, kot , kaa)”

F = { foa, fo1. foz, foa, fio, f11, fi2, fia, foo, fo1, foa, faa, fan, fa, fas, ,'-:ISJT
f 0 1 2 1 0
I T O I |




Some Rules on the Structure of QC Designs
(Phoa 2012, in review)

Rule #1:

Given a general k-equation in a (1/4)Pth-fraction QC design ki = Xiec(p) Cif 7
Then all k-equations with w; = 0 in a (1/4)?P*!th-fraction QC design can be
expressed as

3

k(Wl,O,Wp_l) — z Z Ci)f(i)l,s,i)p_l)

s=07eC(p)
Example:
Given k1=f1+2f2 +f3,
Then:
k1o = Y3 o(fis + 2f2s + f35)

= fiot+ f11 + fiz + fiz + 2f20 + 2f21 + 2f52 + 2f23 + f30 + f31 + f32 T f33-




Some Rules on the Structure of QC Designs
(Phoa 2012, in review)

Rule #2:
Given a general k-equation in a (1/4)P th-fraction QC design
ki = Liecp) Cif (ip-1sip )’ where i,, represents the last entry of 7. Then

1y .
k(ll,gp) = Z z Cff(s,fp_l,(ip+s)mod4)

s=071eC(p)
Example:
Given k1=f1+2f2 +f3,
Then:
ki3 = Z§=0(f(s,(1+s)mod4) + 2f(s,(2+s)mod4) + f(s,(3+s)mod4))

= fo1 + fiz + faz3 + fzo + 2foz2 + 2f13 + 2f20 + 2f31 + foz + f10 + f21 T f32.




Some Rules on the Structure of QC Designs
(Phoa 2012, in review)

Rule #3:

Given a general k-equation in a (1/4)P*!th-fraction QC design k;; =

K (%,5,w,-,)- Then for s, = (s; + 2)mod4,
K@soip-r) = KwOK(G,25,-)
Example:
Given ki3 = fo1 + fiz t+ faz + fzo + 2fo2 + 2f13 + 2f20 + 2f31 + fos + fio T+ f21 T f320
Then:
k14 — k13 S koz

= (for t fiz t fas t fao + 2foz + 2f13 + 2f20 + 2f31 + fo3 + f10 T f21 T f32)
D 2for + 2f11 + 2f21 + 2f31 + 2f03 + 2f13 + 2f23 + 2f33)
_ (3f01 + fi2 + 3f23 + f30 + 2fo2 + 2f11 + 4f13 +)

2f20 +4f31 + 2f33 + 3fo3 + fi0 + 3f21 + f32
= (for t+ fiz + faz + fao + 2fo2 + 2f11 + 2f20 + 2f33 + fos + fio T+ f21 + f32)




Some Rules on the Structure of QC Designs
(Pho? 2012, in review)

Rule #4:
Given a general k-equation in a (1/4)P th-fraction QC design
kv = Zi,ecp) f1, T 2 Xi,ecp) f1,- Then the a-equation of the corresponding

word is ai = X ecep) [,

Example:

Given ki3 = fo1 + fiz + faz3 + fao + 2fo2 + 2f13 + 2f20 + 2f31 + fo3 + fi0 + f21 + fa2
And ki1 = fo1 + fiz + fa3 + f30 + 2fo2 + 2f11 + 2f20 + 2f33 + foz + fi0 + f21 t+ f32,
Their aliasing index equation will be:

a1 = for + fiz + f23 + fz0 + fos + fi0 + f21 T f32:

Given  kig = fiot+ fi1 + fi2 + fiz3 + 2f20 + 2f21 + 2f0 + 2f53 + f30 + f31 + f32 T f33,
Its aliasing index equation will be:
kio = fio + fi1 + fiz + fi3 + f30 + f31 + f32 + f33.
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Theorem of QC Designs Structure
(Phoa 2012, in review)
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THEOREM:

Given a general k-equation in a (1/4)Pth-fraction QC design ky; where all

entries of w are odd, the summation of frequencies f; can be divided into three

groups as follows: ky; = 0 Zzoec(p) fi, +1 Zzlec(p) fi, +2 Zfzec(p) fi,- Then:

(@) All Y7, are odd, all .7, and ). 7, are even;

(b) There are 227~ frequencies with coefficients 1, 2%P~2 frequencies with
coefficients 0 and 22P~2 frequencies with coefficients 2;

(c) Among those 22P~2 frequencies with coefficients 2, there are 2P~1
frequencies that all entries of 7, are either 0 or 2;

(d) Same as (c) for those 22P~2 frequencies with coefficients 0.

Example:

Given ki3 = fo1 + fiz + fa3 + fao + 2f02 + 2f13 + 2f20 + 2f31 + foz + fio + f21 T+ f324

Then (a) 0+1, 1+2, ... (X, 1;) are odd, 040, 1+1, ... (3. 7p) and 0+2, 143, ... (3 T,) are even.

(b) There are 8 frequencies with coefficient 1, 4 frequencies with coefficients 0 & 2.

(c) Among 4 frequencies with coefficient 2, 2 of them are (02, 20).
(d) Among 4 frequencies with coefficient 0, 2 of them a




Necessary and Sufficient Frequencies
(Phoa 2012 m revnew)

THEOREM:

Given a general (1/4)Pth-fraction QC design D. There exists 4P possible
combinations of w for k-equations. It is necessary and sufficient to consider the
following w in order to obtain the properties of D:

(a) all entries are even, except all entries are 0;

(b) the first odd entry must be 1 for w that consists of odd entries.

There are 2P — 1 frequencies in the first group and 22?7~ — 2P~1 frequencies in
the second group.

e — e —————————— i —— —————]

Example:
In (1/4)"-fraction, among {f, f1, f2, f3}, it is necessary and sufficient to consider:

{1, f2}
|n(1/16)th fraction, among {foo, fo1, fo2, fo3: f10: f11, f12: [13: 200 215 f220 f230 f300 31, f32, f33)

it is necessary and sufficient to consider:

{fOll fOZ' f10' f11' f12' f131 f201 f21' f22}
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; Extensuon to 1/64"'-Fract|on QC Desugns
(Phoa 2012, in iew;'l?hoa, Chen and Lin 2012, in review)

O01F1012 101310131013 101 3001 2101301 210131 01 210131012 101310 I.!:I.D:I'Z:I'\1
COCDl 1112333l L1000l L L L2223 0L L0001 111322201 110000113133321111

D000 00000001 111111111101 0L R Rosesa1111111111111111
30 X3 o =]

O01F11 3102101101 20131 13102101 101301 21 1¥109101 10130121 131091011003
O1F1101 220011300131 1013210011001 21 1003310113 100131 1001331011300

R (%pat, koo, Froo. Kooz, ko1, Eoia, Fooo. Eio1 . Rros. ko, koo, Bape. Boe.

O1F1012 1013101311 21013101 21013102101 2101 31013101101 2100310121003

0131012 101310121 101 310131013100 32 101 2101210 12100 1310 131813101310 koot k. Erans kBraas kg Bras. Eveo, Koge, Kago. Koo, Eyao, Eygg, Kiog .
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RO OO W00 e, s
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011310 101313101121010131 2101013210101 31 310101 3110121310001 21310
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01Z112102101101221001 101301 21 131001 21 13109101 10139101 10130121 1310
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Properties of 1/64*"-Fraction QC Designs

(Phoa 2012, in revnew, Phoa, Chen and Lm 2012 m revnew)
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THEOREM:
With reference to the 2(2"*6)=6 QC design D, assume ¥; j-oaa fijx = 0,
k=even
Yik=oad fijx = 0and X x=oaq fijx = 0, the following holds:
j=even i=even

a) There are 8/p;y> Words each with aliasing index p;qo; €ach % of
them have lengths k99 + 1, k150 + 3, k19, + 3 and k,,, + 5.

b) There are 8/py,o> Words each with aliasing index py,,; each % of
them have lengths kg1 + 1, ko190 + 3, k12 + 3 and k,, + 5.

c) There are 8/pyo,% Words each with aliasing index pyo;; €ach % of
them have lengths kyo; + 1, ko971 + 3, kg1 + 3 and k,,; + 5.

d) There are 8/p;,,> words each with aliasing index p;;o; each % of
them have lengths k9 + 2, k139 + 2, k11, + 4 and k,3, + 4.




Properties of 1/64"-Fraction QC Designs

(Phoa 2012, in review; Phoa, Chen and Lin 2012, in review)

e e - — e —— o e e Al

L L ——

THEOREM: (continued)

e) There are 8/p;91> Words each with aliasing index p;,; each % of
them have lengths k,9; + 2, k193 + 2, k1,1 + 4 and k,,3 + 4.

f) There are 8/py,,% words each with aliasing index py;; each % of
them have lengths ky,1 + 2, kg3 + 2, ky11 + 4 and k, 3 + 4.

g) There are 8/p;,1% words each with aliasing index p;;,; each % of
them have lengths k,,; + 3, k{13 + 3, k131 + 3 and k35 + 3.

h) There are 7 words each with aliasing index 1; they have lengths
kooo + 2, koao + 2, kgoo + 2, kypo + 4, kygy +4, kg, +4 and
k.-, + 6, respectively.

All p; ;. are defined as 2~ |(aix+6)/2] \where § = 1 for P110+ P1o1 and

Po11, and 6 = 0 otherwise.




Optimization of 1/64*"-Fraction QC Designs

(Phoa 2012, in review; Phoa, Chen and Lin 2012, in review)

THEOREM:

Given 2(2n+6)-6 QC design D, defined by a frequency vector F,.
Assume D, satisfies the conditions in Theorem 3 and it has generalized

resolution Ry =19+ 1 —p,. Then for t >0, a 2(3n+126t+6)-6 (5C
design D,, defined by F, = Fy + (0,1¢3)t, has generalized resolution
R, =1 +1—p;, Where r, =15+ 64t and p, = po(271%) if p, < 1
and p; = 11f p, = 1.

Example:

Consider a 256 X 14 QC design Dy, constructed by F, = (622, 1,62, 1,65, 1,67, 1,624), that
has generalized resolution 6.5. Then Theorem 4 suggests that for t = 1, a 214976 QC design
D, defined by F; = (0, 1,1,2,1,, Z,TS, 2,1, 2,T24) hasr; =6+ 64(1) = 70and p; =
(1/2)(2716W) = 2717 j.e. generalized resolution 70.9999924.
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Summary

The basic formulation of Quaternary-code Designs (QCD) is introduced.

Some existing results of QCD with better properties than regular FFDs are
compared.

The Code Arithmetic (CA) approach provides a systematic notation for k-
matrix and a-matrix of QCD.

Four rules and two theorems are stated for the general structure of QCD.

These fundamental theorems are applied to design properties and
optimization of (1/64)!"-fraction QCD.
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