

Frederick K.H. Phoa Institute of Statistical Science, Academia Sinica Taipei 115, Taiwan R.O.C.

Email: fredphoa@stat.sinica.edu.tw

Design and Analysis of Experiments (DAE) Conference 2012 Athens, Georgia, USA 2012/10/18

Content

- Introduction to Quaternary-code (QC) Designs
 1.1 Motivation
 - **1.2 Design Construction via Quaternary Codes**
 - **1.3 Some Existing Results of Optimal QC Designs**
- 2. Fundamental Theorems of QC designs
 - 2.1 The Code Arithmetic (CA) Approach
 - **2.2 Some Rules for the Structure of QC Designs**
 - 2.3 Theorems of QC Designs and Examples
 - **2.4** Applications to $(1/64)^{th}$ -fraction QC Designs
- 3. Summary

Regular FFD vs Nonregular FFD vs QCD

	Regular FFDs	Nonregular FFDs	QC Designs
Design Properties	Good enough for most users	Better than regular designs	Better than regular designs
Avoid Analytical Pitfalls via Disentanglement	No (Full Aliased Structure)	Yes (Full & Partial Aliased Structure)	Yes (Full & Partial Aliased Structure)
Construction Method	Simple	Unknown	Simple
Analysis Complication	Simple	Difficult	Difficult

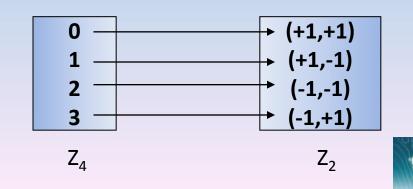
Quaternary Codes and Gray Map (Phoa and Xu, Annals of Statistics 2009)

What is Quaternary Code (QC) Design?

- 1. QC takes on values from $\{0,1,2,3\} \pmod{4}$, an analogue to $Z_2 = \{0,1\} \pmod{2}$.
- 2. QC design shares the same linear combination procedure as regular FFDs to construct 4-level designs from the generating matrix over Z_4 .
- 3. A Gray map is used to transform 4-level designs to 2-level designs, which is mostly nonregular.

General Method of Design Construction via Quaternary Code:

Gray Map:



General Matrix of QC Designs

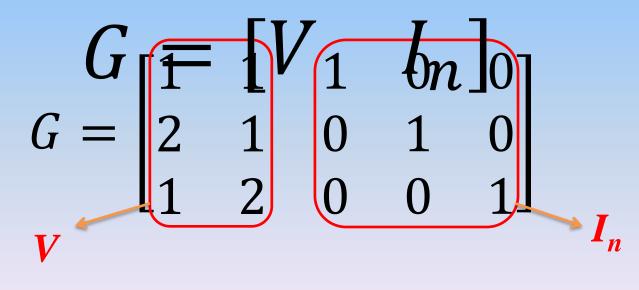
Generating Matrix G:

General Structure of Generator Matrix: $G = \begin{bmatrix} V & I_n \end{bmatrix}$

 I_n is an $n \times n$ identity matrix with 1 on the diagonal entries.

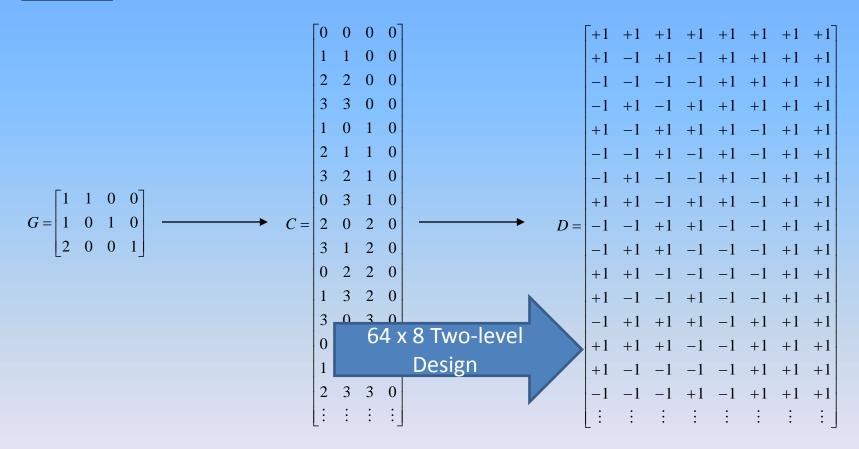
V is a $n \times k$ matrix over Z_4 .

Example:



Quaternary-code Even Designs

Example:



Trigonometric Approach of QC Designs (Zhang, Phoa, Mukerjee and Xu, Annals of Statistics 2011)

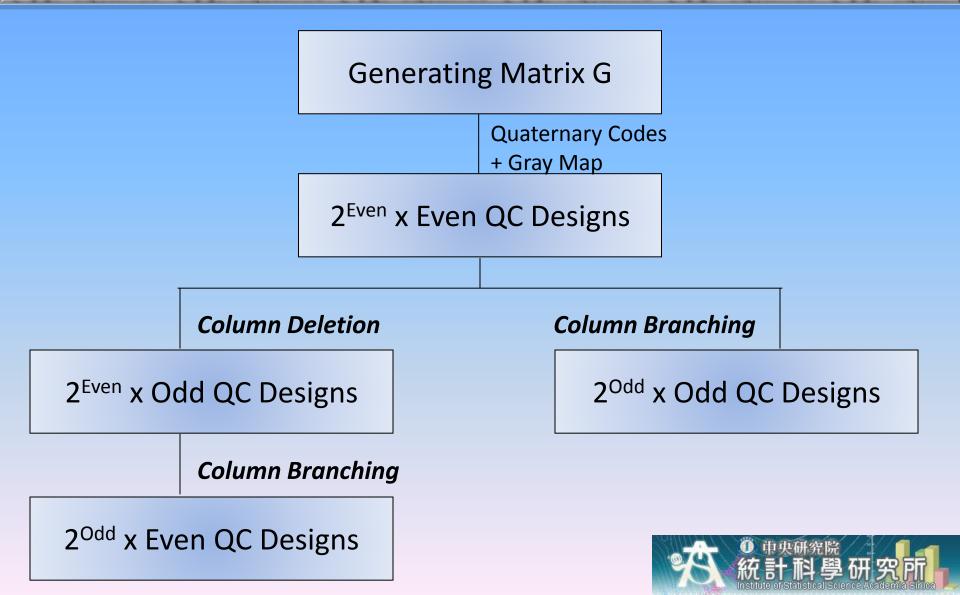
Quaternary-code Designs via an Trigonometric Approach:

Quaternary-code Method:

 $D = \sqrt{2}$

S

Column Branching and Deletion



1/4th-Fraction QC Designs: Comparison (Phoa and Xu, Annals of Statistics 2009)

Result of the best 1/4 th -Fraction Designs:						
1/4 th -Fraction	No. of	No. of	Comparison between QC and Regular Designs			
Design	Factors	Trials	Resolution	Aberration	Projectivity	
2 ⁷⁻² design	7	32	QC Better	Equivalent	QC Better	
2 ⁸⁻² design	8	64	QC Better	Equivalent	QC Better	
2 ⁹⁻² design	9	128	Equivalent	Equivalent	QC Better	
2 ¹⁰⁻² design	10	256	QC Better	Equivalent	QC Better	
2 ¹¹⁻² design	11	512	QC Better	Equivalent	QC Better	
2 ¹²⁻² design	12	1024	Equivalent	Equivalent	QC Better	
2 ¹³⁻² design	13	2048	QC Better	Equivalent	QC Better	
2 ¹⁴⁻² design	14	4096	QC Better	Equivalent	QC Better	
2 ¹⁵⁻² design	15	8192	Equivalent	Equivalent	QC Better	
2 ¹⁶⁻² design	16	16384	QC Better	Equivalent	QC Better	

1/8th-Fraction QC Designs: Comparison (Phoa, Mukerjee and Xu, JSPI 2012)

Result of the best 1/8 th -Fraction Designs:						
1/8 th -Fraction	No. of	No. of Trials	Comparison between QC and Regular Designs			
Design	Factors		Resolution	Aberration	Projectivity	
2 ⁸⁻³ design	8	32	QC Better	Equivalent	QC Better	
2 ⁹⁻³ design	9	64	QC Better	Equivalent	QC Better	
2 ¹⁰⁻³ design	10	128	QC Better	Equivalent	QC Better	
2 ¹¹⁻³ design	11	256	QC Better	Equivalent	QC Better	
2 ¹²⁻³ design	12	512	QC Better	Equivalent	QC Better	
2 ¹³⁻³ design	13	1024	QC Better	Equivalent	QC Better	
2 ¹⁴⁻³ design	14	2048	Equivalent	Equivalent	QC Better	
2 ¹⁵⁻³ design	15	4096	QC Better	Equivalent	QC Better	
2 ¹⁶⁻³ design	16	8192	QC Better	Equivalent	QC Better	
2 ¹⁷⁻³ design	17	16384	QC Better	Equivalent	QC Better	

A BIG THEORETICAL QUESTION

Given properties of a QC design *D* generated from

$$G_{n \times (n+k)} = (V_{n \times k}, I_n):$$

$$\begin{pmatrix} v_{11} & \cdots & v_{1k} & \vdots & I_{11} & \cdots & I_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{n1} & \cdots & v_{nk} & \vdots & I_{n1} & \cdots & I_{nn} \end{pmatrix}$$
Determine properties of QC design *D'* generated from

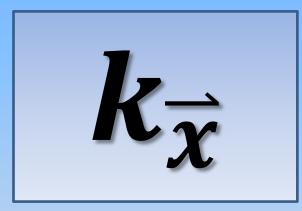
$$G_{n \times (n+1+k)} = (V_{n \times (k+1)}, I_n):$$

$$\begin{pmatrix} v_{11} & \cdots & v_{1k} & v_{1(k+1)} & \vdots & I_{11} & \cdots & I_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{n1} & \cdots & v_{nk} & v_{n(k+1)} & \vdots & I_{n1} & \cdots & I_{nn} \end{pmatrix}$$

Code Arithmetic (CA) Approach (Phoa 2012, in review)

K-equation Labeling in Code Arithmetic Approach:

k-equation in QC designs is similar to wordlengths in Regular FFDs. Consider $G = (V, I_n)$ and D is generated from G.



 $\vec{x} = (x_1, \dots, x_n): n \text{ columns in } V.$ $x_i \in \{0, 1, 2, 3\}.$

0 = None of two columns of D are included.

- 1 =One of two columns of D is included.
- 2 = All two columns of D are included.

3 = One of two columns (opposite to 1) is included.

Example: k_{12} :

This is a k-equation for $(1/16)^{th}$ -fraction QCD D generated from $G = (v_1, v_2, I_n)$. Among the first four columns of D, this k-equation considers the subset including columns #1,3,4 or #2,3,4 plus some columns from I_n .

/ v	' 1	ν	2	I_n	\sim
1	2	3	4	5)
d_{11}	d_{21}	d_{31}	d_{41}	a_{51}	
÷	:	:	:	:	
$\setminus d_{1n}$	d_{2n}	d_{3n}	d_{4n}	a_{5n}	/

Code Arithmetic (CA) Approach

Arithmetic of k-equations via Code Arithmetic Operator:

$$k_{\vec{w}_1} \bigoplus k_{\vec{w}_2} = \left(\sum_{\vec{i} \in C(p)} c_{\vec{i}} f_{\vec{i}}\right) \bigoplus \left(\sum_{\vec{i} \in C(p)} c'_{\vec{i}} f_{\vec{i}}\right) = \sum_{\vec{i} \in C(p)} L(c_{\vec{i}} + c'_{\vec{i}}) f_{\vec{i}}$$

where L(x) is the Lee Weight of x: L(0) = 0, L(1) = 1, L(2) = 2, L(3) = 1.

Example: For Quarter-fraction QC designs,

$$k_1 = f_1 + 2f_2 + f_3$$

$$k_2 = 2f_1 + 2f_3$$

Then if we perform $k_1 \oplus k_2$: $k_1 \oplus k_2 = (f_1 + 2f_2 + f_3) \oplus (2f_1 + 2f_3)$ $= L(1+2)f_1 + L(2+2)f_2 + L(1+2)f_3$ $= (f_1 + 2f_2 + f_3) = k_3$ $\begin{pmatrix} v & l_n \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ d_1 & d_2 & a_3 & \cdots & a_{2n+2} \end{pmatrix}$

Code Arithmetic (CA) Approach

Matrix Representation:

Given a QC design *D* characterized by *F*, we can always write down

K = CF

where *K* are the wordlength equations or k-equations*C* is the coefficient matrix for k-equation, or k-matrx.Example: For Quarter-fraction QC designs,

Similarly, for aliasing indexes, we can always write down

A = BF

where *A* are the aliasing index equations or a-equations *B* is the coefficient matrix for a-equation, or a-matrx

K-matrix and A-matrix of 1/16th-Fraction QCD

 $K = (k_{01}, k_{10}, k_{02}, k_{11}, k_{13}, k_{20}, k_{12}, k_{21}, k_{22})^T$ $F = (f_{00}, f_{01}, f_{02}, f_{03}, f_{10}, f_{11}, f_{12}, f_{13}, f_{20}, f_{21}, f_{22}, f_{23}, f_{30}, f_{31}, f_{32}, f_{33})^T$ C = $A = (a_{01}, a_{10}, a_{11})$

How to obtain these matrices from the properties of **1/4thfraction** QC designs via Code Arithmetic approach?

<u>Rule #1:</u>

Given a general k-equation in a $(1/4)^p$ th-fraction QC design $k_{\vec{w}} = \sum_{\vec{i} \in C(p)} c_{\vec{i}} f_{\vec{i}}$. Then all k-equations with $w_l = 0$ in a $(1/4)^{p+1}$ th-fraction QC design can be expressed as

$$k_{(\vec{w}_l,0,\vec{w}_{p-l})} = \sum_{s=0}^{3} \sum_{\vec{i} \in C(p)} c_{\vec{i}} f_{(\vec{i}_l,s,\vec{i}_{p-l})}$$

Example:

Given $k_1 = f_1 + 2f_2 + f_3$, Then:

$$k_{10} = \sum_{s=0}^{3} (f_{1s} + 2f_{2s} + f_{3s})$$

= $f_{10} + f_{11} + f_{12} + f_{13} + 2f_{20} + 2f_{21} + 2f_{22} + 2f_{23} + f_{30} + f_{31} + f_{32} + f_{33}.$

<u>Rule #2:</u>

Given a general k-equation in a $(1/4)^p$ th-fraction QC design $k_{\vec{1}_p} = \sum_{\vec{i} \in C(p)} c_{\vec{i}} f_{(\vec{i}_{p-1}, i_p)}$, where i_p represents the last entry of \vec{i} . Then $k_{(1_l, \vec{3}_p)} = \sum_{s=0}^3 \sum_{\vec{i} \in C(p)} c_{\vec{i}} f_{(s, \vec{i}_{p-1}, (i_p+s)mod4)}$

Example:

Given $k_1 = f_1 + 2f_2 + f_3$,

Then:

$$\begin{aligned} k_{13} &= \sum_{s=0}^3 \Bigl(f_{(s,(1+s)mod4)} + 2 f_{(s,(2+s)mod4)} + f_{(s,(3+s)mod4)} \Bigr) \\ &= f_{01} + f_{12} + f_{23} + f_{30} + 2 f_{02} + 2 f_{13} + 2 f_{20} + 2 f_{31} + f_{03} + f_{10} + f_{21} + f_{32}. \end{aligned}$$

Rule #3:

Given a general k-equation in a $(1/4)^{p+1}$ th-fraction QC design $k_{\vec{w}} = k_{(\vec{w}_l, s_1, \vec{w}_{p-l})}$. Then for $s_2 = (s_1 + 2) \mod 4$, $k_{(\vec{w}_l, s_2, \vec{w}_{p-l})} = k_{\vec{w}} \bigoplus k_{(\vec{0}_l, 2, \vec{0}_{p-l})}$

Example:

Given $k_{13} = f_{01} + f_{12} + f_{23} + f_{30} + 2f_{02} + 2f_{13} + 2f_{20} + 2f_{31} + f_{03} + f_{10} + f_{21} + f_{32}$, Then:

$$\begin{aligned} k_{11} &= k_{13} \oplus k_{02} \\ &= (f_{01} + f_{12} + f_{23} + f_{30} + 2f_{02} + 2f_{13} + 2f_{20} + 2f_{31} + f_{03} + f_{10} + f_{21} + f_{32}) \\ &\oplus (2f_{01} + 2f_{11} + 2f_{21} + 2f_{31} + 2f_{03} + 2f_{13} + 2f_{23} + 2f_{33}) \\ &= \begin{pmatrix} 3f_{01} + f_{12} + 3f_{23} + f_{30} + 2f_{02} + 2f_{11} + 4f_{13} + \\ 2f_{20} + 4f_{31} + 2f_{33} + 3f_{03} + f_{10} + 3f_{21} + f_{32} \end{pmatrix} \\ &= (f_{01} + f_{12} + f_{23} + f_{30} + 2f_{02} + 2f_{11} + 2f_{20} + 2f_{33} + f_{03} + f_{10} + f_{21} + f_{32}) \end{aligned}$$

<u>Rule #4:</u>

Given a general k-equation in a $(1/4)^p$ th-fraction QC design $k_{\vec{w}} = \sum_{\vec{l}_1 \in C(p)} f_{\vec{l}_1} + 2 \sum_{\vec{l}_2 \in C(p)} f_{\vec{l}_2}$. Then the a-equation of the corresponding word is $a_{\vec{w}} = \sum_{\vec{l}_1 \in C(p)} f_{\vec{l}_1}$.

Example:

Given $k_{13} = f_{01} + f_{12} + f_{23} + f_{30} + 2f_{02} + 2f_{13} + 2f_{20} + 2f_{31} + f_{03} + f_{10} + f_{21} + f_{32}$, And $k_{11} = f_{01} + f_{12} + f_{23} + f_{30} + 2f_{02} + 2f_{11} + 2f_{20} + 2f_{33} + f_{03} + f_{10} + f_{21} + f_{32}$, Their aliasing index equation will be:

 $a_{11} = f_{01} + f_{12} + f_{23} + f_{30} + f_{03} + f_{10} + f_{21} + f_{32}.$

Given $k_{10} = f_{10} + f_{11} + f_{12} + f_{13} + 2f_{20} + 2f_{21} + 2f_{22} + 2f_{23} + f_{30} + f_{31} + f_{32} + f_{33}$, Its aliasing index equation will be:

 $k_{10} = f_{10} + f_{11} + f_{12} + f_{13} + f_{30} + f_{31} + f_{32} + f_{33}.$

Theorem of QC Designs Structure (Phoa 2012, in review)

THEOREM:

Given a general k-equation in a $(1/4)^p$ th-fraction QC design $k_{\vec{w}}$ where all entries of \vec{w} are odd, the summation of frequencies f_i can be divided into three groups as follows: $k_{\vec{w}} = 0 \sum_{\vec{i}_0 \in C(p)} f_{\vec{i}_0} + 1 \sum_{\vec{i}_1 \in C(p)} f_{\vec{i}_1} + 2 \sum_{\vec{i}_2 \in C(p)} f_{\vec{i}_2}$. Then: (a) All $\sum \vec{i}_1$ are odd, all $\sum \vec{i}_0$ and $\sum \vec{i}_2$ are even;

- (b) There are 2^{2p-1} frequencies with coefficients 1, 2^{2p-2} frequencies with coefficients 0 and 2^{2p-2} frequencies with coefficients 2;
- (c) Among those 2^{2p-2} frequencies with coefficients 2, there are 2^{p-1} frequencies that all entries of $\vec{\iota}_2$ are either 0 or 2;

(d) Same as (c) for those 2^{2p-2} frequencies with coefficients 0.

Example:

Given

Then

 $k_{13} = f_{01} + f_{12} + f_{23} + f_{30} + 2f_{02} + 2f_{13} + 2f_{20} + 2f_{31} + f_{03} + f_{10} + f_{21} + f_{32},$ (a) 0+1, 1+2, ... ($\sum \vec{i}_1$) are odd, 0+0, 1+1, ... ($\sum \vec{i}_0$) and 0+2, 1+3, ... ($\sum \vec{i}_2$) are even.

- (b) There are 8 frequencies with coefficient 1, 4 frequencies with coefficients 0 & 2.
- (c) Among 4 frequencies with coefficient 2, 2 of them are (02, 20).
- (d) Among 4 frequencies with coefficient 0, 2 of them are (00, 22)

Necessary and Sufficient Frequencies (Phoa 2012, in review)

THEOREM:

Given a general $(1/4)^p$ th-fraction QC design D. There exists 4^p possible combinations of \vec{w} for k-equations. It is necessary and sufficient to consider the following \vec{w} in order to obtain the properties of D:

(a) all entries are even, except all entries are 0;

(b) the first odd entry must be 1 for \vec{w} that consists of odd entries.

There are $2^p - 1$ frequencies in the first group and $2^{2p-1} - 2^{p-1}$ frequencies in the second group.

Example:

In $(1/4)^{th}$ -fraction, among $\{f_0, f_1, f_2, f_3\}$, it is necessary and sufficient to consider:

 $\{f_1, f_2\}$ In(1/16)th-fraction, among $\{f_{00}, f_{01}, f_{02}, f_{03}, f_{10}, f_{11}, f_{12}, f_{13}, f_{20}, f_{21}, f_{22}, f_{23}, f_{30}, f_{31}, f_{32}, f_{33}\}$, it is necessary and sufficient to consider:

 $\{f_{01}, f_{02}, f_{10}, f_{11}, f_{12}, f_{13}, f_{20}, f_{21}, f_{22}\}$

Extension to 1/64th-Fraction QC Designs (Phoa 2012, in review; Phoa, Chen and Lin 2012, in review)

C =

 $A = (a_{001}, a_{010}, a_{100}, a_{011}, a_{101}, a_{110}, a_{111})$

- $$\begin{split} K = & (k_{001}, k_{010}, k_{100}, k_{002}, k_{011}, k_{013}, k_{020}, k_{101}, k_{103}, k_{110}, k_{130}, k_{200}, k_{012}, \\ & k_{021}, k_{102}, k_{111}, k_{113}, k_{131}, k_{133}, k_{120}, k_{201}, k_{210}, k_{022}, k_{112}, k_{132}, k_{121}, \\ & k_{123}, k_{202}, k_{211}, k_{213}, k_{220}, k_{122}, k_{212}, k_{221}, k_{222})^T \end{split}$$
- $$\begin{split} F = & (f_{000}, f_{001}, f_{002}, f_{003}, f_{010}, f_{011}, f_{012}, f_{013}, f_{020}, f_{021}, f_{022}, f_{023}, f_{030}, \\ & f_{031}, f_{032}, f_{033}, f_{100}, f_{101}, f_{102}, f_{103}, f_{110}, f_{111}, f_{112}, f_{113}, f_{120}, f_{121}, \\ & f_{122}, f_{123}, f_{130}, f_{131}, f_{132}, f_{133}, f_{200}, f_{201}, f_{202}, f_{203}, f_{210}, f_{211}, f_{212}, \\ & f_{213}, f_{220}, f_{221}, f_{222}, f_{223}, f_{230}, f_{231}, f_{232}, f_{233}, f_{300}, f_{301}, f_{302}, f_{303}, \\ & f_{310}, f_{311}, f_{312}, f_{313}, f_{320}, f_{321}, f_{322}, f_{323}, f_{330}, f_{331}, f_{332}, f_{333})^T \end{split}$$

Properties of 1/64th-Fraction QC Designs (Phoa 2012, in review; Phoa, Chen and Lin 2012, in review)

THEOREM:

With reference to the $2^{(2n+6)-6}$ QC design *D*, assume $\sum_{i,j=odd} f_{ijk} \ge 0$, k=even

- $\sum_{\substack{i,k=odd \\ j=even}} f_{ijk} \ge 0 \text{ and } \sum_{\substack{j,k=odd \\ i=even}} f_{ijk} \ge 0, \text{ the following holds:}$
- a) There are $8/\rho_{100}^2$ words each with aliasing index ρ_{100} ; each $\frac{1}{4}$ of them have lengths $k_{100} + 1$, $k_{120} + 3$, $k_{102} + 3$ and $k_{122} + 5$.
- b) There are $8/\rho_{010}^2$ words each with aliasing index ρ_{010} ; each ¼ of them have lengths $k_{010} + 1$, $k_{210} + 3$, $k_{012} + 3$ and $k_{212} + 5$.
- c) There are $8/\rho_{001}^2$ words each with aliasing index ρ_{001} ; each $\frac{1}{4}$ of them have lengths $k_{001} + 1$, $k_{201} + 3$, $k_{021} + 3$ and $k_{221} + 5$.
- d) There are $8/\rho_{110}^2$ words each with aliasing index ρ_{110} ; each ¹/₄ of them have lengths $k_{110} + 2$, $k_{130} + 2$, $k_{112} + 4$ and $k_{132} + 4$.

Properties of 1/64th-Fraction QC Designs (Phoa 2012, in review; Phoa, Chen and Lin 2012, in review)

THEOREM: (continued)

e) There are $8/\rho_{101}^2$ words each with aliasing index ρ_{101} ; each $\frac{1}{4}$ of them have lengths $k_{101} + 2$, $k_{103} + 2$, $k_{121} + 4$ and $k_{123} + 4$. f) There are $8/\rho_{011}^2$ words each with aliasing index ρ_{011} ; each $\frac{1}{4}$ of them have lengths $k_{011} + 2$, $k_{013} + 2$, $k_{211} + 4$ and $k_{213} + 4$. There are $8/\rho_{111}^2$ words each with aliasing index ρ_{111} ; each $\frac{1}{4}$ of **g**) them have lengths $k_{111} + 3$, $k_{113} + 3$, $k_{131} + 3$ and $k_{133} + 3$. h) There are 7 words each with aliasing index 1; they have lengths $k_{200} + 2$, $k_{020} + 2$, $k_{002} + 2$, $k_{220} + 4$, $k_{202} + 4$, $k_{022} + 4$ and k_{222} + 6, respectively. All ρ_{ijk} are defined as $2^{-\lfloor (a_{ijk}+\delta)/2 \rfloor}$, where $\delta = 1$ for ρ_{110} , ρ_{101} and

 ρ_{011} , and $\delta = 0$ otherwise.

Optimization of 1/64th-Fraction QC Designs (Phoa 2012, in review; Phoa, Chen and Lin 2012, in review)

THEOREM:

Given $2^{(2n+6)-6}$ QC design D_0 defined by a frequency vector F_0 . Assume D_0 satisfies the conditions in Theorem 3 and it has generalized resolution $R_0 = r_0 + 1 - \rho_0$. Then for $t \ge 0$, a $2^{(2n+126t+6)-6}$ QC design D_t , defined by $F_t = F_0 + (0, \vec{1}_{63})t$, has generalized resolution $R_t = r_t + 1 - \rho_t$, where $r_t = r_0 + 64t$ and $\rho_t = \rho_0(2^{-16t})$ if $\rho_0 < 1$ and $\rho_t = 1$ if $\rho_0 = 1$.

Example:

Consider a 256 × 14 QC design D_0 , constructed by $F_0 = (\vec{0}_{22}, 1, \vec{0}_2, 1, \vec{0}_5, 1, \vec{0}_7, 1, \vec{0}_{24})$, that has generalized resolution 6.5. Then Theorem 4 suggests that for t = 1, a 2^{140-6} QC design D_1 defined by $F_1 = (0, \vec{1}_{21}, 2, \vec{1}_2, 2, \vec{1}_5, 2, \vec{1}_7, 2, \vec{1}_{24})$ has $r_1 = 6 + 64(1) = 70$ and $\rho_1 = (1/2)(2^{-16(1)}) = 2^{-17}$, i.e. generalized resolution 70.999924.

Summary

- 1. The basic formulation of **Quaternary-code Designs (QCD)** is introduced.
- 2. Some existing results of QCD with **better properties** than regular FFDs are compared.
- 3. The **Code Arithmetic (CA) approach** provides a systematic notation for kmatrix and a-matrix of QCD.
- 4. Four rules and two theorems are stated for the **general structure** of QCD.
- 5. These fundamental theorems are applied to design properties and optimization of $(1/64)^{th}$ -fraction QCD.

My Selected References related to this Talk

- Phoa, F.K.H. and Xu, H. (2009) <u>Quarter-fraction factorial design constructed</u> via Quaternary codes. *Annals of Statistics*, **37**, 2561-2581.
- Zhang, R., Phoa, F.K.H., Mukerjee, R., and Xu, H. (2011) <u>A trigonometric approach to Quaternary code designs with application to one-eighth and one-sixteenth fractions</u>. *Annals of Statistics*, **39**, 931-955.
- **3. Phoa, F.K.H.**, Mukerjee, R., and Xu, H. (2012) <u>One-eighth- and one-</u> sixteenth-fraction Quaternary code designs with high resolution. *Journal of Statistical Planning and Inference*, **142**, 1073-1080.
- **4. Phoa, F.K.H.** (2012) <u>Code Arithmetic approach for Quaternary-code designs</u> and its application to one-sixty-fourth fractions. *In review*.
- 5. Phoa, F.K.H., Chen, H.W. and Lin, S.C. (2012) <u>A class of one-thirty-second-and one-sixty-fourth-fraction Quaternary code designs with high resolution</u>. *In review*.

Thank You Very Much For Your Attention!

Welcome Comments and Suggestions:

Frederick K.H. Phoa Assistant Research Fellow Institute of Statistical Science, Academia Sinica, Taiwan R.O.C. Email: <u>fredphoa@stat.sinica.edu.tw</u> Webpage: <u>http://www.stat.sinica.edu.tw/fredphoa/index.html</u>

