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Goal

To develop a sequential design method for computer experiments
that is efficient at fitting the entire response surface. We desire this
method to be especially effective for non-stationary responses.

Gaussian Processes

In computer experiments [4], we model a single output, y(·), evaluated
at a set of inputs xxx ∈ XXX ⊂ RmX. Assume that the output y(·) is a
deterministic realization of a stochastic process, Y (xxx).

Model: Y (xxx) =
p∑
j=1

βjfj(xxx) + Z(xxx) = fffT (xxx)βββ +Z(xxx), (1)

where fff (xxx) = (f1(xxx)), f2(xxx)), . . . , fp(xxx))T is a p × 1 vector of known
regression functions and βββ = (β1, β2, . . . , βp)T is a p × 1 vector of
regression coefficients. Z(xxx) is a Gaussian Random Function, with
mean 0, variance σ2

Z, and correlation function R(xxx1,xxx2). The process
Z(·) is completely determined by its covariance function

Cov[Z(xxx1), Z(xxx2)] = σ2
ZR(xxx1,xxx2). (2)

Bayesian Treed Gaussian Processes (BTGPs)

Classification and regression tree model (CART) [1]: Partition the
space into two or more (non-overlapping) regions in which the dis-
tribution of the response variable Y is more homogeneous. In this way,
build a “tree" of successive partitions that places each observation into
some terminal node, each defining a model for Y that is appropriate to
all of the observations in that node.
Bayesian Treed Gaussian Process model (TGP) [2]: Fit independent
stationary Gaussian process models to each of the non-overlapping N
terminal nodes of a tree T . The correlation matrix RRRν is specific to
each region, but it is assumed that all RRRν (ν = 1, . . . ,N ) come from
the power exponential family, with range parameters ddd and the addition
of a nugget parameter gν.
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Expected Difference of Slopes (E∆M)

This sequential design method focuses on the search for areas with
large changes in slope, with the idea that sudden changes in slope are
an indication of non-stationary “breaks" in the response.
Consider three points (xxx1, Y (xxx1)), (xxx2, Y (xxx3)), (xxx3, y3), such that xxx3 has
already been sampled (xxx3 ∈XXX) but xxx1,xxx2 have not. We choose a new
point xxx0 that resides in the region where the difference in slopes between
these three points is expected to be the largest.
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∆x2

32∆x2
21
×
{
∆x2

21y
2
3

+ ∆x2
31[σ̂2(xxx2) + Ŷ (xxx2)2] + ∆x2
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The prediction equations for Ŷ (xxxi) and σ̂2(xxxi) are using the BTGP
model. Cov(xxxi,xxxj) is estimated using the correlation matrix RRR and its
range and nugget parameters (ddd, g). All of these estimates are calcu-
lated as part of the R package tgp [3].

Implementation: Choose a relatively dense grid of N ′ candidate
points XX and an initial set of N0 training points from which a pre-
dicted surface is estimated (using BTGP). To find the next point sat-
isfying the E∆M criterion:
1 Pick a candidate point, xxx0, from XX .
2 Determine which c points in XXX are closest to xxx0; call these values xxx∗.
3 For each of the c xxx∗ points, find the point in XX that is halfway
between this point and xxx0. These are called the “midpoints."

4 We now have a set of three points associated with each closest point:
xxx0 (in XX), the closest point xxx∗ (from XXX), and the midpoint
between them (in XX).

5 For each of the c sets, calculate E[(slope diff)2] for that set.
6 Determine which E[(slope diff)2] value is largest among the c xxx∗
points; this tells us which direction has largest expected numerical
second derivative for that xxx0.

7 Return to Step 1 and repeat for all xxx0 in XX that are not already
part of the sample XXX .

8 We now have N ′ −N values of max {E[(slope diff)2]}. The new
sampled point is in the set with the largest max {E[(slope diff)2]}.
Specifically, the new point is the midpoint of that set.

Example: 2d Exponential Function

For x1, x2 ∈ [−2, 6],
y(xxx) = x1 exp(−x2

1 − x2
2) (4)

with added N(0, σ = 0.001) random noise. This surface is obviously
non-stationary, with a steep peak and trough in [−2, 2] × [−2, 2] and
a plane elsewhere.
On the left side of Figure 1 is the ERMSPE of the fit achieved as N
increases for E∆M and Gramacy’s Bayesian Adaptive Sampling (BAS)
method. It is clear that E∆M achieves a good global fit much quicker
than BAS.

Figure 1: ERMSPE on the 2-d exponential data (left) and 6-hump camel-back function
(right), using the E∆M (black), BAS (green), and modifications to the E∆M (red).

Next Steps

Although E∆M is more efficient than BAS in the example above, that
is not always the case. However, an alteration of Equation (3) makes
the E∆M method more robust on a variety of problems. We can see
the effectiveness of this alternate version on the right side of Figure 1,
comparing ERMSPE on the 2-dimensional six-hump camel-back func-
tion. While the original E∆M does not perform very well, the modified
version is at least as efficient as BAS.

Conclusion

Tests on several one- and two-dimensional synthetic examples indi-
cate that E∆M is successful at global fit, especially of non-stationary
response surfaces. It performs at least as well as competing sequen-
tial design methods, and is a significant improvement over these
methods on many examples. This is especially true for the modi-
fied version of E∆M, which outperforms the original E∆M in many
cases.


