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Introduction
Improvements in online measuring have facilitated an increase in the number of ob-
servations that can be taken on each experimental unit in industrial and scientific ex-
periments [1]. It can often be assumed that the data from each run are generated by a
smooth underlying function, and here we are interested in how changes to the levels
of the controllable factors influence these functions.

Our motivation for this work is an experiment to study wear in a pin and disc assembly
(Figure 1) for a given lubricant performed by the National Centre for Advanced Tri-
bology Southampton. The effects of four factors were investigated in 20 runs, each
defined by a different treatment, or combination of values of the factors.

Figure 1: Schematic of the pin and
disc equipment.

Figure 2: Example of smoothed wear
data from one run of the experiment.

The response was the total wear of the pin and disc, measured by a linear variable
displacement transformer. Figure 2 shows an example of the data produced from this
experiment, which can be assumed to be a realisation of a smooth function. To un-
derstand the effects of the four treatment factors on the observed functions, we can
use the data to choose between contending functional linear models. Hence, we de-
sire to find T -optimal designs [2] which provide the most information for discriminating
between functional linear models.

Functional linear models
We assume the following linear model for the functional responses from an N -run
experiment:

M1 : Y (t) = X1β1(t) + ε(t) ,

with, for t ∈ T ⊂ R, Y (t) = (Y1(t), . . . , YN(t))T, X an N × p1 model matrix, β1(t) =

(β11(t), . . . , β1p1(t))
T and ε(t) = (ε1(t), . . . , εN(t)). The errors εj(t) and εj(u) are realisa-

tions from a Gaussian stochastic process mean zero and covariance function γ(t, u);
for i 6= j, εi(t) and εj(u) are assumed independent.

That is, the observed functions Yj(t) are assumed to be linear combinations of un-
known functions β1k(t) with the addition of independent error functions εj(t) (j =

1, . . . , N ; k = 1, . . . , p1).

We assume that the aim of the experiment is to discriminate between model M1 and
a rival model

M2 : Y (t) = X2β2(t) + ε(t) ,

with X2 an alternative model matrix with corresponding vector of unknown functions
β2(t) = (β21(t), . . . , β2p2(t))

T. To discriminate between these models, Faraway [3] sug-
gested the test statistic

T =

∫
t

[
Ŷ 2(t)− Ŷ 1(t)

]T [
Ŷ 2(t)− Ŷ 1(t)

]
dt , (1)

where Ŷ i = (Ŷ1(t), . . . , ŶN(t))T are the fitted functions from model Mi.

T -optimality
We find approximate optimal designs in f factors which are represented by a measure
ξ on the design region X = [−1, 1]f :

ξ =

{
x1 x2 ... xn
w1 w2 ... wn

}
, (2)

where xj ∈ X are the support points with associated weights 0 < wj ≤ 1;
∑n

j=1wj = 1.

Using data collected using design (2), we obtain fitted functions

Ŷ 1(t) = X1

(
XT

1WX1

)−1
XT

1WY (t) = HY (t) ,

where W = diag(w1, . . . , wn) and Xi is now defined for the n support points.

If we assume we observe data from M2 without error, from (1) we find a T -optimal
design ξ? by maxmizing

Φ(ξ) =

∫
t

[X2β2(t)−HX2β2(t)]
T W [X2β2(t)−HX2β2(t)] dt

=

∫
t

βT
2 (t)XT

2 [I−H]T W [I−H]X2β2(t) dt . (3)

Lemma: Assume M1 is nested within M2, so p1 < p2, X2 = [X1 : X21] and
βT

2 (t) = [βT
1 (t),βT

21(t)] with X21 an n × (p2 − p1) model matrix and β21 an (p2 − p1)

vector of unknown functions. Then objective function (3) is given by

Φ(ξ) =

∫
t

βT
21(t)X

T
21 (I−H)T W (I−H)X21β21(t) dt ,

and hence does not depend on the parameter vector β1(t) which is common to both
M1 and M2.

Proof. The proof is analogous to that for the scalar regression case [4].

Theorem: Assume M1 is nested in M2, as in the lemma, and p2 = p1 + 1; that is, mod-
els M1 and M2 differ by only one term. Then the T -optimal design does not depend on
the unknown function β21(t).

Proof. If p2−p1 = 1, X21 is a n×1 vector, and β21(t) is a single function β21(t) and hence
for given t is a scalar. From the lemma,

Φ(ξ) =

∫
t

β2
21(t)X

T
21 (I−H)T W (I−H)X21 dt

= XT
21 (I−H)T W (I−H)X21

∫
t

β2
21(t) dt

∝ XT
21 (I−H)T W (I−H)X21 , (4)

where the constant of proportionality does not depend on ξ. Therefore, the T -optimal
design that maximises (4) does not depend on the function β21(t).

Corollary: When M1 is nested in M2 and p2 = p1 + 1, it follows directly from (4) that the
same design ξ? is T -optimal design for both the functional linear model and the scalar
linear model.

Example
We construct a T -optimal design to compare the functional linear models

Y (t) = β0(t) + β1(t)x + ε(t) , (5)

and

Y (t) = θ0(t) + θ1(t)x + θ2(t)x
2 + ε(t) . (6)

That is, we find an optimal design to test if (5) is appropriate given data from (6). As
the models differ by only one term, from the theorem we know that ξ? will not depend
on any of the unknown functions. Maximising (4) using the Nelder-Mead algorithm,
we find the optimal design

ξ? =

{
−1 0 1

0.25 0.5 0.25

}
, (7)

which, from the corollary, is also T -optimal for comparing first- and second-order scaler
regression models.

Simulation study
We assess the power for rejecting H0 : “model (5) is correct” using exact T -optimal
designs with N runs, obtained by rounding (7), and test statistic (1). The power is ap-
proximated through a simulation study with data generated from model (6) assuming:

• the functions Yj(t) are observed at points t1, . . . , tm ∈ [−1, 1], j = 1, . . . , N ;

• θk(t) = αk0 + αk1t + αk2t
2, k = 0, 1, 2;

•Cov (εg(tu), εh(tv)) = σ2
aρ
|u−v| + σ2

b for g = h and 0 < ρ < 1, and 0 otherwise.

For each of S = 1000 generated data sets (with σ2
a = 0.1, σ2

b = 2, ρ = ∗∗), we approxi-
mate (1) as

T ≈
N∑
j=1

[
Ŷ 2(t)− Ŷ 1(t)

]T [
Ŷ 2(t)− Ŷ 1(t)

]
,

and calculate F = (N − p2)T/RSS, where RSS is the residual sum of squares from
model (6). Under H0, F follows an F distribution [5] with λ̂ and λ̂(n − p2) degrees of
freedom (DoF) where λ̂ = tr(Σ̂)2/tr(Σ̂2) is the DoF adjustment factor and Σ̂ is the em-
pirical variance-covariance matrix for Y , estimated from fitting (6). We approximate
the power as the proportion of simulations for which H0 is rejected.

Figure 3 displays the results of this study. Obviously, as the number of runs increases,
the power of the test increases for all values of α22. Usually, the difference in power for
different N is smallest for larger values of α2j. This is intuitive, as larger values of α2j

lead to larger θ2 and hence an easier discrimination problem. We also see that larger
values of α20 lead to higher power for all values of α22; increasing α21 has much less
effect.
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Figure 3: Example 1: Simulated power from 1000 simulations under different
parameter values, α20, α21 and α22, and different numbers, N , of runs. The three

curves represent (−) N = 12, (−−), N = 24, (· · · ) N = 72
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