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Design key

Patterson (1965, 1976), Bailey, (1977), Bailey, Gilchrist and Patterson

(1977), Patterson and Bailey (1978)

A useful uni�ed device in the construction of factorial arrangements

and the identi�cation of confounding patterns

Can be applied to symmetric and mixed-level designs.

For symmetric factorials where the number of factor levels is a prime or

prime power, it is equivalent to the familiar method of using factorial

e�ects (words) to partition the treatments into blocks, rows, columns, etc.
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Split-plot designs

Block structure: (16 whole-plots)/(2 subplots)

Five two-level treatment factors

A, B : whole-plot treatment factors

S , T , U: subplot treatment factors.

More whole-plots than the # of whole-plot treatment combinations

Bingham, Schoen, and Sitter (2004)
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First construct a design with 4 whole-plots each containing 8 subplots.
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Then use two interactions involving subplot treatment factors, say ST and

SU, to divide each whole-plot into four quarters, each of which is

considered as a whole-plot of size two. Then we have 16 whole-plots of

size 2.

ST and SU are called independent splitting words (or splitting e�ects).

When choosing the splitting words, one needs to check

independence

no main e�ects of subplot treatment factors get confounded with

whole-plot contrasts.
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unit contrasts and treatment contrasts

treatment contrasts representing factorial e�ects (main e�ects and

interactions): 31 d.f.

unit contrasts: 31 d.f.

15 d.f. : whole-plot contrasts

16 d.f. : subplot contrasts

two strata

Design key construction is done by choosing a unit alias for each treatment

main e�ect
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Represent the 32 units as combinations of �ve two-level unit factors

W1,W2,W3,W4,S.

whole-plot contrasts: the e�ects that do not involve S

subplot contrasts: the e�ects that involve S

S W1W2W3W4

K =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

1 0 0 0 1



S

A

B

T

U
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Five independent generators stu, a, b, t, and u are identi�ed from the

columns of K .

(1)
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sn split-plot factorial designs with sq whole-plots each containing sn−q

subplots

s is a prime number or power of a prime number

n1 of the n treatment factors are whole-plot factors and the other

n2 = n − n1 treatment factors are subplot factors.

9



Theorem Each complete s
n factorial split-plot design can be constructed by using

a design key of the form

K =

I n−q 0n−q,q

B I q

 ,

where B is q × (n − q), the �rst n − q columns of K correspond to

S1, · · · ,Sn−q, and the last q columns correspond to W1, · · · , Wq.

The �rst n − q rows of K correspond to subplot treatment factors.

The next n1 rows correspond to whole-plot treatment factors, and if n1 < q, the

last q − n1 rows correspond again to sub-plot treatment factors.

All the �rst n1 rows of B are zero, and if n1 < q, the last q − n1 rows of B are

nonzero.

This dates back to the construction of block designs in Das (1964).
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S W1W2W3W4

K =



1 0 0 0 0

∗ 1 0 0 0

∗ 0 1 0 0

∗ 0 0 1 0

∗ 0 0 0 1


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S W1W2W3W4

K =
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0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

1 0 0 0 1



S

A

B

T

U

There is only one design up to isomorphism.
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If the treatment combinations are generated by using the generators

determined by the columns of the design key matrix and are arrangeed in

the Yates order, then the �rst sn−q in the generated sequence are in the

same whole-plot, and each succeeding set of sn−q treatment combinations

are also in the same whole-plot.

K
−1 =


I n−q 0

−bT1
... I q

−bTq


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s = 2: K−1 = K

S A B T U

K
−1 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

1 0 0 0 1



S1

W1

W2

W3

W4

In general, independent splitting words can identi�ed from the last q − n1

rows of K .
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The block structure, design requirements, independent generators, and

splitting words are all built in the design key template.

No need to

1. check independence of splitting words;

2. check that no main e�ect of a subplot treatment factor is confounded

with whole-plot contrasts;

3. solve equations to �nd the treatment combinations in the �rst

whole-plot.
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Blocked split-plot designs

sn design with sq whole-plots each containing sn−q subplots, where there

are n1 whole-plot treatment factors, n2 = n− n1 subplot treatment factors,

and the sq whole-plots are divided into sg blocks each of size sq−g .

Block structure: sg/sq−g/sn−q

McLeod and Brewster (2004) proposed three construction methods: pure

whole-plot blocking, separation, and mixed blocking.
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Represent the sn units by the combinations of n s-level unit factors

S1, · · · , Sn−q,W1, · · · ,Wq−g ,B1, · · · , Bg

Three strata

A treatment main e�ect is confounded with a block (respectively,

whole-plot) contrast if its unit alias does not involve any of S1, · · · , Sn−q,

W1, · · · ,Wq−g (respectively, involves at least one of W1, · · · ,Wq−g but

not any of S1, · · · , Sn−q), and is orthogonal to block and whole-plot

contrasts if its unit alias involves at least one of S1, · · · , Sn−q.
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K =


I n−q 0n−q,q−g 0n−q,g

I q−g 0q−g ,g

B

C I g

 ,

where B is q × (n − q), C is g × (q − g), the �rst n − q columns of K

correspond to S1, · · · , Sn−q, the next q − g columns correspond to

W1, · · · ,Wq−g , the last g columns correspond to B1, · · · , Bg , the �rst n − q

rows of K correspond to subplot treatment factors, the next n1 rows correspond

to whole-plot treatment factors, and all the remaining rows correspond to subplot

treatment factors if n1 < q.

Furthermore, the �rst n1 rows of B are zero, all the last q − n1 rows of B are

nonzero if n1 < q, and all the �rst n1 − (q − g) rows of C are nonzero if

n1 > q − g .
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For constructing an s
n−p fractional factorial design, we can add p rows to a

design key for the complete factorial of n − p basic factors, one for each added

factor.

Two treatment factorial e�ects are aliased if and only if their unit aliases are

aliased.

Given the de�ning relation of the fraction, the row of the design key associated

with each added factor can be obtained as a linear combination of the rows

corresponding to the basic factors whose interaction is used to de�ne the given

factor.

Need to check that the constraints imposed by the block structures are observed.

For instance, if no treatment main e�ects are to be confounded with block

contrasts, then one needs to make sure their unit aliases are not block contrasts.
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Experiments with multiple processing stages

Levels of treatment factors are assigned at di�erent stages. At each stage,

the experimental units are divided into disjoint groups. All the units in the

same group are assigned the same level of each factor whose levels are set

at that stage.
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24 experiment, four stages, four groups at each stage

0 0 0 0 1 1 1 1

1 0 0 1 3 1 3 2

0 0 1 0 2 1 2 4

1 0 1 1 4 1 4 3

0 1 0 1 1 3 3 3

1 1 0 0 3 3 1 4

0 1 1 1 2 3 4 2

1 1 1 0 4 3 2 1

0 0 1 1 1 2 2 2

1 0 1 0 3 2 4 1

0 0 0 1 2 2 1 3

1 0 0 0 4 2 3 4

0 1 1 0 1 4 4 4

1 1 1 1 3 4 2 3

0 1 0 0 2 4 3 1

1 1 0 1 4 4 1 2
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1 0 1 0 3 2 4 1
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Wu (1989) showed that for even n, the 2n − 1 columns of a saturated

regular 2-level design of size 2n can be decomposed into (2n − 1)/3 disjoint

groups of size three such that any column is the sum of the other two

columns in the same group. For odd n, one can only construct up to

(2n − 5)/3 disjoint groups.
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1 2 3 4 1, 1234, 234 2, 124, 14 12, 3, 123 134, 13, 4

0 0 0 0 1 1 1 1

1 0 0 1 3 1 3 2

0 0 1 0 2 1 2 4

1 0 1 1 4 1 4 3

0 1 0 1 1 3 3 3

1 1 0 0 3 3 1 4

0 1 1 1 2 3 4 2

1 1 1 0 4 3 2 1

0 0 1 1 1 2 2 2

1 0 1 0 3 2 4 1

0 0 0 1 2 2 1 3

1 0 0 0 4 2 3 4

0 1 1 0 1 4 4 4

1 1 1 1 3 4 2 3

0 1 0 0 2 4 3 1

1 1 0 1 4 4 1 2

(0, 0, 0)→ 1, (0, 1, 1)→ 2, (1, 0, 1)→ 3, (1, 1, 0)→ 4
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1 2 3 4 1, 2, 12 3, 4, 34 13, 24, 1234 23, 124, 134

0 0 0 0 1 1 1 1

1 0 0 0 3 1 3 2

0 1 0 0 2 1 2 4

1 1 0 0 4 1 4 3

0 0 1 0 1 3 3 3

1 0 1 0 3 3 1 4

0 1 1 0 2 3 4 2

1 1 1 0 4 3 2 1

0 0 0 1 1 2 2 2

1 0 0 1 3 2 4 1

0 1 0 1 2 2 1 3

1 1 0 1 4 2 3 4

0 0 1 1 1 4 4 4

1 0 1 1 3 4 2 3

0 1 1 1 2 4 3 1

1 1 1 1 4 4 1 2
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Choose one contrast from each group and relabel them as 1, 2, 3, and 4,

respectively.

Ranjan, Bingham and Dean (2009) used the method of collineation of

projective spaces.

Suppose 1, 3, 24, and 134 are to be relabeled as 1, 2, 3, and 4, respectively.

1 2 3 4

K =


1 0 0 0

0 0 1 0

0 1 0 1

1 0 1 1


1

2

3

4

.
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1 2 3 4 1, 2, 12 3, 4, 34 13, 24, 1234 23, 124, 134

0 0 0 0 1 1 1 1

1 0 0 0 3 1 3 2

0 1 0 0 2 1 2 4

1 1 0 0 4 1 4 3

0 0 1 0 1 3 3 3

1 0 1 0 3 3 1 4

0 1 1 0 2 3 4 2

1 1 1 0 4 3 2 1

0 0 0 1 1 2 2 2

1 0 0 1 3 2 4 1

0 1 0 1 2 2 1 3

1 1 0 1 4 2 3 4

0 0 1 1 1 4 4 4

1 0 1 1 3 4 2 3

0 1 1 1 2 4 3 1

1 1 1 1 4 4 1 2

Replace the generators with those obtained from the columns of K .
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